_Toc293671468

Введение 2

1. Понятие тысячной и способы измерения её 3

2. Глазомерный способ 5

3. Способ измерения по угловым размерам 7

4. Способ измерения по линейной величине 10

5. Способ измерения шагами 11

6. Способ измерения по времени и скорости движения 12

7. Способ измерения по соотношению скорости света и звука 13

8. Способ измерения на слух 13

Заключение 18

Список литературы 19

Приложение 20

Введение

Организация и ведение боевых действий неразрывно связаны с ориентированием на местности. Оно необходимо при постановке боевых задач подразделениям и огневым средствам, выдерживании направления действий, целеуказании, нанесении на рабочую карту результатов разведки противника и местности, управлении подразделениями в ходе боя. Потеря ориентировки в бою может привести к невыполнению боевой задачи и неоправданным потерям личного состава и техники. Поэтому умение быстро и точно ориентироваться на местности в любых условиях является одним из важнейших элементов полевой выучки офицеров.

Применение в бою современных огневых средств требует производства точных измерений и расчетов по привязке огневых и стартовых позиций, определение расстояний до целей. С этой целью в войсках используются различного рода измерения с помощью разных приборов. Для измерений на местности широко используются топографические карты.

Однако в современном бою, когда успех зависит от быстрого принятия решения, когда на принятие решения требуется короткое время, необходимо, чтобы каждый военнослужащий, а тем более офицер, должен уметь быстро и с высокой точностью производить измерения и расчеты на местности, особенно по определению расстояний до целей.

Это особенно важно для командиров мотострелковых подразделений. Командиры мотострелковых подразделений при ведении боя обязаны управлять подразделениями и огнем на местности, определение расстояний и углов при разведке целей играют очень важную роль для быстрейшего уничтожения противника.

Определение расстояний на местности командиру необходимо для управления подразделением в бою. Особенно большое влияние определение расстояний оказывает на ведение огня из различных видов оружия.

1. Понятие тысячной и способы измерения её

Тысячная - единица измерения углов, принятая в артиллерии и равняющаяся одной шеститысячной части оборота. Название происходит от приблизительного равенства такой единицы измерения углов миллирадиану, то есть тысячной доле радиана (составляющей 1/(1000 × 2 π) ≈ 1/6283 оборота). Синонимом для этой единицы измерения угла является малое деление угломера.

Понятие тысячной принято во всех странах мира, и применяется для введения горизонтальных поправок ведения огня стрелкового оружия и артиллерийских систем, а также определение расстояний и дистанций. Тысячные записываются и читаются следующим образом:

тысячная 0-01, читается как ноль, ноль один

тысячных 0-05, читается как ноль, ноль пять

тысячных 0-10, читается как ноль, десять

тысячных 1-50, читается как один, пятьдесят

тысячных 15-00, читается как пятнадцать, ноль ноль

При использовании оптических приборов с делениями в тысячных нужно учитывать, что есть русская тысячная, которая делит круг на 6000 частей и есть немецкая тысячная, которая делит круг на 6400 частей.

Исходя из равенства 1 оборота 2π радиан или 360 градусам, существуют следующие соотношения между всеми этими единицами измерения:

· 1 тысячная ≈ 0,00016(6) оборота

· 1 тысячная ≈ 0,001047 радиана

· 1 тысячная = 0,06 градуса = 3,6 угловой минуты = 3 угл. минуты 36 угл. секунд

· 1 тысячная = 0,06(6) града

· 1 оборот = 6000 тысячных

· 1 радиан ≈ 954,92 тысячных

· 1 угловая секунда = 0,004629(629) тысячной

· 1 угловая минута = 0,277(7) тысячной

· 1 градус = 16,66(6) тысячных

· 1 град = 15 тысячных

Большим удобством такой нестандартной единицы измерения углов является хорошая приспособленность к вычислениям линейных и угловых размеров объектов на местности без каких-либо средств механизации счёта. Пусть объект длиной W наблюдается с дистанции L под небольшим углом α (то есть выполняется условие L >> W , очень часто встречающееся в артиллерийской практике). Тогда при выражении угла α в радианной мере имеет место:

и, заменяя радианную меру на тысячные, получаем в итоге:


Для большинства практических расчётов используется приближённый вариант, но в ряде случаев возникающая при этом погрешность в 4,5 % недопустима и тогда коэффициент 0,955 не отбрасывается. Упрощённое равенство называется формулой тысячных. Из этой формулы следует правило для лучшего запоминания соотношения: «веха высотой 1 метр, удалённая от наблюдателя на 1 километр, видна под углом в 1 тысячную».

Формула тысячных применима при не слишком больших углах, когда синус угла приближённо равен самому углу в радианной мере. Условной границей применимости считается угол в 300 тысячных (18 градусов).

2. Глазомерный способ

Глазомерный способ - основной способ и самый простой при определении расстояний, доступный для каждого командира. Сущность способа - сравнение определяемого расстояния с известным или запечатленным в памяти.

Этот способ не дает высокой точности в определении расстояний, но при определенной тренировке можно добиться точности до 10 м. Чтобы развить свой глазомер нужно постоянно упражняться в определении расстояний на местности.

Глазомерно расстояние определяют путем сравнения с известным на местности отрезком. На точность глазомерного определения расстояния оказывают влияние освещенность, размеры объекта, его контраст с окружающим фоном, прозрачность атмосферы и другие факторы. Расстояния кажутся меньшими, чем в действительности, при наблюдении через водные пространства, лощины и долины, при наблюдении крупных и отдельно расположенных объектов.

И наоборот, расстояния кажутся большими, чем в действительности, при наблюдении в сумерках, против света, в туман, при пасмурной и дождливой погоде. Все эти особенности следует учитывать при глазомерном определении расстояний.

Точность глазомерного определения расстояний зависит также от натренированности наблюдателя. Опытным наблюдателем расстояния до 1000 м могут быть определены глазомерно с ошибкой 10-15%. При определении расстояния более 1000 м ошибки могут достигать 30%, а при недостаточной опытности наблюдателя 50%.

Одним из способов измерения расстояний на местности это использование известных по протяженности расстояний на местности (линии электропередач - расстояние между опорами, расстояние между линиями связи и т.п.).

Для грубой оценки расстояний на местности можно использовать следующие данные (табл.1):

Таблица 1

Расстояния видимости (различимости) некоторых объектов невооруженным глазом


Для каждого человека данная таблица может быть уточнена им самим. Чтобы развить свой глазомер, необходимо как можно чаще упражняться в определении на глаз расстояний с обязательной проверкой их шагами, по карте или другим способом.

Тренировку надо начинать с коротких расстояний (10, 50, 100 м). Хорошо освоив эти дистанции, можно переходить последовательно к большим (200, 400, 800, 1000 м). Потом можно легко определять расстояния и большие.

более крупные предметы кажутся всегда ближе мелких, расположенных на том же расстоянии;

чем меньше промежуточных предметов находится между глазом и наблюдаемым предметом, тем этот предмет кажется ближе;

при наблюдении снизу вверх, от подошвы горы к вершине, предметы кажутся ближе, а при наблюдении сверху вниз - дальше.

Глазомерная оценка расстояний может контролироваться, когда несколько человек измеряют одну и ту же дистанцию независимо друг от друга. Беря среднее из всех этих определений, получают наиболее точный замер.

. Способ измерения по угловым размерам

Для применения этого способа надо знать линейную величину наблюдаемого предмета (его высоту, длину либо ширину) и тот угол (в тысячных), под которым виден данный предмет. Угловые размеры предметов измеряют с помощью бинокля, приборов наблюдения и прицеливания и подручными средствами. Расстояние до предметов в метрах определяют по формуле:


где В - высота (ширина) предмета в метрах, У - угловая величина предмета в тысячных.

Например, высота железнодорожной будки составляет 4 метра, военнослужащий видит ее под углом 25 тысячных (толщина мизинца). Тогда расстояние до будки составит:


Или военнослужащий видит танк «Леопард-2» под прямым углом сбоку. Длина этого танка - 7 метров 66 сантиметров. Предположим, что угол наблюдения составляет 40 тысячных (толщина большого пальца руки). Следовательно, расстояние до танка - 191,5 метров.

Чтобы определить угловую величину подручными средствами, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0-02). Отсюда легко определить угловую величину для любых отрезков.

Например, для отрезка в 0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Точность определения расстояний по угловым величинам составляет 5-10% длины измеряемого расстояния.

Чтобы определить угловую величину, надо знать, что отрезку в 1 мм, удаленному от глаза на 50 см, соответствует угол в две тысячных (записывается: 0- 02). Отсюда легко определить угловую величину для любых отрезков (рис. 1).

Рис.1. Определение угловой величины для любых отрезков

Например, для отрезка в0,5 см угловая величина будет 10 тысячных (0-10), для отрезка в 1 см - 20 тысячных (0-20) и т.д. Проще всего выучить наизусть стандартные значения тысячных:

Таблица 2

Угловые величины (в тысячных долях дистанции)

Наименование предметов

Размер в тысячных

Толщина большого пальца руки

Толщина указательного пальца

Толщина среднего пальца

Толщина мизинца

Патрон по ширине дульца гильзы (7,62 мм)

Гильза по ширине корпуса

Карандаш простой

Спичечная коробка по длине

Спичечная коробка по ширине

Спичечная коробка по высоте

Толщина спички


4. Способ измерения по линейной величине

Определение расстояний по линейным размерам предметов заключается в следующем. С помощью линейки, расположенной на расстоянии 50 см от глаза, измеряют в миллиметрах высоту (ширину) наблюдаемого предмета. Затем действительную высоту (ширину) предмета в сантиметрах делят на измеренную по линейке в миллиметрах, результат умножают на постоянное число 5 и получают искомую высоту предмета в метрах.

Например, телеграфный столб высотой 6 м (см. рисунок) закрывает на линейке отрезок 10 мм.

Рис.2. Определение расстояний по линейным размерам предмета

Следовательно, расстояние до него:


Точность определения расстояний по линейным величинам составляет 5-10% длины измеряемого расстояния.

Для определения расстояний по угловым и линейным размерам предметов рекомендуется запомнить величины (ширину, высоту, длину) некоторых из них, либо иметь эти данные под рукой (на планшете, в записной книжке). Размеры наиболее часто встречаемых объектов приведены в Приложении.

5. Способ измерения шагами

измерение расстояние видимость размер

Этот метод определения расстояний в боевой обстановке имеет ограниченное применение

Этот способ применяется обычно при движении по азимуту, составлении схем местности, нанесении на карту (схему) отдельных объектов и ориентиров и в других случаях. Счет шагов ведется, как правило, парами. При измерении расстоянии большой протяженности шаги более удобно считать тройками попеременно под левую и правую ногу. После каждой сотни пар или троек шагов делается отметка каким-нибудь способом и отсчет начинается снова. При переводе измеренного расстояния шагами в метры число пар или троек шагов умножают на длину одной пары или тройки шагов. Например, между точками поворота на маршруте пройдено 254 пары шагов. Длина одной пары шагов равна 1,6 м.

Тогда Д =254Х1,6=406,4 м.

Обычно шаг человека среднего роста равен 0,7- 0,8 м. Длину своего шага достаточно точно можно определить по формуле

Д=(Р/4)+0,37,

где Д-длина одного шага в метрах

Р - рост человека в метрах.

Например, если рост человека 1,72 м, то длина его шага

Д=(1,72/4)+0,37=0,8 м.

Более точно длина шага определяется промером какого-нибудь ровного линейного участка местности, например дороги, протяженностью 200-300 м, который заранее измеряется мерной лентой (рулеткой, дальномером и т. п.). При приближенном измерении расстояний длину пары шагов принимают равной 1,5 м.

Средняя ошибка измерения расстояний шагами в зависимости от условий движения составляет около 2-5% пройденного расстояния.

Счет шагов может выполняться с помощью шагомера (рис.3).

Он имеет вид и размеры карманных часов. Внутри прибора помещен тяжелый молоточек, который при встряхивании опускается, а под воздействием пружины возвращается в первоначальное положение. При этом пружина перескакивает по зубцам колесика, вращение которого передается на стрелки. На большой шкале циферблата стрелка показывает число единиц и десятков шагов, на правой малой-сотни, а на левой малой-тысячи. Шагомер подвешивают отвесно к одежде. При ходьбе вследствие колебания его механизм приходит в действие и отсчитывает каждый шаг.


Рис.3 Шагомер

6. Способ измерения по времени и скорости движения

Этот способ применяется для приближенного определения величины пройденного расстояния, для чего среднюю скорость умножают на время движения. Средняя скорость пешехода около 5, а при движении на лыжах 8-10 км/ч. Например, если разведывательный дозор двигался на лыжах 3 ч, то он прошел около 30 км.

7. Способ измерения по соотношению скорости света и звука

Этот способ позволяет быстро определить расстояние до стреляющих орудий, минометов, танков и др. огневых средств.

Звук распространяется в воздухе со скоростью 330 м/с, т. е. округленно 1 км за 3 с, а свет- практически мгновенно (300000 км/ч). Таким образом, расстояние в километрах до места вспышки выстрела (взрыва) равно числу секунд, прошедших от момента вспышки до момента, когда был услышан звук выстрела (взрыва), деленному на 3. Например, наблюдатель услышал звук взрыва через 11 с после вспышки. Расстояние до места вспышки Д=11/3 = 3,7км.

8. Способ измерения на слух

Ночью и в туман, когда наблюдение ограничено или вообще невозможно (а на сильно пересеченной местности и в лесу, как ночью, так и днем) на помощь зрению приходит слух.

Почти все звуки, означающие опасность, производятся человеком. Поэтому если военнослужащий слышит даже самый слабый подозрительный шум, он должен замереть на месте и слушать. Возможно, что недалеко от него затаился враг. Если противник начнет двигаться первым, выдав тем самым свое месторасположение, то он первым и погибнет. Если это сделает разведчик, такая участь постигнет его.

В тихую летнюю ночь даже обычный человеческий голос на открытом пространстве слышно далеко, иногда на полкилометра. В морозную осеннюю или зимнюю ночь всевозможные звуки и шумы слышны очень далеко. Это касается и речи, и шагов, и звяканья посуды либо оружия. В туманную погоду звуки тоже слышны далеко, но их направление определить трудно. По поверхности спокойной воды и в лесу, когда нет ветра, звуки разносятся на очень большое расстояние. А вот дождь сильно глушит звуки. Ветер, дующий в сторону военнослужащего, приближает звуки, а от него - удаляет. Он также относит звук в сторону, создавая искаженное представление о местонахождении его источника. Горы, леса, здания, овраги, ущелья и глубокие лощины изменяют направление звука, создавая эхо. Порождают эхо и водные пространства, способствуя его распространению на большие дальности.

Звук меняется, когда источник его передвигается по мягкой, мокрой или жесткой почве, по улице, по проселочной или полевой дороге, по мостовой или покрытой листьями почве. Необходимо учитывать, что сухая земля лучше передает звуки, чем воздух. Ночью звуки особенно хорошо передаются через землю. Потому часто прислушиваются, приложив ухо к земле или к стволам деревьев.

Натренированный слух - хороший помощник в определении расстояний ночью. Успешное применение этого способа во многом зависит от выбора места для прослушивания. Оно выбирается таким образом, чтобы ветер не попадал прямо в уши. Вокруг в радиусе нескольких метров устраняются причины шума, например сухая трава, ветки кустарника и т. п. В безветренную ночь при нормальном слухе различные источники шумов могут быть слышны на дальностях, указанных в табл. 3.

Таблица 3

Средняя дальность слышимости различных звуков днем на ровной местности, км (летом)

Источник звука (действия противника)

Слышимость звука

Характерные звуковые признаки

Шум двигающегося поезда

Паровозный или пароходный гудок, заводская сирена

Стрельба очередями из винтовок и пулеметов

Выстрел из охотничьего ружья

Автомобильный сигнал

Топот лошадей на рыси по мягкому грунту

Топот лошадей на рыси по шоссе

Крик человека

Ржание лошадей, лай собак

Разговорная речь

Всплеск воды от весел

Звяканье котелков, ложек

Переползание

Движение пехоты в строю по грунту

Ровный глухой шум

Движение пехоты в строю по шоссе


Стук весел о борт лодки

Отрывка окопов вручную

Удары лопаты по камням

Вбивание деревянных колье вручную

Вбивание деревянных колье механическим способом


Рубка и спиливание деревьев ручным способом (топором, ручной пилой)

Резкий стук топора, визг пилы, прерывистый звук бензинового двигателя, глухой удар о землю спиленного дерева

Спиливание деревьев бензопилой


Падение дерева


Движение автомобилей по грунтовой дороге

Ровный шум моторов

Движение автомобилей по шоссе


Движение танков, САУ, БМП по грунту

Резкий шум двигателей одновременно с резким металлическим лязгом гусениц

Движение танков, САУ, БМП по шоссе


Шум двигателя стоящего танка, БМП

Движение буксируемой артиллерии по грунту

Резкий отрывистый грохот металла и шум двигателей

Движение буксируемой артиллерии по шоссе


Стрельба артиллерийской батареи (дивизиона)

Выстрел из орудия

Стрельба из минометов

Стрельба из крупнокалиберных пулеметов

Стрельба из автоматов

Одиночный выстрел из винтовки


Существуют определенные способы, помогающие слушать ночью, а именно:

· лежа: приложить ухо к земле;

· стоя: один конец палки прислонить к уху, другой конец упереть в землю;

· стоять, слегка наклонившись вперед, перенеся центр тяжести тела на одну ногу, с полуоткрытым ртом, - зубы являются проводником звука.

Обученный военнослужащий при подкрадывании, если только ему дорога жизнь, ложится на живот и слушает лежа, стараясь определить направление звуков. Это легче сделать, повернув одно ухо в ту сторону, откуда доносится подозрительный шум. Для улучшения слышимости рекомендуется при этом приложить к ушной раковине согнутые ладони, котелок, отрезок трубы.

Для лучшего прослушивания звуков военнослужащий может приложить ухо к положенной на землю сухой доске, которая выполняет роль собирателя звука, или к сухому бревну, вкопанному в землю.

При необходимости можно изготовить самодельный водяной стетоскоп. Для этого используется стеклянная бутылка (либо металлическая фляга), заполненная водой до горловины, которую зарывают в грунт до уровня воды в ней. В пробку плотно вставляют трубку (пластмассовую), на которую одевают резиновую трубку. Другой конец резиновой трубки, снабженный наконечником, вставляют в ухо. Для проверки чувствительности прибора ударить пальцем землю на расстоянии 4 м от него (звук от удара ясно слышен через резиновую трубку).

При обучении распознаванию звуков необходимо воспроизводить с учебной целью следующее:

· Отрывку траншей.

· Сбрасывание мешков с песком.

· Ходьбу по дощатому настилу.

· Забивание металлического штыря.

· Звук при работе затвором автомата (при открывании и закрывании его).

· Постановку часового на пост.

· Часовой зажигает спичку и закуривает сигарету.

· Нормальный разговор и шепот.

· Сморканье и кашель.

· Треск ломающихся веток и кустарника.

· Трение ствола оружия о стальную каску.

· Хождение по металлической поверхности.

· Перерезание колючей проволоки.

· Перемешивание бетона.

· Стрельбу из пистолета, автомата, пулемета одиночными выстрелами и очередями.

· Шум двигателя танка, БМП, БТР, автомобиля на месте.

· Шум при их движении по грунтовой дороге и по шоссе.

· Лай и повизгивание собак.

· Шум вертолета, летящего на различной высоте.

Заключение

Командиры мотострелковых подразделений должны уметь определять расстояния различными способами: глазомерно, при помощи дальномерной шкалы прицелов и приборов наблюдения и по измеренной угловой величине предметов на местности, по спидометру машины, промером шагами, по средней скорости движения.

В основе любого способа определения расстояний лежит умение выбирать на местности ориентиры и использовать их как метки, указывающие нужные направления, пункты и рубежи.

Выбор и определение ориентиров важное мероприятие в работе командира при работе на местности.

Список литературы

1. Баранов А.Р., Маслак Ю.Г., Ягодинцев В.И. Военная топография в служебно-боевой деятельности оперативных подразделений - М.: Академический Проект, 2005.

2. Военная топография. // Под общ. ред. В. Н. Филатова: учебник для высших военно-учебных заведений. - Воениздат, 2008.

Военная топография.// Под редакцией А. В. Маркеленко. - М.: Издательство "Феникс", 2008.

Измерение и ориентирование на местности без карты. Движение по азимутам. Лекция. Уральский Государственный университет им. А. М. ГОРЬКОГО. - Екатеринбург, 2003.

Пресняков П.Р., Андриясов А.Т. Военная топография.- М.: Издательство Феникс, 2008.

Приложение

Линейные размеры некоторых предметов

Наименование предметов

Рост среднего человека (в обуви)

Стрелок с колена

Телеграфный столб

Обычный смешанный лес

Железнодорожная будка

Одноэтажный дом с крышей

Всадник верхом

БТР и БМП

Один этаж жилого капитального дома

Один этаж промышленного строения

Расстояние между столбами линии связи

Расстояние между опорами электросети высокого напряжения

Заводская труба

Вагон пассажирский цельнометаллический

Вагоны товарные двухосные

Вагоны товарные многоосные

Железнодорожные цистерны двухосные

Железнодорожные цистерны четырехосные

Железнодорожные платформы двухосные

Железнодорожные платформы четырехосные

Автомобили грузовые двухосные

Автомобили легковые

Тяжелый крупнокалиберный пулемет

Станковый пулемет

Мотоциклист на мотоцикле с коляской

Человеку, находящемуся в какой-либо местности может понадобится возможность измерения расстояний до определенных объектов, а также определение ширины и высоты этих обьектов. Такие измерения лучше и точнее можно провести с иcпользованием специальных средств (лазерных дальномеров, дальномерных шкал оптический приборов и.т.д.), но таковые не всегда могут оказаться под рукой. Поэтому в данной ситуации на выручку придет знание «дедовских», проверенных временем, способов. К таковым относятся:

  • определение расстояний на глаз
  • по угловой величине
  • определение расстояний при помощи линейки и сподручных предметов
  • по звуку

Определение расстояний на глаз

Данный способ является наиболее простым и быстрым. Определяющим здесь является умение мысленно откладывать на местности равные отрезки в 50, 100, 500 и 1000 м. Данные отрезки расстояний необходимо изучить и хорошо закрепить в зрительной памяти. При этом необходимо принимать во внимание следующие особенности:

  • на ровной местности и водном пространстве расстояния кажутся меньше, чем они есть на самом деле,
  • лощины и овраги уменьшают видимое расстояние,
  • более крупные предметы кажутся ближе мелких, находящимися на одной с ними линией,
  • все предметы кажутся ближе во время тумана, дождя, во время пасмурных дней,
  • предметы с яркой окраской кажутся ближе,
  • при наблюдении снизу вверх, расстояния кажутся ближе, а при наблюдении сверху вниз больше,
  • ночью светящиеся предметы кажутся ближе.

Дистанции более 1 км определяются с большей погрешностью, достигающей 50%. У опытных людей, собенно на малых дистанциях погрешность составляет менее 10%. Глазомер необходимо постоянно тренировать в различных условиях видимости, на различной местности. При этом огромную положительную роль вносит занятие туризмом, альпинизмом, охотой. Этот способ основывается на понятии тысячной. Тысячная — это единица измерения расстояний по горизонту, и составляет 1/6000 горизонта. Понятие тысячной принято во всех странах мира, и применяется для введения горизонтальных поправок ведения огня стрелкового оружия и артиллерийских систем, а также определение расстояний и дистанций. Тысячные записываются и читаются след. образом:

  • 1 тысячная 0-01, читается как ноль, ноль один,
  • 5 тысячных 0-05, читается как ноль, ноль пять,
  • 10 тысячных 0-10, читается как ноль, десять,
  • 150 тысячных 1-50, читается как один, пятьдесят,
  • 1500 тысячных 15-00, читается как пятнадцать, ноль ноль.

Применение этого способа возможно, если известна одна из линейных величин предмета — ширина или высота. Дальность до предмета определяется по след. формуле: Д = (Bx1000) / Y , где Д — дальность до цели B — ширина или высота объекта в метрах Y — угловая величина в тысячных. Для того, чтобы определить угловую величину, необходимо знать, что отрезок в 1 мм, удаленному на 50 см от глаза соответствует углу в 2 тысячные (0-02). На основании этого существует метод определения расстояний при помощи линейки:

  • линейку с миллиметровыми делениями вытянуть на расстояние 50 см,
  • засечь, во сколько делений на линейке укладывается ширина или высота объекта,
  • полученное кол-во миллиметров умножить на 2, и подставить в выше приведенную формулу.

Еще удобней для этих целей использовать штангенциркуль, который для компактности можно укоротить.

Пример: Высота телеграфоного столба равна 6 м при измерения на линейке займет 8 мм (16 тысячных,т.е. 0-16),следовательно расстояние до столба будет (6×1000)/16 = 375 м

Также существует более простая формула определения дистанции при помощи линейки:
Д = (высота или ширина объекта в см / кол-во миллиметров на линейке) x 5

Пример: ростовая фигура имеет высоту 170 см и на линейке закрывает 2 мм, следовательно дистанция до нее будет:(170см / 2мм) x 5 = 425 м

Определение расстояний при помощи линейки и сподручных предметов

Линейные размеры распространенных объектов

Объект Высота, м Длина, м
Телеграфный столб деревянный 6 —-
Телеграфный столб бетонный 8 —-
Расстояние между столбами ЛЭП 6м —- 50
Расстояние между столбами высковольт. линий —- 100
Товарный вагон, 4-х осный 4 14-15
Пассажирский вагон цельнометаллический 4 24
Цистерны, 2-х осные 3 6,75
Цистерны, 4-х осные 3 9
Один этаж панельного дома 3 —-
Дом сельского типа 6-7 —-
Высота железнодорожной будки 4 —-
Ростовая фигура (средн.) 1,7 —-
Голова без каски 0,25 0,20
Голова в каске 0,30 0,30
Танк 2,5-3 —-
Грузовой автомобиль 2-2,5 —-

При отсутствии линейки угловые величины можно измерять помощи подручных предметов, зная их линейные размеры. Это может быть, например спичечный коробок, спичка, карандаш, монета, патроны, пальцы рук и.т.д Например, спичечный коробок имеет длину — 45 мм, ширину 30 мм, высоты 15 мм, следовательно если его вытянуть на расстояние 50 см, его длина будет соответствовать 0-90, ширина 0-60, высота 0-30.

Определение расстояний по звуку

Человек обладает способностью улавливать и различать звуки различной природы, как в горизонтальной плоскости, так и в вертикальной, что позволяет весьма успешно навскидку определять расстояния до источников звука. Слух, как и глазомер необходимо постоянно тренировать.

  • Слух работает с полной отдачей только при полном спокойствии психики.
  • Лежа на спине, слуховая ориентация ухудшается, а лежа на животе улучшается
  • Зеленый цвет улучщает слух
  • Кусочек сахара, положенный под язык, заметно улучшает ночное зрение и слух, поскольку глюкоза необходима для работы сердца, мозга, нервной системы, а следовательно и органов чувств.
  • Звуки хорошо слышны на открытой местности, особенно водной, в спокойную погоду
  • Слышимость ухудшается в жаркую погоду, против ветра, в лесу, в камышах, на рыхлой траве.

Средняя дальность слышимости различных источников

    ТЕСЛА, единица магнитной индукции (см. МАГНИТНАЯ ИНДУКЦИЯ) (В) в системе СИ, названа в честь физика Н. Теслы. Обозначается Тл. 1 Тл = 1 Н/(А.м) 1 Тл (тесла) магнитная индукция такого однородного магнитного поля, которое действует с силой 1 Н… … Энциклопедический словарь

    Сименс (обозначение: См, S) единица измерения электрической проводимости в системе СИ, величина обратная ому. До Второй мировой войны (в СССР до 1960 х годов) сименсом называлась единица электрического сопротивления, соответсвующая сопротивлению … Википедия

    У этого термина существуют и другие значения, см. Гаусс. Гаусс (русское обозначение Гс, международное G) единица измерения магнитной индукции в системе СГС. Названа в честь немецкого физика и математика Карла Фридриха Гаусса. 1 Гс =… … Википедия

    Зиверт (обозначение: Зв, Sv) единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт это количество энергии, поглощённое килограммом… … Википедия

    У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq) единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… … Википедия

    У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… … Википедия

    У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S) единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… … Википедия

    У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

    У этого термина существуют и другие значения, см. Грей. Грей (обозначение: Гр, Gy) единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате… … Википедия

    У этого термина существуют и другие значения, см. Вебер. Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в… … Википедия

Решебник по физике

Площадь контура S выразим через его диаметр:

πd 2

Подставим правую часть этого равенства в предыдущую

πd 2 DB

Нам осталось подставить правую часть выражения (2) в формулу (1), и задача в общем виде будет решена:

q = Cπ d 2 D B . 4D t

Задача в общем виде решена. Выразим все величины в единицах СИ:

16 см = 0,16 м, 5 мкФ = 5 ∙ 10–6 Ф, 4 мТл/с = 0,004 Тл/с.

Подставим числа и вычислим:

q = 5 · 10–6 3,14 0,16 2 0,004 Кл = 4 ∙ 10–10 Кл = 0,4 нКл.4

Ответ: q = 0,4 нКл.

Задача 42. Проводящий круговой контур диаметром 20 см, в который включен источник тока с ЭДС 8 мВ, распо­ ложен в плоскости чертежа (рис. 138). За чертеж направле­ но однородное магнитное поле. Индукция магнитного поля начала равномерно уменьшаться со скоростью 10 мТл/с. На сколько про­ центов изменилась мощность тока в

Обозначим D диаметр контура,

ε - ЭДС источника тока,

рость изменения индукции магнит­

ного поля,

D P - относительное из­

3. Электромагнетизм

менениемощноститока вконтуре,∆Р -изменениемощнос­ титока,Р 1 -прежняямощностьтока,Р 2 -новаямощность тока,ε i - ЭДС электромагнитной индукции,R - сопротив­ ление контура,S - площадь контура.

D = 20 см

Поскольку магнитное поле, пере­

ε = 8 мВ

секающее контур с током, уменьшает­

ся, магнитный поток сквозь него убы­

вает, поэтому в контуре начинает

действовать ЭДС индукции ε i . В кон­

туре возникает индукционный ток,

магнитное поле которого по правилу

Ленца будет поддерживать убываю­ щее магнитное поле, поэтому будет направлено тоже за чертеж, т.е. в ту же сторону, что и внешнее магнитное поле индукцией В . Вследствие этого к ЭДС источника тока до­ бавится ЭДС индукции, поэтому результирующая ЭДС в контуре будет равна их сумме. Вследствие этого мощность тока в контуре возрастет.

Изменениемощноститока ∆Р будетравноразностимеж­ ду возросшей мощностью токаР 2 и прежнейР 1 . Относи­ тельное изменение мощности тока, которое требуется най­ ти, равно:

D P =P 2 − P 1 =P 2 −1.

P 1P 1P 1

Согласно формуле мощности тока, где роль напряжения U играет ЭДС, мощности тока - прежняя и новая - равны:

P 1 =ε R 2 иP 2 =(ε + R ε i ) 2 .

Подставим правые части этих выражений вместо ЭДС в предыдущую формулу:

(ε + ε i )2 R

ε + ε i 2

−1=

−1=

Решебник по физике

Не стоит здесь раскрывать квадрат суммы чисел, т.к. хоть единица и сократится, но окончательное выражение получится более сложным.

Теперь для определения модуля ЭДС индукции восполь­ зуемся формулой

ε i =DΦ D t .

но без минуса, т.к. его мы уже учли, применяя правило Ленца, где

∆ Ф =∆ ВS.

Площадь кругового контура S выразим через его диа­ метрD :

π D 2

С учетом этого

∆ Ф =∆ В

πD 2

и ε i =

D B π D 2 .

Подставив правую часть равенства (2) в выражение (1), мы решим задачу в общем виде:

D B π D 2

Dt 4ε

Выразим все величины в единицах СИ: 20 см = 0,2 м, 8 мВ = 8 ∙ 10–3 В,

10 мТл/с = 0,01 Тл/с.

Произведем вычисления:

−1 = 0,08 = 8%.

Ответ: D P = 8%.

3. Электромагнетизм

Задача 43. Соленоид с сопротивлением 10 Ом и индук­ тивностью 200 мГн имеет площадь витка 20 см2 . Соленоид помещен в магнитное поле, индукция которого равномерно увеличивается. Когда магнитная индукция увеличилась на 2 Тл, сила тока в соленоиде возросла на 40 мА. Какой заряд прошел при этом по соленоиду?

Обозначим R сопротивление соленоида,L - его индук­ тивность,S - площадь витка, ∆B - увеличение магнитной индукции, ∆I - увеличение силы тока,q- заряд, прошед­ ший по соленоиду, ∆t - время прохождения заряда,ε i - ЭДС индукции,ε S - ЭДС самоиндукции.

R = 10 Ом

Искомый заряд можно определить

L = 200 мГн

по формуле

S = 20 см2

q = I∆ t,

∆B = 2 Тл

где сила тока I обусловлена действую­

∆I = 40 мА

щими в соленоиде ЭДС индукции ε i

и ЭДС самоиндукции ε S . По правилу

q - ?

Ленца эти ЭДС противодействуют друг

другу, поэтому обусловленный ими ток согласно закону

Ома равен:

ε i− ε s

ЭДС индукции определим по формуле

= − DΦ

где ∆Ф = ∆ВS , поэтому

ε i = −

ЭДС самоиндукции равна:

= – L D I .

Подставим правые части равенств (3) и (4) в формулу (2):

−DBS −(−L DI )

L D I −D BS .

Решебник по физике

Нам осталось подставить правую часть выражения (5) в формулу (1), и задача в общем виде будет решена:

q = L D I −D BS D t = L D I −D BS . D tR R

Выразим все величины в единицах СИ: 200 мГн = 0,2 Гн, 20 см2 = 0,002 м2 , 40 мА = 0,04 А.

Произведем вычисления:

q =0,2 0,04−2 0,002 Кл = 4 ∙ 10–4 Кл = 0,4 мКл.10

Ответ: q = 0,4 мКл.

Задача44.Круглыйпроволочныйвитокдиаметром50см расположенсвоейплоскостьюперпендикулярномагнитным линиям однородного магнитного поля индукцией 50 мТл. Сопротивление витка 2 Ом. Какой заряд протечет через поперечное сечение проводника, из которого изготовлен виток, при равномерном уменьшении магнитного поля до нуля? Явлением самоиндукции пренебречь.

Обозначим D диаметр витка,В 1 - начальную индукцию магнитного поля,В 2 - конечную индукцию магнитного по­ ля,Ф 1 -начальныймагнитныйпотоксквозьвиток,Ф 2 -ко­ нечный магнитный поток сквозь виток,I i - силу индукци­ онного тока, ∆t - время его протекания,q - заряд, про­ шедшийчерезпоперечноесечениепроводника,S -площадь витка,ε i - ЭДС индукции,R - сопротивление витка.

D = 50 см

В 1 = 50 мТл

R = 2 Ом

В2 =0

q - ?

Заряд равен произведению силы ин­ дукционного тока на время его протека­ ния: q = I i ∆t . По закону Ома сила индук­ ционного тока равна отношению ЭДС индукции к сопротивлению витка:

I i =ε R i .

3. Электромагнетизм

По закону Фарадея для электромагнитной индукции

= −Φ 2 −Φ 1

= Φ 1 , т.к.Ф 2 = 0.

Магнитный поток сквозь виток до уменьшения магнит­

ного поля Ф 1 =В 1 S и площадь виткаS =

π D 2

Поэтому Ф 1 =

В 1 π D 2 , иε i =

B1 π D2

Тогда сила тока  I i

B1 π D2

4DtR

комый заряд

q =B 1 π D 2 Dt =B 1 π D 2 .4D tR 4 R

q =50 10 −3 3,14 0,5 2 Кл = 4,9 ∙ 10–3 Кл = 4,9 мКл.4 2

Ответ: q = 4,9 мКл.

Задача 45. Четыре одинаковые проволоки длиной l каждая образуют контур в форме квадрата. Он помещен в однородное магнитное поле индукциейВ , перпендику­ лярное плоскости квадрата. Сопротивление каждой прово­ локиR .Найтисилуиндукционноготока,которыйпротечет по контуру за промежуток времени ∆t , если квадрат преоб­ разовать в круг?

Обозначим I i силу индукционного тока,ε i - ЭДС индук­ ции,R общ - общее сопротивление четырех последователь­ ных проволок,Ф 1 иФ 2 - начальный и конечный магнит­ ные потоки сквозь контур, ограниченный проволоками.

По закону Ома сила индукционного тока

R общ

∆t

где общее сопротивление четырех последова­

тельных проволок R общ = 4R , поэтомуI i =

I i - ?

ЭДС индукции ε i = −Φ 2 D − t Φ 1 =Φ 1 D − t Φ 2 .

Решебник по физике

Магнитный поток, пересекающий квадратный контур, Ф 1 =ВS 1 =Bl 2 , гдеS 1 =l 2 - площадь квадратного контура. Магнитный поток, пересекающий контур в форме окруж­ ности,Ф 2 =ВS 2 , гдеS 2 - площадь круга, у которого длина окружности равна 4l = 2πR окр , откуда радиус этой окруж­

4 l= 2 l

ности R окр =2π π , поэтому площадь круга

S 2 = πR 2 окр = π4 π l 2 2 =(2 π l ) 2 .

Тогда магнитный поток сквозь контур в форме окруж­ ности

(2 l )2

Ф2 = Вπ .

Подставим значения Ф 1 иФ 2 в формулу ЭДС индукции:

Bl2 − B

(2 l )2

ε i=

С учетом этого сила индукционного тока

4R Dt

Ответ: I

4R Dt

Задача46.Сопротивлениепроводящегоконтура3·10–2 Ом. За 2 с пересекающий контур магнитный поток равномерно изменяется на 1,2 · 10–2 Вб. Определить силу индукционно­ го тока в проводнике. Вб

I i -?

Силу тока найдем по закону Ома:

I i = ε R i . ПозаконуФарадеядляэлек-

тромагнитной индукциимодульЭДС электромагнитной индукции

ε i =∆ ∆ Φ t .

Подставив правую часть второй формулы вместо ЭДС в первую, мы решим задачу в общем виде:

I i =R ∆Φ ∆ t .

Произведем вычисления:

1,2 10−2

I =v h - высоту наклонной плоскости, β - угол между направлением движения проводника и направ­ лением вектора индукции магнитного поля.

ЭДС индукции в проводни­ ке, движущемся поступательно в магнитном поле, определяет формула ε i = Bv l sin β, где β - угол между направлением дви­ жения проводника и направле­ нием вектора индукции маг­ нитного поля. Из рис. 139 следует, что β= 90°– α, поэтому

ε i = Bv l sin (90° – α) =Bv l cos α.

Скорость v , которую приобретет стержень в конце путиS , найдем из закона сохранения механической энергии, согласно которому потенциальная энергия стержняmgh на высотеh = S sin α равна кинетической энергии стержняmv 2 2 :mgh = mv 2 2 , откудаv = 2gh = 2gS sina. В итоге

ε i =B l 2gS sina cos α.

ε i = 0,2 ∙ 0,4 2 10 0,4sin300 cos300 В = 0,14 В.

Ответ: ε i = 0,14 В.

Задача 48. Индуктивность катушки с малым сопротив­ лением равна 0,15 Гн, сила тока в ней 4А. Сколько теплоты выделится в катушке, если параллельно к ней подключить резистор с сопротивлением, во много раз большим, чем сопротивление катушки.

R>> r

тока энергия магнитного катушки пре­

I = 4 А

вратится в выделенное тепло, поэтому

мы можем записать: Q = W м . В свою

Q - ?

очередь, энергия магнитного поля опре­

деляется половиной произведения индуктивности катуш­ ки на квадрат силы тока в ней. Поэтому

Q = Wм = LI 2 2

Произведем вычисления:

Q =0,15 4 2 Дж = 1,2 Дж. 2

Ответ: Q = 1,2 Дж.

Задачи для самостоятельного решения

Задача 1. Два одинаково заряженных маленьких шари­ ка с равными радиусами взаимодействуют с силой F 1 . С ка­ кой силой они станут взаимодействовать, если один из них увеличить в 2 раза, второй уменьшить в 1,5 раза, а рассто­ яние между ними уменьшить в 3 раза?

Ответ: F 2 = 12F 1 .

Задача 2. Между двумя одноименными точечными за­ рядами q 1 = 0,01 мкКл иq 2 = 0,04 мкКл расстояниеr = 9 см. Между ними помещают третий заряд так, что все заряды оказываются в равновесии. На каком расстоянии от мень­ шего заряда помещают третий заряд?

Ответ: r 1

Общие сведения

Удивительным образом идеи одного человека могут повлиять на последующее развитие человеческого общества в целом. Таким человеком был Майкл Фарадей, не слишком разбирающийся в хитросплетениях современной ему математики, но прекрасно понимающий физический смысл известных к тому времени сведений о природе электричества и магнетизма благодаря выдвинутой им концепции полевых взаимодействий.

Существованию современного общества, основанного на использовании электричества, магнетизма и электродинамики, мы обязаны целой плеяде замечательных учёных. Среди них надо отметить Ампера, Эрстеда, Генри, Гаусса, Вебера, Лоренца и, безусловно, Максвелла. В конечном итоге они свели науку об электричестве и магнетизме в единую картину, которая послужила основой целой когорте изобретателей, создавших своими творениями предпосылки для появления современного информационного общества.

Мы живём в окружении электродвигателей и генераторов: они наши первые помощники на производстве, на транспорте и в быту. Любой уважающий себя человек не мыслит существования без холодильника, пылесоса и стиральной машины. В приоритете также микроволновая печь, фен, кофемолка, миксер, блендер и - предел мечтаний - электромясорубка и хлебопечка. Безусловно, кондиционер тоже страшно полезная штука, но если нет средств для его приобретения, то сойдёт и простой вентилятор.

У некоторых мужчин запросы несколько скромнее: пределом мечтаний самого неумелого мужчины является электродрель. Некоторые из нас, безуспешно пытаясь завести автомобиль в сорокаградусный мороз и безнадежно терзая стартер (тоже электродвигатель), втайне мечтают о приобретении машины производства Tesla Motors на электродвигателях и аккумуляторах, чтобы забыть навсегда о проблемах бензиновых и дизельных моторов.

Электродвигатели повсюду: они поднимают нас в лифте, они перевозят нас в метро, электричках, трамваях, троллейбусах и скоростных поездах. Они доставляют нам воду на этажи небоскрёбов, приводят в действие фонтаны, откачивают воду из шахт и колодцев, прокатывают сталь, поднимают тяжести, работая в различных кранах. И делают очень много других полезных дел, приводя в движение станки, инструменты и механизмы.

Даже экзоскелеты для людей с ограниченными возможностями и для военных выполнены с использованием электродвигателей, не говоря уже о целой армии промышленных и исследовательских роботов.

Сегодня электродвигатели трудятся в космосе - достаточно вспомнить марсоход Curiosity. Они трудятся на земле, под землёй, на воде, под водой и даже в воздухе - не сегодня, так завтра (статья написана в ноябре 2015 г.) самолёт Solar Impulse 2 наконец-то закончит своё кругосветное путешествие, а беспилотным летательным аппаратам на электродвигателях уж просто несть числа. Недаром вполне серьёзные корпорации сейчас трудятся над сервисами доставки почтовых отправлений с помощью беспилотных летательных аппаратов.

Историческая справка

Построенная в 1800 году итальянским физиком Алессандро Вольта химическая батарея, названная впоследствии по имени изобретателя «вольтов столб», воистину оказалась «рогом изобилия» для учёных. Она позволяла приводить в движение электрические заряды в проводниках, то есть создавать электрический ток. Новые открытия с использованием вольтова столба непрерывно следовали одно за другим в различных областях физики и химии.

Например, английский учёный сэр Гемфри Дэви в 1807 году, изучая электролиз расплавов гидроксидов натрия и калия, получил металлический натрий и калий. Ранее, в 1801году, он же открыл электрическую дугу, хотя русские считают её первооткрывателем Василия Владимировича Петрова. Петров в 1802 году описал не только саму дугу, но и возможности её практического применения для целей плавки, сварки металлов и восстановления их из руд, а также освещения.

Но самое важное открытие совершил датский физик Ханс Кристиан Эрстед: 21 апреля 1820 года во время демонстрации опытов на лекции он заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки. Так впервые была подтверждена взаимосвязь между электричеством и магнетизмом.

Следующий шаг сделал французский физик Андре Мари Ампер несколько месяцев спустя после знакомства с опытом Эрстеда. Любопытен ход рассуждений этого учёного, изложенных в сообщениях, направленных им одно за другим во Французскую академию наук. Сначала, наблюдая поворот стрелки компаса у проводника с током, Ампер предположил, что магнетизм Земли тоже вызван токами, обтекающими Землю в направлении с запада на восток. Отсюда им был сделан вывод, что магнитные свойства тела могут быть объяснены циркуляцией внутри него тока. Далее Ампер довольно смело заключил, что магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него, а магнитное взаимодействие обусловлено не особыми магнитными зарядами, а просто движением электрических зарядов, т. е. током.

Ампер тут же занялся экспериментальным исследованием этого взаимодействия и установил, что проводники с током, текущим в одном направлении притягиваются, а в противоположном - отталкиваются. Взаимно перпендикулярные проводники не взаимодействуют друг с другом.

Трудно удержаться, чтобы не привести открытый Ампером закон в его собственной формулировке:

«Сила взаимодействия движущихся зарядов пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между ними, как и в законе Кулона, но, сверх того, ещё зависит от скоростей этих зарядов и направления их движения».

Так в физике были открыты фундаментальные силы, зависящие от скоростей.

Но настоящим прорывом в науке об электричестве и магнетизме стало открытие Майклом Фарадеем явления электромагнитной индукции - возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Независимо от Фарадея явление электромагнитной индукции было также открыто Джозефом Генри в 1832 году, попутно открывшим явление самоиндукции.

Публичная демонстрация Фарадеем 29 августа 1831 года была выполнена на изобретённой им установке, состоящей из вольтова столба, выключателя, железного кольца, на котором были намотаны на противоположных сторонах две одинаковые катушки из медного провода. Одна из катушек через выключатель подключалась к батарее, к концам другой был подключён гальванометр. При включении и отключении тока гальванометр фиксировал появление тока разного направления во второй катушке.

В опытах Фарадея электрический ток, названный индукционным током, появлялся и при внесении магнита внутрь катушки или его выдвижения из катушки, нагруженной на измерительную цепь. Аналогично, ток появлялся и при внесении/выдвижении меньшей катушки с током внутрь/из большой катушки из предыдущего опыта. Причём направление индукционного тока менялось на противоположное при внесении/выдвижении магнита или малой катушки с током в соответствии с правилом, сформулированным русским учёным Эмилем Христиановичем Ленцем. в 1833 году.

На основании произведённых опытов Фарадей вывел закон для электродвижущей силы, впоследствии названный его именем.

Идеи и результаты экспериментов Фарадея были переосмыслены и обобщены другим великим соотечественником - гениальным английским физиком и математиком Джеймсом Клерком Максвеллом - в его четырёх дифференциальных уравнениях электродинамики, названных позднее уравнениями Максвелла.

Надо отметить, что в трёх из четырёх уравнений Максвелла фигурирует магнитная индукция в виде вектора магнитного поля.

Магнитная индукция. Определение

Магнитная индукция - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Она определяет, с какой силой F магнитное поле действует на заряд q , движущийся со скоростью v . Обозначается латинской буквой В (произносится как вектор Б) и сила рассчитывается по формуле:

F = q [v B ]

где F -сила Лоренца, действующая со стороны магнитного поля на заряд q ; v - скорость движения заряда; B - индукция магнитного поля; [v × B ] - векторное произведение векторов v и B .

Алгебраически выражение может быть записано в виде:

F = q v B ∙sin α

где α - угол между векторами скорости и магнитной индукции. Направление вектора F перпендикулярно им обоим и направлено по правилу левой руки.

Магнитная индукция является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В Международной системе единиц СИ магнитная индукция поля измеряется в теслах (Тл), в системе СГС - в гауссах (Гс)

1 Тл = 10⁴ Гс

С другими величинами измерения магнитной индукции, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины магнитной индукции называются тесламетрами или гауссметрами.

Магнитная индукция поля. Физика явлений

В зависимости от реакции на внешнее магнитное поле, все вещества делятся на три группы:

  • Диамагнетики
  • Парамагнетики
  • Ферромагнетики

Термины диамагнетизм и парамагнетизм были введены Фарадеем в 1845 году. Для количественной оценки этих реакций введено понятие магнитной проницаемости. В системе СИ введена абсолютная магнитная проницаемость, измеряемая в Гн/м, и относительная безразмерная магнитная проницаемость, равная отношению проницаемости данной среды к проницаемости вакуума. У диамагнетиков относительная магнитная проницаемость несколько меньше единицы, у парамагнетиков - несколько больше единицы. У ферромагнетиков магнитная проницаемость значительно больше единицы и носит нелинейный характер.

Явление диамагнетизма заключается в способности вещества противодействовать воздействию внешнего магнитного поля за счёт намагничивания против его направления. То есть, диамагнетики отталкиваются магнитным полем. При этом атомы, молекулы или ионы диамагнетика приобретают магнитный момент, направленный против внешнего поля.

Явление парамагнетизма заключается в способности вещества намагничиваться при воздействии внешнего магнитного поля. В отличие от диамагнетиков, парамагнетики втягиваются магнитным полем. При этом атомы, молекулы или ионы парамагнетика приобретают магнитный момент в направлении, совпадающем с направлением внешнего магнитного поля. При снятии поля парамагнетики не сохраняют намагниченность.

Явление ферромагнетизма заключается в способности вещества спонтанно намагничиваться при отсутствии внешнего магнитного поля или намагничиваться под воздействием внешнего магнитного поля и сохранять намагниченность при снятии поля. При этом большинство магнитных моментов атомов, молекул или ионов параллельны друг другу. Такой порядок сохраняется до температур, ниже определённой критической, называемой точкой Кюри. При температурах выше точки Кюри для данного вещества, ферромагнетики превращаются в парамагнетики.

Магнитная проницаемость сверхпроводников равна нулю.

Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π 10 ⁻⁷ Гн/м

Особенности поведения магнитного поля в диамагнетиках

Как указывалось выше, диамагнитные материалы создают индуцированное магнитное поле, направленное против внешнего магнитного поля. Диамагнетизм является квантово-механическим эффектом, присущим всем веществам. В парамагнетиках и ферромагнетиках он нивелируется за счёт иных, более сильных, эффектов.

К диамагнетикам относятся, например, такие вещества, как инертные газы, азот, водород, кремний, фосфор и пиролитический углерод; некоторые металлы - висмут, цинк, медь, золото, серебро. Многие другие неорганические и органические соединения также являются диамагнетиками, в том числе и вода.

В неоднородном магнитном поле диамагнетики смещаются в область более слабого поля. Магнитные силовые линии как бы выталкиваются диамагнитными материалами за пределы тела. На этом свойстве построено явление диамагнитной левитации. В достаточно сильном магнитном поле, создаваемом современными магнитами, возможна левитация не только различных диамагнетиков, но и мелких живых существ, состоящих в основном из воды.

Учёным из Университета Нимингена, Нидерланды, удался опыт по подвешиванию в воздухе лягушки в поле с магнитной индукцией порядка 16 Тл, а исследователям из лаборатории НАСА, использовавшим магнит на сверхпроводниках - левитация мыши, которая, как биологический объект, гораздо ближе к человеку, чем лягушка.

Все проводники проявляют диамагнетизм под действием переменного магнитного поля.

Суть явления состоит в том, что под действием переменного магнитного поля в проводниках индуцируются вихревые токи - токи Фуко - направленные против действия внешнего магнитного поля.

Особенности поведения магнитного поля в парамагнетиках

Совершенно иным является взаимодействие магнитного поля с парамагнетиками. Поскольку атомы, молекулы или ионы парамагнетиков обладают собственным магнитным моментом, они выстраиваются в направлении внешнего магнитного поля. Тем самым создаётся результирующее магнитное поле, превышающее исходное поле.

К парамагнетикам относятся алюминий, платина, щелочные и щелочноземельные металлы литий, цезий, натрий, магний, вольфрам, а также сплавы этих металлов. Парамагнетиками также являются кислород, оксид азота, оксид марганца, хлорное железо и многие другие химические соединения.

Парамагнетики относятся к слабомагнитным веществам, их магнитная проницаемость чуть больше единицы. В неоднородном магнитном поле парамагнетики втягиваются в область более сильного поля. В отсутствие магнитного поля парамагнетики не сохраняют намагниченность, поскольку из-за теплового движения собственные магнитные моменты их атомов, молекул или ионов направлены хаотично.

Особенности поведения магнитного поля в ферромагнетиках

Благодаря присущему им свойству самопроизвольно намагничиваться, ферромагнетики образуют природные магниты, которые известные человечеству с глубокой древности. Магнитам приписывались магические свойства, их использовали в различных религиозных ритуалах и даже при постройке зданий. Первый прообраз компаса, изобретённый китайцами во втором–первом веках до нашей эры, пытливые пращуры-первооткрыватели использовали для возведения домов согласно правилам фэн-шуй. Использование компаса как средства навигации началось уже в 11 веке для путешествий через пустыни по Великому Шёлковому пути. Позднее применение компаса в морском деле сыграло значительную роль в развитии мореплавания, открытия новых земель и освоения новых морских торговых путей.

Ферромагнетизм является проявлением квантово-механических свойств электронов, обладающих спином, т.е. собственным дипольным магнитным моментом. Проще говоря, электроны ведут себя подобно крошечным магнитикам. На каждой заполненной электронной оболочке атома может находиться только парное число электронов с противоположными спинами, т.е. магнитное поле таких электронов направлено в противоположные стороны. Из-за этого у атомов, имеющих парное число электронов, общий магнитный момент равен нулю, поэтому ферромагнетиками являются только атомы с незаполненной внешней оболочкой, имеющие непарное число электронов.

К ферромагнетикам относятся металлы переходных групп (железо, медь, никель) и редкоземельные металлы (гадолиний, тербий, диспрозий, гольмий и эрбий), а также сплавы этих металлов. Ферромагнетиками являются и сплавы вышеперечисленных элементов с неферромагнитными материалами; сплавы и соединения хрома и марганца с неферромагнитными элементами, а также некоторые из металлов группы актиноидов.

Ферромагнетики имеют значение магнитной проницаемости намного больше единицы; зависимость их намагничивания под действием внешнего магнитного поля носит нелинейный характер и для них характерно проявление гистерезиса - если снять действие магнитного поля, ферромагнетики остаются намагниченными. Чтобы убрать эту остаточную намагниченность, необходимо приложить поле обратного направления.

График зависимости магнитной проницаемости μ от напряженности магнитного поля H в ферромагнетике, называемый кривой Столетова, показывает, что при нулевой напряженности магнитного поля H = 0 магнитная проницаемость имеет небольшое значение μ₀; затем, по мере роста напряженности, магнитная проницаемость быстро растет до максимума μ max , затем медленно падает до нуля.

Пионером исследования свойств ферромагнетиков был русский физик и химик Александр Столетов. Ныне кривая зависимости магнитной проницаемости от напряжённости магнитного поля носит его имя.

Современные ферромагнитные материалы находят широкое применение в науке и технике: многие технологии и приборы основаны на их использовании и на использовании явления магнитной индукции. Например, в вычислительной технике: первые поколения ЭВМ имели память на ферритовых сердечниках, информация хранилась на магнитных лентах, гибких дискетах и жёстких дисках. Впрочем, последние используются в компьютерах до сих пор и выпускаются сотнями миллионов штук в год.

Применение магнитной индукции в электротехнике и электронике

В современном мире существует множество примеров использования магнитной индукции поля, в первую очередь в силовой электротехнике: в генераторах электричества, трансформаторах напряжения, в разнообразных электромагнитных приводах различных устройств, инструментов и механизмов, в измерительной технике и в науке, в различных физических установках для проведения экспериментов, а также в средствах электрической защиты и аварийного отключения.

Электродвигатели, генераторы и трансформаторы

Английским физиком и математиком Питером Барлоу в 1824 году был описан изобретённый им униполярный двигатель, ставший прообразом современных электродвигателей постоянного тока. Изобретение ценно также тем, что было сделано задолго до открытия явления электромагнитной индукции.

Ныне практически во всех электродвигателях используется сила Ампера, которая действует на контур с током в магнитном поле, заставляя его двигаться.

Ещё Фарадеем для демонстрации явления магнитной индукции в 1831 году была создана экспериментальная установка, важной частью которой было устройство, ныне известное как тороидальный трансформатор. Принцип действия трансформатора Фарадея и сейчас используется во всех современных трансформаторах напряжения и тока вне зависимости от мощности, конструкции и сферы применения.

Помимо этого Фарадей научно обосновал и доказал экспериментально возможность преобразования механического движения в электричество с помощью изобретённого им униполярного генератора постоянного тока, ставшего прототипом всех генераторов постоянного тока.

Первый генератор переменного тока был создан французским изобретателем Ипполитом Пикси в 1832 году. Позднее, по предложению Ампера, он был дополнен коммутационным устройством, которое позволяло получать пульсирующий постоянный ток.

В основе практически всех генераторов электроэнергии, использующих принцип магнитной индукции, лежит возникновение электродвижущей силы в замкнутом контуре, который находится в изменяющемся магнитном поле. При этом либо магнитный ротор вращается относительно неподвижных катушек статора в генераторах переменного тока, либо обмотки ротора вращаются относительно неподвижных магнитов статора (ярма) в генераторах постоянного тока.

Самый мощный генератор в мире, построенный в 2013 году для АЭС «Тайшань» китайской компанией DongFang Electric, может вырабатывать мощность 1750 МВт.

Помимо генераторов и электродвигателей традиционного типа, связанных с преобразованием механической энергии в электрическую энергию и обратно, существуют так называемые магнитогидродинамические генераторы и двигатели, работающие на ином принципе.

Реле и электромагниты

Изобретённый американским учёным Дж. Генри электромагнит стал первым исполнительным механизмом на электричестве и предшественником всем знакомого электрического звонка. Позднее на его основе Генри создал электромагнитное реле, которое стало первым автоматическим коммутационным устройством, имеющим бинарное состояние.

Динамический микрофон Shure, используемый в видеостудии сайт

При передаче телеграфного сигнала на большие расстояния реле использовались в качестве усилителей постоянного тока, коммутируя подключение внешних батарей промежуточных станций для дальнейшей передачи сигнала.

Динамические головки и микрофоны

В современной аудиотехнике широко применяются электромагнитные динамики, звук в которых появляется из-за взаимодействия подвижной катушки, прикрепленной к диффузору, через которую протекает ток звуковой частоты, с магнитным полем в зазоре неподвижного постоянного магнита. В результате катушка вместе с диффузором движутся и создают звуковые волны.

В динамических микрофонах используется та же конструкция, что и в динамической головке, однако в микрофоне, наоборот, колеблющаяся под воздействием акустического сигнала подвижная катушка с мини-диффузором в зазоре неподвижного постоянного магнита генерирует электрический сигнал звуковой частоты.

Измерительные приборы и датчики

Несмотря на обилие современных цифровых измерительных приборов, в технике измерений до сих пор используются приборы магнитоэлектрического, электромагнитного, электродинамического, ферродинамического и индукционного типов.

Во всех системах вышеперечисленных типов используется принцип взаимодействия магнитных полей либо постоянного магнита с полем катушки с током, либо ферромагнитного сердечника с полями катушек с током, либо магнитных полей катушек с током.

За счёт относительной инерционности таких систем измерений, они применимы для измерений средних значений переменных величин.