Мы уже знаем, что электрический ток, двигаясь по проводнику, создает вокруг него магнитное поле. На основе этого явления человек изобрел и широко применяет самые разнообразные электромагниты. Но возникает вопрос: если электрические заряды, двигаясь, вызывают возникновение магнитного поля, а не работает ли это и наоборот?

То есть, может ли магнитное поле явиться причиной возникновения электрического тока в проводнике? В 1831 году Майкл Фарадей установил, что в замкнутой проводящей электрической цепи при изменении магнитного поля возникает электрический ток. Такой ток назвали индукционным током, а явление возникновения тока в замкнутом проводящем контуре при изменении магнитного поля, пронизывающего этот контур, носит название электромагнитной индукции.

Явление электромагнитной индукции

Само название «электромагнитная» состоит из двух частей: «электро» и «магнитная». Электрические и магнитные явления неразрывно связаны друг с другом. И если электрические заряды, двигаясь, изменяют магнитное поле вокруг себя, то и магнитное поле, изменяясь, поневоле заставит перемещаться электрические заряды, образуя электрический ток.

При этом именно изменяющееся магнитного поля вызывает возникновение электрического тока. Постоянное магнитное поле не вызовет движение электрических зарядов, а соответственно, и индукционный ток не образуется. Более детальное рассмотрение явления электромагнитной индукции, вывод формул и закона электромагнитной индукции относится к курсу девятого класса.

Применение электромагнитной индукции

В данной же статье мы поговорим о применении электромагнитной индукции. На использовании законов электромагнитной индукции основано действие многих двигателей и генераторов тока. Принцип их работы понять довольно просто.

Изменение магнитного поля можно вызвать, например, перемещением магнита. Поэтому, если каким-либо сторонним воздействием передвигать магнит внутри замкнутой цепи, то в этой цепи возникнет ток. Так можно создать генератор тока.

Если же наоборот, пустить ток от стороннего источника по цепи, то находящийся внутри цепи магнит начнет двигаться под воздействием магнитного поля, образованного электрическим током. Таким образом можно собрать электродвигатель.

Описанными выше генераторами тока преобразовывают механическую энергию в электрическую на электростанциях. Механическая энергия это энергия угля, дизельного топлива, ветра, воды и так далее. Электричество поступает по проводам к потребителям и там обратным образом преобразовывается в механическую в электродвигателях.

Электродвигатели пылесосов, фенов, миксеров, кулеров, электромясорубок и прочих многочисленных приборов, используемых нами ежедневно, основаны на использовании электромагнитной индукции и магнитных сил. Об использовании в промышленности этих же явлений и говорить не приходится, понятно, что оно повсеместно.

Тема : Использование электромагнитной индукции

Цели урока :

Образовательная:

  1. Продолжить работу над формированием понятия об электромагнитном поле как виде материи и доказательства его реального существования.
  2. Совершенствовать навыки решения качественных и расчетных задач.

Развивающая: Продолжить работу с учащимися над...

  1. формированием представлений о современной физической картине мира,
  2. умением раскрывать взаимосвязь между изученным материалом и явлениями жизни,
  3. расширением кругозора учащихся

Воспитательная: Научиться видеть проявления изученных закономерностей в окружающей жизни

Демонстрации

1. Трансформатор
2. Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий»

1)«Выработка электроэнергии»
2)«Запись и считывание информации на магнитной ленте»

3. Презентации

1) «Электромагнитная индукция – тесты» (I и II части)
2) «Трансформатор»

Ход урока

1. Актуализация:

Перед тем, как рассматривать новый материал, ответьте, пожалуйста, на следующие вопросы:

2. Решение задач по карточкам, см. презентацию (Приложение 1) (ответы: 1 Б, 2 Б, 3 В, 4 А, 5 В) – 5 мин

3. Новый материал .

Использование электромагнитной индукции

1) В прошлом учебном году при изучении по информатике темы «Носители информации» мы говорили о дисках, дискетах и т.д. Оказывается запись, и считывание информации с помощью магнитной ленты основано на применении явления электромагнитной индукции.
Запись и воспроизведение информации с помощью магнитной ленты (Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Запись и считывание информации на магнитной ленте» – 3 мин) (Приложение 2)

2) Рассмотрим устройство и принципиальное действие такого прибора, как ТРАНСФОРМАТОР. (см. презентацию Приложение 3)
Действие трансформатора основано на явлении электромагнитной индукции.

ТРАНСФОРМАТОР – аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения при неизменной частоте.

3) В простейшем случае трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки с проволочными обмотками. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», т. е. приборы, потребляющие электроэнергию, называется вторичной.

а) повышающий трансформатор

б) понижающий трансформатор

При передаче энергии на большое расстояние – использование понижающих и повышающих трансформаторов.

4) Работа трансформатора (проведение опыта).

Загорание лампочки во вторичной катушке (объяснение данного опыта );
- принцип работы сварочного аппарата (Почему витки во вторичной катушке понижающего трансформатора толще? );
- принцип работы печи (Мощность в обеих катушках одинакова, а сила тока? )

5) Практическое применение электромагнитной индукции

Примеры технического использования электромагнитной индукции: трансформатор, генератор электрического тока – основной источник электричества.
Благодаря открытию электромагнитной индукции стала возможной выработка дешевой электрической энергии. Основой работы современных электростанций (в том числе и атомных) является индукционный генератор .
Генератор переменного тока (фрагмент диска Фрагменты CD-диска «Физика 7-11 классы. Библиотека наглядных пособий», «Выработка электроэнергии» - 2 мин) (Приложение 4)

Индукционный генератор состоит из двух частей: подвижного ротора и неподвижного статора. Чаще всего статор представляет собой магнит (постоянный или электрический), создающий исходное магнитное поле (его называют индуктором). Ротор состоит из одной или нескольких обмоток, в которых под действием изменяющегося магнитного поля создается индукционный ток. (Другое название такого ротора - якорь).

- обнаружение металлических предметов – специальные детекторы;
- поезд на магнитных подушках (см. стр. 129 учебника В. А. Касьянов «Физика – 11»)
токи Фуко (вихревые токи;)
замкнутые индукционные токи, возникающие в массивных проводящих телах .

Появляются либо вследствие изменения магнитного поля, в котором находится проводящее тело, либо в результате такого движения тела, когда изменяется магнитный поток, пронизывающий это тело (или какую-либо его часть).
Как и любые другие токи, вихревые токи оказывают на проводник тепловое действие: тела, в которых возникают такие токи, нагреваются.

Пример: устройство электропечей для плавки металлов и СВЧ – печей .

4. Выводы, оценки.

1) Электромагнитная индукция, приведите примеры практического применения электромагнитной индукции.
2) Электромагнитные волны – самый распространенный вид материи, а электромагнитная индукция – частный случай проявления электромагнитных волн.

5. Решение задач по карточкам, см. презентацию (Приложение 5) (ответы - 1В, 2А, 3А, 4Б).

6. Дом задание: П.35,36 (Учебник физики под ред. В.А.Касьянова 11 класс)

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника; Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась. Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

А= U*I*t=I2 R*t=U2 /R *t

По закону сохранения энергии: работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия равна работе тока.

{A}=B*A*c= Вт*с=ДЖ; 1кВт*ч=3 600 000 ДЖ

Закон Джоуля-Ленца

При прохождении тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

A=Q=U*I*t=I2 *R*t=U2 /R*t

Выражение представляет собой закон Джоуля--Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.:

dQ=UIdt=I2 Rdt=U2 /R*dt.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Основные свойства магнитного поля: порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем; действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела; переменное магнитное поле порождает переменное электрическое поле. Правило буравчкиа: Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции

Правило левой руки позволяет определить силу Ампера, т.е. силу, с которой магнитное поле действует на проводник с током. Если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца направлены по току, то отогнутый на 90градусов большой палец покажет направление силы ампера.

В отличие от электрического поля, которое действует на любой заряд, магнитное поле действует только на движущиеся заряженные частицы. При этом оказывается, что сила зависит не только от величины, но и от направления скорости заряда. Сила Лоренца Сила, с которой магнитное поле действует на заряженную частицу, называется силой Лоренца. Опыт показывает, что вектор F~ силы Лоренца находится следующим образом. 1.

Абсолютная величина силы Лоренца равна:

Здесь q -- абсолютная величина заряда, v -- скорость заряда, B -- индукция магнитного поля, б -- угол между векторами ~v и B~ .

Сила Лоренца перпендикулярна обоим векторам ~v и B~ . Иными словами, вектор F~ перпен- дикулярен плоскости, в которой лежат векторы скорости заряда и индукции магнитного поля. Остаётся выяснить, в какое полупространство относительно данной плоскости направлена сила Лоренца.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая -- к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спирали стрелка гальванометра в цепи второй спирали отклонялась.

Опыты Фарадея.

Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:

1. возникновение индукционного тока при вдвигании и выдвигании магнита (катушки с током);

Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.

2. возникновение индукционного тока в одной катушке при изменении тока в другой катушке.

Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.

Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э.д.с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока Ф>0, а еинд < 0, т.е. э. д. с. индукции вызывает ток такого направления, при котором его магнитное поле уменьшает магнитный поток через контур.

При уменьшении магнитного потока Ф<0, а еинд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл - оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой -- слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.

магнитный индукционный ток фарадей

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S - от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Худолей Андрей, Хныков Игорь

Практическое применение явления электромагнитной индукции.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Электромагнитная индукция в современной технике Выполнили ученики 11 «А» класса МОУСОШ №2 города Суворова Хныков Игорь, Худолей Андрей

Явление электромагнитной индукции было открыто 29 августа 1831 г. Майклом Фарадеем. Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Направление индукционного тока (так же, как и величина ЭДС), считается положительным, если оно совпадает с выбранным направлением обхода контура.

Опыт Фарадея постоянный магнит вставляют в катушку, замкнутую на гальванометр, или вынимают из нее. При движении магнита в контуре возникает электрический ток В течение одного месяца Фарадей опытным путём открыл все существенные особенности явления электромагнитной индукции. В настоящее время опыты Фарадея может провести каждый.

Основные источники электромагнитного поля В качестве основных источников электромагнитного поля можно выделить: Линии электропередач. Электропроводка (внутри зданий и сооружений). Бытовые электроприборы. Персональные компьютеры. Теле- и радиопередающие станции. Спутниковая и сотовая связь (приборы, ретрансляторы). Электротранспорт. Радарные установки.

Линии электропередач Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м.

Электропроводка К электропроводке относятся: кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

Бытовые электроприборы Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

Персональные компьютеры Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля.

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю

Теле- и радиопередающие станции На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности. Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Спутниковая связь Системы спутниковой связи состоят из передающей станции на Земле и спутников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

Сотовая связь Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км.

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения аппарата).

Электротранспорт Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем).

Радарные установки Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч. Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

Металлодетекторы Технологически, принцип действия металлодетектора основан на явлении регистрации электромагнитного поля, которое создается вокруг любого металлического предмета при помещении его в электромагнитное поле. Это вторичное электромагнитное поле различается как по напряженности (силе поля), так и по прочим параметрам. Эти параметры зависят от размера предмета и его проводимости (у золота и серебра проводимость гораздо лучше, чем, например, у свинца) и естественно - от расстояния между антенной металлодетектора и самим предметом (глубины залегания).

Вышеприведенная технология обусловила состав металлодетектора: он состоит из четырех основных блоков: антенны (иногда излучающая и принимающая антенны различаются, а иногда - это одна и та же антенна), электронного обрабатывающего блока, блока вывода информации (визуальной - ЖК-дисплей или стрелочный индикатор и аудио - динамика или гнезда для наушников) и блока питания.

Металлодетекторы бывают: Поисковые Досмотровые Для строительных целей

Поисковые Данный металлодетектор предназначен для поиска всевозможных металлических предметов. Как правило - это самые большие по размеру, стоимости и естественно по выполняемым функциям модели. Это обусловлено тем, что иногда нужно находить предметы на глубине до нескольких метров в толще земли. Мощная антенна способна создавать большой уровень электромагнитного поля и с высокой чувствительностью обнаруживать даже малейшие токи на большой глубине. Например поисковый металлодетектор, обнаруживает металлическую монету на глубине в 2-3 метра в толще земли, которая может даже содержать железистые геологические соединения.

Досмотровые Используется спецслужбами, таможенниками и сотрудниками охраны самых различных организаций для поиска металлических предметов (оружия, драгоценных металлов, проводов взрывчатых устройств и т.д.) спрятанных на теле и в одежде человека. Эти металлодетекторы отличают компактность, удобство в обращении, наличие таких режимов, как беззвучная вибрация рукоятки (чтобы обыскиваемый человек не узнал, что сотрудник, производящий поиск что-то нашел). Дальность (глубина) обнаружения рублевой монеты в таких металлодетекторах доходит до 10-15 см.

Также широкое распространение получили арочные металлодетекторы, которые внешне напоминают арку и требуют прохождения человека через нее. Вдоль их вертикальных стен проложены сверхчувствительные антенны, которые обнаруживают металлические предметы на всех уровнях роста человека. Их обычно устанавливают перед местами культурно-массовых развлечений, в банках, учреждениях и т.д. Главная особенность арочных металлодетекторов - высокая чувствительность (настраиваемая) и большая скорость обработки потока людей.

Для строительных целей Данный класс металлодетекторов при помощи звуковой и световой сигнализации помогает строителям отыскать металлические трубы, элементы конструкций или привода, расположенные как в толще стен, так и за перегородками и фальш-панелями. Некоторые металлодетекторы для строительных целей часто объединяют в одном приборе с детекторами деревянных конструкция, детекторами напряжения на токоведущих проводах, детекторами протечек и т.д

Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.

Шелк

Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.

В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.

Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.

Компас и звезда

На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.

Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход - вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.

Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.

От компаса к магниту

Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.

Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой - на юг.

Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.

Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.

Магнитное или электрическое?

В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит - стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

Продолжение опытов

Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

Формула

Закон Фарадея для электромагнитной индукции выражается формулой

Расшифруем символы.

ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.

Φ - это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.

Последствия открытия

За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.

И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.

А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.

Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.

Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.