АБЕРРАЦИЯ ГЛАЗА - искажение изображений на сетчатой оболочке глаза в результате несовершенств его оптической системы.

АБЕРРАЦИЯ ГЛАЗА может быть обусловлена различными причинами: неправильной формой поверхностей роговицы и хрусталика, несовершенством их центрировки, неоднородностью глазных сред (особенно хрусталика) и возникающими в глазу на пути прохождения луча света явлениями дифракции (огибание световыми волнами препятствий и др.).

Оптической системе глаза человека присущи в той или иной степени все виды аберрации оптических систем: сферическая, хроматическая, а также дифракционные аберрации и астигматизм (см. Аберрация , Астигматизм глаза).

Сферическая аберрация глаза обусловлена неоднородным строением хрусталика. Она определяется как разность между степенью преломления оптической системой лучей, проходящих через периферические и центральные участки зрачка глаза, и измеряется в диоптриях. Одна диоптрия (1 дптр) - преломляющая сила линзы с фокусным расстоянием 1 м. Сферическая АБЕРРАЦИЯ ГЛАЗА считается положительной, если периферические лучи преломляются сильнее центральных и их фокус оказывается ближе к хрусталику, чем к сетчатой оболочке, и отрицательной, если фокус периферических лучей оказывается ближе к сетчатой оболочке, чем к хрусталику. Отсутствие единого фокуса для падающих на зрачок центральных и периферических лучей приводит к тому, что рассматриваемые светящиеся точки проецируются на сетчатой оболочке глаза в виде пятен (круги светорассеяния). В результате этого снижается острота зрения.

Сферическая АБЕРРАЦИЯ ГЛАЗА в известной мере корригируется снижением кривизны поверхностей роговицы и хрусталика по мере перехода от их центральных зон к периферическим. Сферическая АБЕРРАЦИЯ ГЛАЗА зависит от состояния аккомодации глаз (см.) и ширины зрачка. Обычно при дневном освещении (диаметр зрачка 3-4 мм) аберрация глаз равняется 0,5-1 дптр.

Хроматическая аберрация глаза обусловлена неодинаковым преломлением оптической системой глаза световых лучей с различной длиной волн (см. Рефракция глаза). У разных людей она не одинакова. Хроматическая аберрация численно характеризуется разницей между преломляющей силой глаза для желтого излучения с длиной волны 587,6 нм (5876А) и преломляющей силой глаза для данной волны и выражается в диоптриях.

В результате хроматической аберрации изображения объектов на сетчатой оболочке глаза оказываются окруженными цветной каймой. Однако из-за избирательной чувствительности сетчатой оболочки глаза к излучениям различной длины волн человек не замечает окрашенных контуров объектов.

Хроматической АБЕРРАЦИЕЙ ГЛАЗА объясняется неспособность глаза с нормальной рефракцией (см. Эмметропия) видеть далекие синие или фиолетовые объекты, а также и явления «выступающих» и «отступающих» цветов. Во многих случаях хроматической АБЕРРАЦИЕЙ ГЛАЗА объясняются особенности приемов, используемых художниками в пейзажной и портной живописи.

На использовании явлений хроматической АБЕРРАЦИИ ГЛАЗА основан ряд методов и приборов, применяемых в офтальмологии для измерения величины аметропии глаза. Дифракционными аберрациями глаза называются искажения на сетчатой оболочке глаза в результате дифракции, возникающей при прохождении световых лучей через зрачок малого диаметра. При дифракционной А. г. точечные объекты изображаются на сетчатой оболочке не в виде точек, а в виде круглых пятен, окруженных рядами светлых и темных колец. Дифракционная АБЕРРАЦИЯ ГЛАЗА проявляется тем резче, чем меньше диаметр зрачка.

Наибольшая четкость изображения объектов на сетчатой оболочке глаза, а следовательно, и наилучшая зрения глаза имеет место при диаметрах зрачка глаза, равных 2-4 мм. Дальнейшее увеличение диаметра зрачка сопровождается снижением остроты зрения.

Л. H. Гассовский.

Хроматическая аберрация

Хроматическая аберрация состоит в том, что луч белого света, падая на линзу параллельным пучком, разлагается в спектр, каждому цвету которого соответствует своя длина волны. При фокусировании оптической системой спектр имеет не один фокус, а множество. Крайние лучи спектра - коротковолновые (сине-зеленые) - фокусируются ближе к роговице, а длинноволновые (красные) - дальше (рис. 5.1).


Интервал между фокусами для этих лучей может достигать 1,0-1,5 дптр. При этом очертания предметов можно наблюдать окрашенными слабыми цветными каемками. При гиперметропической рефракции каемки красные, при мистической - синие.

Повседневный опыт показывает, что при правильном фокусирования, слабые по своей яркости, глазом не замечаются. При нормальном фокусировании глаза отчетливое изображение на сетчатке дают желтые лучи.

Хроматическая аберрация используется в диагностике аметропий: на ней основаны так называемый дуохромный тест и исследование зоны покоя аккомодации с кобальтовым стеклом.

При применении дуохромного теста пациенту с подобранной коррекцией предъявляют оптотипы на двух полях: красном и зеленом. Если он ярче, четче видит их на зеленом фоне, то установка глаза гиперметропическая, и, следовательно, следует уменьшить силу минусовых линз или увеличить силу плюсовых, и наоборот. Необходимо добиваться одинаковой четкости знаков на красном и зеленом фоне.

Кобальтовое стекло задерживает лучи средней части спектра и пропускает только синие лучи с длинной волны 480 нм и красные с длиной волны 750 нм.

Пациент смотрит через кобальтовое стекло на светящийся источник света, находящийся на конечном расстоянии. Он будет видеть светящуюся точку бесцветной только при идеальном фокусировании на сетчатке. При гиперметропии он увидит синее пятно с красной каймой, при миопии - красное пятно с синей каймой.

Сферическая аберрация

При сферической аберрации имеются различия в рефракции между центральной частью зрачка и его периферией.

Если лучи, проходящие через периферические участки зрачка, преломляются сильнее, чем лучи, проходящие через центральную часть зрачка, то такая аберрация называется положительной сферической аберрацией, если наоборот - то отрицательной (рис. 5.2).


Сферическая аберрация возникает из-за индивидуальных особенностей строения оптической системы глаза: кривизны поверхности роговицы и поверхностей хрусталика. Оптические дефекты роговицы компенсируются кривизной поверхностей хрусталика. В афакичных глазах, как правило, аберрации выражены сильнее и могут быть причиной понижения зрения.

Астигматизм косых пучков

Астигматизм - хорошо знакомое офтальмологам явление. Оно возникает из-за несферичности, а точнее, торичности преломляющих поверхностей глаза, и прежде всего роговицы. В сущности, вряд ли в контексте настоящей главы астигматизм при прямом падении лучей на оптическую систему следует относить к аберрациям.

Если на оптическую систему падает узкий пучок лучей, находящихся на значительном расстоянии от ее оси, то он сфокусируется в виде двух взаимно перпендикулярных отрезков, находящихся на определенном расстоянии друг от друга, образуя коноид Штурма, как и при прямом падении лучей на торическую поверхность. Эта погрешность оптической системы называется астигматизмом косых пучков. В плоскости изображения получается пятно в виде эллипса (рис. 5.3).

Кривизна поля изображения

При изображении отрезка каждой его точке в Пространстве изображений будет соответствовать 2 изображения, лежащих в сагиттальной и меридиональной плоскостях. Если соединить все точки, получим 2 кривые линии. Под кривизной поля изображения понимают среднюю поверхность между обеими астигматическими поверхностями (рис. 5.4).

Кома

Если светящаяся точка, расположенная вне оси оптической системы, посылает широкий пучок, то в плоскости изображения получается светящийся кружок с хвостом (похожий на запятую). Это искажение носит название «кома» (рис. 5.5).

Дисторсия

Нарушение подобия изображения и предмета обусловлено тем, что разноудаленные от оптической оси точки предмета изображаются с разным увеличением. Меняется форма изображения в сравнении с предметом, но без нарушения резкости, так как точка изображается точкой (рис. 5.6).


В офтальмологии дисторсией называют также искажения формы предметов, вызванные астигматическими линзами; при этом предметы могут казаться сжатыми или растянутыми в одном направлении.

Аберрации

Представление о глазе как о совершенном оптическом приборе мы приобретаем еще со школы при изучении раздела физики «Оптика». При изучении соответствующих наук в высшем или среднем специальном учебных заведениях такое представление о глазе закрепляется, обрастая дополнительной информацией. Поэтому высказывание С.Н. Федорова о том, что глаз является несовершенным прибором и задача офтальмолога в усовершенствовании его, долгое время воспринималось многими врачами со скепсисом.

А что есть лазерная коррекция, если не усовершенствование ошибок природы? Ошибками природы здесь можно назвать близорукость, дальнозоркость и астигматизм. И не только. Ученые-оптики знали об этом давно. Они знали, что при конструировании даже самой простой подзорной трубы необходимо не только сфокусировать оптическую систему в одной точке (исключить близорукость, дальнозоркость и астигматизм подзорной трубы), но и обеспечить качество получаемого изображения. Линзы, из которых делают подзорную трубу, должны быть из хорошего стекла, почти идеальной формы и с хорошо обработанной поверхностью. Иначе изображение будет нечетким, искаженным и размытым. Вот тогда и началось изучение аберраций - мельчайших шероховатостей и неравномерностей преломления. А с появлением аппаратов для выявления и измерения аберраций глаза в офтальмологию вошло новое измерение - аберрометрия.

Аберрации могут быть разного порядка
. Самыми простыми и наиболее известными аберрациями являются собственно те самые близорукость, дальнозоркость и астигматизм. Их называют дефокусом или аберрациями второго, низшего порядка. Аберрации высшего порядка и являются теми самыми шероховатостями и неравномерностями преломления, о которых уже упоминалось выше.

Аберрации высшего порядка также делят на несколько порядков. Принято считать, что на качество зрения влияют аберрации в основном до седьмого порядка. Для удобства восприятия существует набор полиномов Зернике, отображающий виды монохроматических аберраций как трехмерную модель неравномерности преломления. Набором этих полиномов более-менее точно можно отобразить любую неровность рефракции глаза.

Откуда появляются аберрации?

Они есть у всех. Из них и состоит индивидуальная карта преломления глаза. Современные аппараты обнаруживают аберрации высшего порядка, как-то влияющие на качество зрения, у 15 % людей. Но индивидуальные особенности преломления есть у каждого.

Поставщиками аберраций являются роговица и хрусталик.

Причинами аберраций могут быть:

Врожденная аномалия (совсем небольшие и слабо влияющие на зрение неравномерности, лентиконус);

Травма роговицы (рубец роговицы стягивает окружающую ткань, лишая роговицу сферичности);

Операция (радиальная кератотомия, удаление хрусталика через роговичный разрез, лазерная коррекция, термокератопластика и другие операции на роговице);

Заболевания роговицы (последствия кератита, бельмо, кератоконус, кератоглобус).

Причиной внимания офтальмологов к аберрациям является офтальмохирургия . Не обращая внимания на аберрации и не принимая в расчет их влияние на качество зрения, офтальмология просуществовала довольно долго. До этого аберрации изучали и боролись с их негативным влиянием только производители подзорных труб, телескопов и микроскопов.

Операции на роговице или хрусталике (имеется в виду роговичный разрез) на несколько порядков увеличивают аберрации высшего порядка, что иногда может приводить к снижению послеоперационной остроты зрения. Поэтому широкое внедрение в офтальмологическую практику имплантации искусственного хрусталика, кератотомии и лазерной коррекции способствовало развитию диагностической аппаратуры: появились кератотопографы, анализирующие карту преломления роговицы, а теперь и аберрометры, анализирующие весь волновой фронт от передней поверхности роговицы до сетчатки.

Аберрации, появившиеся из-за ЛАСИК

Исправляя дефокус (близорукость, дальнозоркость), рефракционный хирург прибавляет пациенту аберраций высокого порядка.

Формирование микрокератомом роговичного лоскута приводит к росту аберраций высшего порядка.

Осложнения во время ЛАСИК приводят к росту аберраций высшего порядка.

Процесс заживления приводит к росту аберраций высшего порядка.

Борьба с аберрациями, индуцированными ЛАСИК

Убирать микрошероховатости и неравномерности с помощью эксимерного лазера с щелевой подачей луча не представлялось возможным. Изобретена и внедрена в производство установка с возможностью точечной абляции, то есть диаметр лазерного луча в некоторых моделях менее миллиметра. С использованием полиномов Зернике были введены в практику компьютерные программы, позволяющие автоматически преобразовывать полученную из аберрометра индивидуальную карту рефракции в лазерной установке в алгоритм, управляющий лучом, устраняющим не только остаточный дефокус, но и аберрации высшего порядка. Полиномы Зернике становятся набором инструментов, каждый из которых предназначен для удаления определенного компонента в аберрационном комплексе. Как у столяра рубанок предназначен для выравнивания, долото - для углубления, пила -для разделения, топор - для раскалывания. Все не так просто, конечно. Как у топора можно найти не одно, а десять способов применения, так и полином предназначен для удаления пространственно довольно сложных форм. Но основной принцип понятен.

Роговица при проведении такой персонализированной лазерной абляции должна приближаться по своей форме к уровню оптически идеальной сферы.

Суперзрение

После проведения персонализированной лазерной коррекции у некоторых пациентов была получена острота зрения более 1,0. Пациенты видели не только десять строчек, но и одиннадцать, и двенадцать, и даже больше. Этот феномен был назван «суперзрение».

В научных кругах разгорелась дискуссия чуть ли не о нарушении прав человека. Насколько корректно давать человеку слишком хорошее зрение, ведь он увидит изъяны на лицах близких людей, станет различать каждый пиксель на экране компьютера и телевизора, страдать от избытка визуальной информации. Вполне научный подход. Может быть, этот спор и будет актуальным через несколько лет.

Однако параллельно с этим спором появились и коммерческие предложения . В рекламах эксимерных клиник обещали суперзрение каждому. Но суперзрение не прогнозируемо! У кого-то из пациентов получится, а у десятков других - нет. Ведь способность к суперзрению определяется размерами фотодетекторов глаза, тех самых колбочек на сетчатке. Чем меньше колбочка и чем больше ее плотность в макуле, тем более мелкий предмет сможет разглядеть человек. К тому же влияние каждого вида аберраций высшего порядка на зрение еще недостаточно изучено. Поэтому коммерческое предложение суперзрения в виде суперЛАСИКа (см. выше) некорректно. Можно лишь говорить о персонализированной лазерной коррекции.

Влияние аберраций на зрение

Во времена «холодной войны» между СССР и США одним из самых важных направлений работы спецслужб двух стран стал научный и военнопромышленный шпионаж. Когда новый советский истребитель МиГ продемонстрировал в локальных войнах явное преимущество своих технических характеристик над самолетами противника, разведка США сделала все, чтобы завладеть секретными разработками конструкторского бюро Артема Микояна. В конце концов им удалось заполучить почти целый МиГ.

Одними из преимуществ МиГа над американскими аналогами являлись его маневренность и скорость, обусловленные крайне низкой по тем временам сопротивляемостью воздуха при полете. Воздух будто совсем не сопротивлялся корпусу самолета, плавно обтекая его контур.

Американские авиаконструкторы для достижения такого эффекта пытались сделать поверхность своих самолетов идеально гладкой, ровной и обтекаемой. Каково же был их удивление, когда они увидели неровную, шероховатую поверхность МиГа с выпирающими шляпками «заклепок и болтов». Секрет обтекаемости российского самолета оказался прост и гениален. Все эти шероховатости во время полета создавали вокруг корпуса самолета своеобразную воздушную подушку, позволяющую максимально снизить сопротивляемость воздуха.

Возможно, это миф или легенда авиаконструкторов, но такая аналогия прекрасно иллюстрирует отношение офтальмологов к аберрациям высшего порядка. Дело в том, что взгляды офтальмологов на вопрос влияния аберраций на зрение за последние десять лет прошли определенную эволюцию, сходную с эволюцией американских конструкторов к характеристикам поверхности самолета.

Как было сказано выше, на проблему аберраций офтальмологи обратили пристальное внимание в основном из-за ухудшения качества зрения после корнеорефракционных операций . Пациенты видели нужное количество строчек, но жаловались на снижение темновой адаптации, искажение и расплывчатость границ видимых предметов. Были и такие, у кого при практически нулевой рефракции (то есть отсутствии близорукости и дальнозоркости) острота зрения недотягивала 1-2 строчки до того уровня, который они давали в очках до коррекции. Немудрено, что отношение к аберрациям было сугубо отрицательным, как к приобретенной либо врожденной патологии. Именно это отношение и послужило причиной гонки за идеальной сферичностью роговицы и суперзрением.

Теперь мнение офтальмологов меняется. Первой ласточкой был легендарный офтальмохирург Палликарис (рефракционный хирург с мировым именем и один из основоположников лазерной коррекции).

В 2001 г. в Каннах он предположил, что у каждого человека, кроме параметров глаза, фиксируемых с помощью современных приборов, существует еще и «динамический зрительный фактор». К чему приведут дальнейшие исследования в этой области, покажет время. Безусловно одно: аберрации могут как снижать, так и повышать остроту зрения.

Возможно, дальнейшее изучение «динамического зрительного фактора» будет базироваться на следующей гипотезе.

Проведение ЛАСИК приводит к увеличению аберраций высшего порядка. Возможно, сужать эти аберрации до семи порядков в научноисследовательской перспективе не совсем правильно. Имеет значение тут и перепад оптической плотности в области интерфейса (подлоскутного пространства), и шероховатость полученной поверхности роговичного ложа, и процессы заживления (ремодуляция формы роговицы, тракция поврежденных фибрилл, неравномерность эпителиалного пласта и т. п.). Все это вкупе с другими аберрациями приводит к размытости фокуса на сетчатке, появлению нескольких изображений. Головной мозг с помощью механизма аккомодации из всех представленных изображений выбирает наиболее четкое и удовлетворяющее его в данный период времени (принцип мультифокальности). Именно индивидуальные особенности адаптации головного мозга к вариабельности получаемого изображения и будут тем самым «динамическим зрительным фактором», от которого зависит - будет данный набор аберраций улучшать зрение у данного человека или снижать его качество. А это уже связано с балансом сознания и подсознания, особенностями психомоторики, интеллектом, психологическим статусом.

Из дебрей предположений к конкретным вопросам.

Какие бывают аберрации?

Хроматическая, астигматизм косых пучков, кома и др. Все вместе они и формируют на сетчатке изображение окружающего мира, восприятие которого у каждого человека строго индивидуальное. Каждый из нас действительно видит мир только по-своему. Одинаковой для всех может быть только полная слепота.

Вот несколько видов аберраций высшего порядка.

1. Сферическая аберрация. Свет, проходящий через периферию двояковыпуклой линзы, преломляется сильнее, чем в центре. Главным «поставщиком» сферической аберрации в глазу является хрусталик, во вторую очередь - роговица. Чем шире зрачок, то есть чем большая часть хрусталика принимает участие в зрительном акте, тем более заметна сферическая аберрация.

В рефракционной хирургии наиболее часто индуцирует сферическую аберрацию:

Искусственный хрусталик;

Лазерная термокератопластика.

2. Аберрации углов наклона оптических пучков. Асферичность преломляющих поверхностей. Представляет собой несовпадение центров изображений светящихся точек, расположенных вне оси оптической системы. Подразделяются на аберрации больших углов наклона (астигматизм наклонных пучков) и малых углов наклона (кома).

Кома не имеет никакого отношения к известному диагнозу реаниматологов. Ее аберрометрическая картина похожа на окружность, расположенную в оптическом центре роговицы и разделенную линией на две ровные половины. Одна из половин имеет высокую оптическую силу, а другая -низкую. При такой аберрации человек видит светящуюся точку как запятую. При описании предметов люди с такой аберрацией используют слова «хвост», «тень», «дополнительный контур», «двоение». Направление этих оптических эффектов (меридиан аберрации) может быть различным. Причиной комы может быть врожденная или приобретенная разбалансировка оптической системы глаза. Оптическая ось (на которой располагается фокус линзы) роговицы не совпадает с осью хрусталика и вся оптическая система не сфокусирована в центре сетчатки, в макуле. Кома может быть в том числе и одним из компонентов неравномерности рефракции при кератоконусе. При проведении ЛАСИК кома может появляться в результате децентровки зоны лазерной абляции или особенностей заживления роговицы при лазерной коррекции дальнозоркости.

3. Дисторсия - нарушение геометрического подобия между предметом и его изображением - искажение. Разноудаленные от оптической оси точки предмета изображаются с различным увеличением.

Лазерная коррекция не является монополистом в коррекции аберраций. Уже разработаны искусственные хрусталики и контактные линзы, компенсирующие некоторые виды аберраций высшего порядка.

Экскурс в офтальмологическую классификацию аберраций

Аберрации подразделяют на три основные группы:

Дифракционные;

Хроматические;

Монохроматические.

Дифракционные аберрации
появляются при прохождении луча света вблизи непрозрачного объекта. Световая волна отклоняется от своего направления, проходя рядом с четкой границей между прозрачной средой (воздухом) и непрозрачной средой. В глазу такой непрозрачной средой является радужка. Та часть светового пучка, которая проходит не в центре зрачка, а у его края, отклоняется, что приводит к светорассеянию по периферии.

Хроматические аберрации возникают вследствие следующего оптического явления. Солнечный свет, как уже говорилось, состоит из световых волн с очень разнообразной длиной. Видимый свет включает в себя диапазон от коротковолновых фиолетовых лучей до длинноволновых красных. Помните считалочку для запоминания спектра видимого света - цветов радуги? «Каждый охотник желает знать, где сидит фазан».

Красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

У каждого из этих видов лучей свой коэффициент преломления. Каждый цвет преломляется в роговице и хрусталике по-своему. Грубо говоря, изображение синих и зеленых частей предмета фокусируются у эметрона сетчаткой, а красные - за ней. В итоге изображение цветного предмета на сетчатке получается более расплывчатым, чем черно-белого. Именно на эффекте, связанном с хроматическими аберрациями, и базируется трехмерное видео.

Монохроматические аберрации, собственно, и являются основным предметом изучения рефракционных хирургов. Именно монохроматические аберрации подразделяются на аберрации высшего и низшего порядков. Монохроматические аберрации низшего порядка: близорукость, дальнозоркость и астигматизм. Монохроматические аберрации высшего порядка: сферическая аберрация, кома, астигматизм косых пучков, кривизна поля, дисторсия, нерегулярные аберрации.

Для описания комплекса монохроматических аберраций высшего порядка используют полиномы математического формализма Зернике (Цернике). Хорошо, если они близки к нулю, а среднеквадратичное отклонение волнового фронта RMS (root mean square) меньше длины волны или равно 0,038 мкм (критерий Марешаля). Впрочем, это уже тонкости рефракционной хирургии.

Стандартная таблица полиномов Зернике
является своего рода набором трехмерных иллюстраций аберраций вплоть до седьмого порядка: дефокус, астигматизм, астигматизм наклонных пучков, кома, сферическая аберрация, трилистник, четырехлистник и так далее, до восьмилистника (trefoil, tetrafoil, pentafoil, hexafoil...). «Трилистники» представляют собой от трех до восьми равномерных секторов окружности с повышенной оптической силой. Их возникновение может быть связано с основными центростремительными направлениями фибрилл стромы, своего рода ребрами жесткости роговицы.

Аберрационная картина глаза весьма динамична. Монохроматические аберрации маскируют хроматические. При расширении зрачка в более темном помещении увеличиваются сферические аберрации, но уменьшаются дифракционные, и наоборот. При возрастном снижении способностей к аккомодации аберрации высшего порядка, ранее являвшиеся стимулом и повышавшие точность аккомодирования, начинают снижать качество зрения.

Поэтому в настоящее время сложно определить значимость положительного и отрицательного влияния каждого вида аберраций на зрение каждого человека.

Роль аберрометрии (с функцией кератотопографии) в предоперационном обследовании

Об этом уже все сказано. По данным аберрометрии составляется индивидуальная карта волнового фронта, по параметрам которой проводится персонализированная лазерная коррекция. У большинства пациентов уровень аберраций высшего порядка, мягко говоря, очень небольшой. И использовать персонализированную лазерную абляцию нет необходимости. Достаточно данных авторефрактокератометрии. Но это не значит, что не стоит гоняться за персонализацией. Ведь если у вас есть аберрации, то их можно выявить только при аберрометрии. И при коррекции вероятнее получить более высокую остроту зрения, чем у вас была когда-либо в очках или даже в контактных линзах.

Рис. 17. Анализатор волнового фронта глаза (аберрометр с функцией кератотопографии). Суть кератотопографии в следующем. На переднюю поверхность роговицы проецируются светящиеся концентрические круги (диск Плачидо) (б) и их отражение фотографируется аппаратом (а). По разнице между параметрами проецируемых и отраженных кругов аппарат вычисляет кривизну роговицы в 10000 точек и формирует «карту» рефракции.

Персонализированную лазерную абляцию еще проводят при докоррекции, при коррекции после других операций и при тонкой роговице.

Что касается диагностики как таковой, то есть поиска патологии, то тут главное - не пропустить кератоконус.

Еще раз о кератоконусе

Рефракционному хирургу выявить кератоконус при наличии соответствующей аппаратуры достаточно просто. Но проблема не в этом. Проблема в ответственности. Так же, как и сложность работы сапера не только в знании премудростей ремесла. Сложность в том, что сапер ошибается только один раз. С кератоконусом ошибаться нельзя. Ни разу. А для этого нужно постоянно держать в голове его косвенные признаки:

Миопический астигматизм чаще с косыми осями;

Оптическая сила роговицы более 46 дптр;

Тонкая роговица;

Удивительно хорошее зрение без очков и удивительно плохое в очках при наличии выраженного астигматизма;

Прогрессирование астигматизма;

Локальное выпячивание роговицы, чаще в нижнем секторе.

Вот это выпячивание и невозможно пропустить при кератотопографии (либо аберрометрии) . Выпячивание сопровождается ростом оптической силы. Общепринятый стандарт цветовой индикации окрашивает на снимке волнового фронта в синий цвет участки с меньшей оптической силой (диоптрийностью), а в красный цвет - с большей. Классический кератоконус выглядит как пятно красного цвета в нижнеправом или нижнелевом секторе роговицы.

К слову, обычный астигматизм высокой степени выглядит как красная бабочка. Иногда крылья этой бабочки теряют симметричность. Одно крыло становится огромным, смещается книзу, а другое уменьшается. Как песок в песочных часах, оптическая сила перетекает из верхней части в нижнюю. Вот это уже может быть проявлением кератоконуса. Делать лазерную коррекцию в таком случае нельзя.

Кто хуже переносит приобретенные после ЛАСИК аберрации?

Молодые люди с лабильной психикой и широким зрачком. У каждого из нас размер зрачка на свету разный. В среднем три миллиметра, но у некоторых с рождения бывает на пару миллиметров больше. А чем больше зрачок, тем больше площадь роговицы и хрусталика, принимающая участие в акте зрения. И тем больше мелких шероховатостей искажают изображение. Как правило, мозг не обращает внимания на такие мелочи. Так же как исключает из зрительной информации плавающие помутнения в стекловидном теле (они есть у большинства близоруких людей), и человек обращает на них внимание только иногда, глядя на слепяще-белый снег или, скажем, на светлый экран компьютера. Но у тонких, творческих, нервических натур восприятие часто обострено, и это может способствовать тому, что они постоянно обращают внимание на подобные раздражители. Это не придирчивость, а особенность нервной системы, как, например, индивидуальный порог болевой чувствительности.

В таких случаях можно попробовать выработать у мозга привыкание к аберрациям, а точнее, отвлечь его внимание от этой проблемы, в течение месяца закапывая капли, сужающие зрачок (пилокарпин). В случае неудачи такой тактики придется сделать докоррекцию с целью уменьшения аберраций высшего порядка.

Где в повседневной практике окулист может столкнуться с аберрациями высшего порядка?

При кератоконусе острота зрения с полной очковой коррекцией часто недотягивает до 1,0. При проверке зрения через диафрагму в три миллиметра и меньше острота зрения значительно улучшается (см. выше). И в том и в другом случае причина происходящего в аберрациях.

После удаления катаракты с имплантацией искусственного хрусталика пациент часто, даже с полной очковой коррекцией, не видит 1,0. Далеко не во всех случаях это связано с заболеваниями сетчатки, амблиопией или вторичной катарактой.

Искусственный хрусталик меньшего диаметра, чем естественный. Иногда искусственный хрусталик может стоять неровно. При проведении операции роговичным разрезом изменяется сферическая форма роговицы. Все эти причины вызывают аберрации высшего порядка. В крайнем случае их можно уменьшить, проведя персонализированную лазерную коррекцию (более подробно о биоптике в следующей главе).

Имеет смысл провести аберрометрию и при так называемой куриной слепоте, проявляющейся ухудшением остроты зрения в сумерках, но не сопровождающейся признаками серьезных заболеваний сетчатки (тапеторетинальная абиотрофия и др.).

Примеров можно привести немало. При появлении подозрений на наличие аберраций пациента можно направить на обследование в центр рефракционной хирургии.

Статья из книги:

АБЕРРАЦИИ КАК НЕСОВЕРШЕНСТВО ГЛАЗА Аберрация – любое угловое отклонение узкого параллельного (коллимированного) пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через оптическую систему глаза.

А хроматические дифракционные монохроматические Высшего порядка Сферические Кома Астигматизм косых пучков Кривизна поля Дисторсия Нерегулярные Низшего (1, 2) Аметропии Астигматизм

ПРИЧИНЫ ПОЯВЛЕНИЯ АБЕРРАЦИЙ Формы и прозрачность роговицы и хрусталика; состояние сетчатки; прозрачность внутриглазной жидкости и стекловидного тела. Увеличение диаметра зрачка. Если при диаметре зрачка равном 5, 0 мм превалируют А 3–го порядка, то при его увеличении до 8, 0 мм возрастает доля А 4 – го порядка. Критический размер зрачка, при котором А высших порядков оказывают наименьшее влияние = 3, 22 мм. Аккомодация. С возрастом А увеличиваются, и в период от 30 до 60 лет А высшего порядка удваиваются, т. к. со временем эластичность и прозрачность хрусталика уменьшается, и он перестает компенсировать роговичные А. Спазм аккомодации - излишне стойкое напряжение аккомодации, обусловленное таким сокращением ресничной мышцы, которое не исчезает под влиянием условий, когда аккомодация не требуется. Состояние слезной пленки. При разрушении слезной пленки А высших порядков увеличиваются в 1, 44 раза. Одна из разновидностей нарушения слезной пленки – синдром сухого глаза. Ношение контактных линз. Мягкие КЛ могут вызывать волновые монохроматические А высокого порядка, тогда как жесткие КЛ уменьшают А 2–го порядка. Однако асферичность поверхности жестких КЛ может быть причиной сф. А. Асферические КЛ могут вызывать большую нестабильность остроты зрения, чем сферические КЛ. Мультифокальные КЛ могут индуцировать А по типу комы и 5–го порядка.

ХРОМАТИЧЕСКАЯ АБЕРРАЦИЯ Это искажение изображения, связанное с тем, что лучи видимого света, имея разную длину волны и падая на линзу параллельным пучком, преломляясь, фокусируются не в одной точке. КВЛ (синезеленые) фокусируются дальше от сетчатки, чем ДВ (красные). Это хроматизм положения. В результате изображение размывается, и края его окрашиваются. Если фокус синих лучей совместить с сетчаткой, изображение точки будет окружено красным ореолом, и наоборот. Очертания воспринимаемых предметов могут окрашиваться при гиперметропии – красным, при миопии – синим цветом. Практическое значение ХА более заметно при проведении дуохромного теста для уточнения оптической установки глаза при аметропии. В условиях освещения белым светом человек не различает цветные каемки вокруг наблюдаемых предметов. Это объясняется наложением цветных ореолов один на другой и малыми угловыми размерами цветных каемок. ХА не оказывают существенного влияния на центральное зрение.

ДИФРАКЦИОННАЯ Связана с нарушением прямолинейности, отклонением, световой волны при ее распространении мимо резких краев непрозрачных или прозрачных структур, формирующих отверстия. Такой структурой в глазу является зрачок. В результате дифракции света на границе зрачка, где согласно законам геометрической оптики должен быть четкий переход от тени к свету, возникает ряд светлых и темных дифракционных колец, проецируемых на сетчатку. С уменьшением диаметра зрачка диаметр дифракционного круга светорассеянья увеличивается. Но при этом сферическая аберрация уменьшается.

СФЕРИЧЕСКАЯ Есть различие в преломлении светового луча между центром сферической оптической поверхности и ее периферией. В основе сф. А лежит кривизна роговицы и хрусталика. Влияние сф. А на качество изображения зависит от величины зрачка. При малых размерах зрачка от 2 до 4 мм сф. А минимальна, но резко возрастает при расширении зрачка. Если преломление лучей через периферическую часть зрачка сильнее, чем через центральную, то сф. А называется положительной (н-р, при неизмененной роговице). При обратном положении возникает отрицательная сферическая аберрация (н-р, при уплощении центра роговицы после лазерной фотоабляции). Сф. А носит индивидуальный характер. Поверхность хрусталика, которая также индивидуальна, может частично компенсировать сф. А роговицы.

АСТИГМАТИЗМ Это А наклонных пучков (А больших углов наклона). Возникает из-за асферичности преломляющих поверхностей глаза. Если на оптическую систему направлен узкий пучок лучей, находящийся на значительном расстоянии от оптической оси, то он сфокусируется в виде двух взаимно перпендикулярных отрезков на определенном расстоянии друг от друга, образуя при этом изображение в виде хорошо известного коноида Штурма (эллипс, за ним кружок, и снова эллипс). Такое состояние равносильно прямому падению лучей на торическую поверхность. Астигматизм снижает зрительное разрешение. Частный случай астигматизма физиологический. При нем сохранена нормальная острота зрения. Он обусловлен несколькими факторами: асферичностью преломляющих поверхностей, астигматизмом наклонных лучей, децентрированием преломляющих поверхностей и различиями в оптической плотности преломляющих сред.

КОМА Возникает при несовпадении центров изображений светящихся точек, расположенных вне оси оптической системы (аберрация малых углов наклона оптических пучков). Наложение изображений принимает вид несимметричного пятна, напоминающего запятую. Одной из причин комы является отсутствие соосности между оптическими центрами роговицы, хрусталика и фовеолы. К усилению комы может приводить децентрирование новых оптических зон при различных способах хирургической коррекции аметропий. Схема образования комы: лучи, приходящие под углом к оптической оси собираются не в одной точке

КРИВИЗНА ПОЛЯ ИЗОБРАЖЕНИЯ Обусловлена тем, что изображение плоского предмета получается резким не в плоскости, как это должно быть в идеальной оптической системе, а на искривленной поверхности. Она представляет собой срединную поверхность между обеими астигматическими, которые возникают вследствие отображения каждой точки отрезка двумя изображениями, лежащими в сагиттальной и меридиональной плоскостях.

ДИСТОРСИЯ Нарушается геометрическое подобие между объектом и его изображением. При Д линейное увеличение разных частей изображения различно в пределах всего поля, т. К. разноудаленные от оптической оси точки предмета изображаются с разным увеличением. Прямоугольное изображение может перейти в «бочкообразное» (- Д) или «подушкообразное» (+Д). Такой же эффект могут создавать астигматические очковые линзы, сжимающие ли растягивающие предметы в одном направлении.

КАРТА ОПТИЧЕСКИХ ОТКЛОНЕНИЙ РЕАЛЬНЫХ СВЕТОВЫХ ЛУЧЕЙ ОТ ИДЕАЛЬНЫХ В ПРОЕКЦИИ ЗРАЧКА НАЗЫВАЕТСЯ ВОЛНОВЫМ ФРОНТОМ. Оптическая система с минимальным количеством аберраций имеет плоский, или сферический, волновой фронт. В реальной физиологической оптической системе всегда есть отклонения от плоского волнового фронта.

ТАК, ГЛАЗ БЕЗ АБЕРРАЦИЙ ИМЕЕТ ПЛОСКИЙ ВОЛНОВОЙ ФРОНТ И ДАЕТ НАИБОЛЕЕ ПОЛНОЦЕННОЕ ИЗОБРАЖЕНИЕ НА СЕТЧАТКЕ ТОЧЕЧНОГО ИСТОЧНИКА (ТАК НАЗЫВАЕМЫЙ «ДИСК ЭЙРИ» , РАЗМЕР КОТОРОГО ЗАВИСИТ ТОЛЬКО ОТ ДИАМЕТРА ЗРАЧКА). Но в норме, даже при остроте зрения 100%, оптические дефекты преломляющих свет поверхностей глаза искажают ход лучей и формируют неправильный волновой фронт, в результате чего изображение на сетчатке получается более крупным и асимметричным.

Количественной характеристикой оптического качества изображения является среднеквадратич ное значение ошибок отклонения реального волнового фронта от идеального. Для описания аберраций волнового фронта используют серии полиномов математического формализма Зернике. Призматический наклон описывают полиномами 1 -го порядка (Z 1), дефокус и астигматизм – 2 -го, кому относят к 3 -му, а сферическую аберрацию к 4 -му порядку. Более высокие порядки известны, как нерегулярные аберрации.

Как измеряется волновой фронт Оптическая система считается хорошей, если коэффициенты Зернике близки к нулю и, следовательно, среднеквадратич ное значение ошибок волнового фронта меньше 1/14 длины световой волны (критерий Марешаля). Исходя из данных этого коэффициента можно прогнозировать остроту зрения, моделируя изображение любых оптотипов на сетчатке. Для определения аберраметрии зрительной системы человека используется специальный прибор – аберрометр.

Методы определения аберрации глаза В настоящее время известно несколько методов определения аберраций глаза, основанных на разных принципах. 1. Анализ ретинального изображения мишени 2. Анализ вышедшего из глаза отраженного луча 3. Основан на компенсаторной юстировке падающего на фовеолу светового пучка

Идеально исправленная по всем аберрациям оптическая система не может дать точного изображения предмета! Точка никогда не изображается точкой. Причина связана с волновой природой света, создающей дифракционные явления. Точечный источник света изображается на сетчатке не в виде одной точки, а виде более светлого пятна, окруженного рядом концентрических менее светлых колец убывающей яркости (диск Эйри). Качество зрительного восприятия зависит от разрешающей способности сетчатки, дифракции света в области зрачка и свойств оптических сред глаз. Одной из особенностей человеческого глаза является наличие глубины фокусной области, в пределах которой может не происходить изменения качества изображения. Зрительное восприятие регулируется не только физиологической оптикой, но и корковыми структурами центральной нервной системы. Улучшая оптику глаза путем снижения аберрации, можно повысить зрительное разрешение от обычного уровня к более высокому.

КЛИНИЧЕСКАЯ РОЛЬ А И АБЕРРОМЕТРИИ Выраженность А зависит от многих факторов, к которым относят размер зрачка, возраст пациента, рефракцию, аккомодацию. А непостоянны и меняются во времени с частотой около 2 Гц. Характер А может изменить даже направление взгляда человека, что необходимо при рассматривании предметов. Эффект Стайлса-Кроурфорда, при котором световой пучок в центральной зоне зрачка более яркий, чем в его периферической части, частично смягчает А. В нормальных глазах среднее значение А высшего порядка при диаметре зрачка 5 мм составляет 0. 25 мкм, что адекватно 0. 25 дптр дефокусировки. При возрастании уровня А их значения могут превышать нормальные в 2 -10 раз.

Лазерная фотоабляция роговицы в различных ее вариантах при хирургической коррекции аметропий дает возможность получения высокого зрительного разрешения, но при этом увеличивает А высшего порядка, проявляющиеся при диаметре зрачка 5 мм и более. При практическом применении оптических средств и хирургических методов существуют факторы, которые ограничивают возможности зрительного разрешения. Например, любые динамические изменения параметров аккомодации или зрачка приведут к искажениям на сетчатке за счет остаточных А. Статистическая коррекция А не способна сделать глаз свободным от нежелательного их влияния. Только динамическая коррекция, основанная на принципах адаптивной оптики, используемая при визуализации глазного дна, лишена недостатков. Устранение монохроматических А тут же приводит к доминированию хроматических. А устранить эффект светорассеяния невозможно даже при устранении А.

Достижение суперзрения при полной коррекции А глаза вряд ли возможно и целесообразно! Во-первых, А сами по себе динамичны. Во-вторых, существуют нейрорецепторные ограничения зрительного разрешения, обусловленные расположением фоторецепторов сетчатки. Повышение зрительного разрешения может вызвать зрительные иллюзии. Положительная роль А высокого порядка заключается в том, что они увеличивают глубину фокусной области. Если устранить эти А, сохранив только аметропию, то произойдет контрастная инверсия воспринимаемых изображений – белое и черное поменяются местами. данной ситуации А являются механизмом коррекции качества изображения. Отсутствие А, создающих малый уровень дефокусировки, частично устранило бы стимул к аккомодации, нарушив ее работу и снизив точность аккомодирования.

Http://miroft.org.ua/
03.06.14 10:17

Понятие об аберрациях. Аберрации как несовершенство глаза

Термин «аберрация» происходит от латинских слов: «aberrare, aberration» - уклоняться, уклонение. В оптике под аберрациями понимают погрешности изображения, обусловленные отклонением светового луча в реальной оптической системе от его направления в идеальной оптической системе.

В физиологической оптике аберрации - любое угловое отклонение узкого параллельного (коллимированного) пучка света от точки идеального пересечения с сетчаткой в центре фовеолы при его прохождении через оптическую систему глаза.

Различают аберрации хроматические и монохроматические. Среди монохроматических выделяют аберрации высшего и низшего порядков. К аберрациям низшего порядка относят аметропии (дефокус) и астигматизм. Аберрации высшего порядка представлены сферической аберрацией, комой, астигматизмом косых пучков, кривизной поля, дистрофией, нерегулярными аберрациями.

Карта оптических отклонений реальных световых лучей от идеальных в проекции зрачка называется волновым фронтом. Оптическая система с минимальным количеством аберраций имеет плоский, или сферический, волновой фронт. В реальной физиологической оптической системе всегда есть отклонения от плоского волнового фронта.


Рис. 1

В настоящее время для описания аберраций волнового фронта используют серии полиномов математического формализма Цернике (F.Zernike) (1934). Согласно этим представлениям призматический наклон описывают полиномами 1-го порядка (Z1), дефокус и астигматизм – 2-го (Z2), кому относят к 3-му (Z3),а сферическую аберрацию к 4-му порядку (Z4).


Рис. 2

Существующие системы для измерения и анализа аберраций волнового фронта обычно имеют точность 6-7-го порядка по F.Zernike. Оптическая система считается хорошей, если среднеквадратичное отклонение волнового фронта, обозначаемое как RMS (англ. – root mean square), меньше 1/14 длинны волны или равно 0.038 мкм. Данный критерий называюткритериям Марешаля .

Идеально исправленная по всем аберрациям оптическая система не может дать точного изображения предмета! Точка никогда не изображается точкой. Причина связана с волновой природой света, создающей дифракционные явления. Точечный источник света изображается на сетчатке не в виде одной точки, а виде более светлого пятна, окруженного рядом концентрических менее светлых колец убывающей яркости (диск Эйри).

Качество зрительного восприятия зависит от разрешающей способности сетчатки, дифракции света в области зрачка и свойств оптических сред глаз. Одной из особенностей человеческого глаза является наличие глубины фокусной области, в пределах которой может не происходить изменения качества изображения [Сергиенко Н.,М.,1972]. Зрительное восприятие регулируется не только физиологической оптикой, но и корковыми структурами центральной нервной системы. Улучшая оптику глаза путем снижения аберрации, можно повысить зрительное разрешение от обычного уровня к более высокому.

Классификация и виды аберраций

Различают хроматическую, дифракционную и монохроматическую аберрации.

Хроматическая аберрация – искажение изображения, связанное с тем, что лучи видимого света, имея разную длину волны и падая на линзу параллельным пучком, преломляясь, фокусируются не в одной точке. Коротковолновые лучи (сине-зеленые) фокусируются дальше от сетчатки, чем длинноволновые (красные). Это явление называется хроматизмом положения. В результате изображение размывается, и края его окрашиваются. Если фокус синих лучей совместить с сетчаткой, изображение точки будет окружено красным ореолом, и наоборот. Очертания воспринимаемых предметов могут окрашиваться при гиперметропии – красным, при миопии – синим цветом. Практическое значение хроматических аберраций более заметно при проведении дуохромного теста для уточнения оптической установки глаза при аметропии. В условиях освещения белым светом человек не различает цветные каемки вокруг наблюдаемых предметов. Это объясняется наложением цветных ореолов один на другой и малыми угловыми размерами цветных каемок. Хроматические аберрации не оказывают существенного влияния на центральное зрение.

Дифракционная аберрация связана с нарушением прямолинейности, отклонением, световой волны при ее распространении мимо резких краев непрозрачных или прозрачных структур, формирующих отверстия. Такой структурой в глазу является зрачок. В результате дифракции света на границе зрачка, где согласно законам геометрической оптики должен быть четкий переход от тени к свету, возникает ряд светлых и темных дифракционных колец, проецируемых на сетчатку. С уменьшением диаметра зрачка диаметр дифракционного круга светорассеянья увеличивается. Но при этом сферическая аберрация уменьшается.

Сферическая аберрация характеризует состояние, при котором есть различие в преломлении светового луча между центром сферической оптической поверхности и ее периферией. В основе сферической аберрации лежит кривизна роговицы и хрусталика. Влияние сферической аберрации на качество изображения зависит от величины зрачка. При малых размерах зрачка от 2 до 4 мм сферическая аберрация минимальна, но резко возрастает при расширении зрачка. Если преломление лучей через периферическую часть зрачка сильнее, чем через центральную, то сферическая аберрация называется положительной (например, при неизмененной роговице). При обратном положении возникает отрицательная сферическая аберрация (например, при уплощении центра роговицы после лазерной фотоабляции). Сферическая аберрация носит индивидуальный характер. Поверхность хрусталика носит индивидуальный характер. Поверхность хрусталика может частично компенсировать сферическую аберрацию роговицы.

Астигматизм – это аберрация наклонных пучков (аберрация больших углов наклона). Возникает из-за асферичности преломляющих поверхностей глаза. Если на оптическую систему направлен узкий пучок лучей, находящийся на значительном расстоянии от оптической оси, то он сфокусируется в виде двух взаимно перпендикулярных отрезков на определенном расстоянии друг от друга, образуя при этом изображение в виде хорошо известного коноида Штурма (эллипс, за ним кружок, и снова эллипс). Такое состояние равносильно прямому падению лучей на торическую поверхность. Астигматизм снижает зрительное разрешение.

Частным случаем астигматизма глаза является физиологический астигматизм. Под ним понимают такой астигматизм глаза, при котором сохранена нормальная острота зрения. Он обусловлен несколькими факторами: асферичностью преломляющих поверхностей, астигматизмом наклонных лучей, децентрированием преломляющих поверхностей и различиями в оптической плотности преломляющих сред [Смирнов М.С.,1961].

Кома – это аберрация, возникающая при несовпадении центров изображений светящихся точек, расположенных вне оси оптической системы (аберрация малых углов наклона оптических пучков). Наложение изображений принимает вид несимметричного пятна, напоминающего запятую. Одной из причин комы является отсутствие соосности между оптическими центрами роговицы, хрусталика и фовеолы. К усилению комы может приводить децентрирование новых оптических зон при различных способах хирургической коррекции аметропий.

Кривизна поля изображения обусловлена тем, что изображение плоского предмета получается резким не в плоскости, как это должно быть в идеальной оптической системе, а на искривленной поверхности. Она представляет собой срединную поверхность между обеими астигматическими, которые возникают вследствие отображения каждой точки отрезка двумя изображениями, лежащими в сагиттальной и меридиональной плоскостях.

Дисторсия является аберрацией, при которой нарушается геометрическое подобие между объектом и его изображением. При дисторсии линейное увеличение разных частей изображения различно в пределах всего поля, так как разноудаленные от оптической оси точки предмета изображаются с разным увеличением. Прямоугольное изображение может перейти в «бочкообразное» (отрицательная дисторсия) или «подушкообразное» (положительная дисторсия). Такой же эффект могут создавать астигматические очковые линзы, сжимающие ли растягивающие предметы в одном направлении.

Клиническая роль аберрации и аберрометрии

Выраженность аберраций зависит от многих факторов, к которым относят размер зрачка, возраст пациента, рефракцию, аккомодацию. Аберрации непостоянны и меняются во времени с частотой около 2 Гц. Характер аберраций может изменить даже направление взгляда человека, что необходимо при рассматривании предметов. Эффект Стайлса-Кроурфорда, при котором световой пучок в центральной зоне зрачка более яркий, чем в его периферической части, частично смягчает аберрации.

В нормальных глазах среднее значение аберраций высшего порядка при диаметре зрачка 5мм составляет 0.25 мкм (или λ/2), что адекватно 0.25 дптр дефокусировки. При возрастании уровня аберраций их значения могут превышать нормальные в 2-10 раз.

Анализ аберраций 130 эмметропических глаз при диаметре зрачка 5мм показал доминирование комы в 69 % ,сферической аберрации – в 16 % случаев. При увеличении диаметра зрачка до 8 мм, доля комы уменьшалась до 44 %, а доля сферической аберрации увеличивалась до 38 % от общего числа аберраций высшего порядка. Аберрации 5 и 6 порядков практически оставались без изменений.

При изучении аберраций высшего порядка у 114 пациентов в возрасте от 20 до 69 лет с амметропией не более 2.0 дптр было показано, что их количество в глазу очень индивидуально и в 95 % случаев среднее квадратичное отклонение волнового фронта (RMS) составляет 0.334 мкм. Аберрации, как правило, зеркально симметричны в правом и левом глазах. Внутренние оптические среды обладают компенсирующим влиянием по отношению к роговице за счет аберраций Z4. Это компенсирующее влияние уменьшается с возрастом.

На сегодняшний день знания об аберрациях нашли наибольшее практическое применение в оптической коррекции зрения и при визуальных методах исследования глазного дна.

Широко применяемая лазерная фотоабляция роговицы в различных ее вариантах при хирургической коррекции аметропий дает возможность получения высокого зрительного разрешения, но при этом увеличивает аберрации высшего порядка, проявляющиеся при диаметре зрачка 5 мм и более. Так, при проведении лазерного кератомилеза in situ возрастает сферическая аберрация, проявляющаяся глэр-эффектом, а при фоторефракционной кератэктомии возможно усиление комы, которая лежит в основе монокулярной диплопии. Использование кератофотоабляции на основе волнового фронта позволяет улучшить качество зрительного восприятия.

Применение интраокулярных линз при афакии усиливает сферическую аберрацию. Разработаны и применяются в клинике интраокулярные линзы с отрицательной сферической аберрацией, которая частично компенсирует положительную сферическую аберрацию роговицы для получения более качественного изображения на сетчатке глаза.

При практическом применении оптических средств и хирургических методов существуют факторы, которые ограничивают возможности зрительного разрешения. Например, любые динамические изменения параметров аккомодации или зрачка приведут к искажениям на сетчатке за счет остаточных аберраций. Статистическая коррекция аберраций не способна сделать глаз свободным от нежелательного их влияния. Только динамическая коррекция, основанная на принципах адаптивной оптики, используемая при визуализации глазного дна, лишена недостатков. Устранение монохроматических аберраций тут же приводит к доминированию хроматических. А устранить эффект светорассеяния невозможно даже при устранении аберраций.

Достижение суперзрения при полной коррекции аберрации глаза вряд ли возможно и целесообразно! Во-первых, аберрации сами по себе динамичны. Во-вторых, существуют нейрорецепторные ограничения зрительного разрешения, обусловленные расположением фоторецепторов сетчатки на расстоянии, равном 0.5 угл. мин, что обеспечивает зрительное разрешение, равное 1.8-2.0. Дальнейшее повышение зрительного разрешения может вызвать зрительные иллюзии.

Положительная роль аберраций высокого порядка заключается в том, что они увеличивают глубину фокусной области. Если устранить эти аберрации, сохранив только аметропию, то произойдет контрастная инверсия воспринимаемых изображений – белое и черное поменяются местами. В данной ситуации аберрации являются механизмом коррекции качества изображения. Отсутствие аберраций, создающих малый уровень дефокусировки, частично устранило бы стимул к аккомодации, нарушив ее работу и снизив точность аккомодирования.

Авторы: Аветисов Сергей Эдуардович – директор НИИ глазных болезней, член-корреспондент РАМН
Шелудченко Вячеслав Михайлович – доктор медицинских наук, профессор, заведующий отделом Государственного Учреждения НИИ глазных болезней РАМН