Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

Признак перпендикулярности прямой и плоскости позволяет построить взаимно перпендикулярные прямую и плоскость, т. е. доказать существование таких прямых и плоскостей. Начнем с построения плоскости, перпендикулярной данной прямой и проходящей через данную точку. Решим две задачи на построение, соответствующие двум возможностям в расположении данной точки и данной прямой.

Задача 1. Через данную точку А на данной прямой a провести плоскость, перпендикулярную этой прямой.

Проведем через прямую а любые две плоскости и в каждой их этих плоскостей через точку А проведем по прямой, перпендикулярной прямой а, обозначим их b и с (рис. 2.17). Плоскость а, проходящая через прямые бис, содержит точку А и перпендикулярна прямой а (по признаку перпендикулярности прямой и плоскости). Поэтому плоскость а искомая. Задача решена.

Задача имеет лишь одно (т.е. единственное) решение. Действительно, допустим противное. Тогда, кроме плоскости а через точку А проходит еще какая-нибудь плоскость Р, перпендикулярная прямой а (рис. 2.18). Возьмем в плоскости Р любую прямую , проходящую через точку А и не лежащую в плоскости а. Проведем плоскость у через пересекающиеся прямые а и . Плоскость у пересечет плоскость а по прямой q. Прямая q не совпадает с прямой , так как q лежит в а не лежит в а. Обе эти прямые лежат в плоскости у, проходят через точку А и перпендикулярны прямой а так как и аналогично так как и . Но это противоречит известной теореме планиметрии, согласно которой в плоскости через каждую точку проходит лишь одна прямая, перпендикулярная данной прямой.

Итак, предположив, что через точку А проходят две плоскости, перпендикулярные прямой а, мы пришли к противоречию. Поэтому задача имеет единственное решение.

Задача 2. Через данную точку А, не лежащую на данной прямой а, провести плоскость, перпендикулярную этой прямой.

Через точку А проводим прямую b, перпендикулярную прямой а. Пусть В - точка пересечения а и b. Через точку В проводим еще прямую с, перпендикулярную прямой а (рис. 2.19). Плоскость, проходящая через обе проведенные прямые, будет перпендикулярна а по признаку перпендикулярности (теорема 2).

Как и в задаче 1, построенная плоскость единственная. Действительно, возьмем любую плоскость, проходящую через точку А перпендикулярно прямой а. Такая плоскость содержит прямую, перпендикулярную прямой а и проходящую через точку А. Но такая прямая только одна. Это прямая b, которая проходит через точку В. Значит, плоскость, проходящая через А и перпендикулярная прямой а, должна содержать точку В, а через точку В проходит лишь одна плоскость, перпендикулярная прямой а (задача 1). Итак, решив эти задачи на построение и доказав единственность их решений, мы доказали следующую важную теорему.

Теорема 3 (о плоскости, перпендикулярной прямой). Через каждую точку проходит плоскость, перпендикулярная данной прямой, и притом только одна.

Следствие (о плоскости перпендикуляров). Прямые, перпендикулярные данной прямой в данной ее точке, лежат в одной плоскости и покрывают ее.

Пусть а - данная прямая и А - какая-либо ее точка. Через нее проходит плоскость. По определению перпендикулярности прямой и плоскости она покрыта

крыта прямыми, перпендикулярными прямой а в точке А, т.е. через каждую точку плоскости а в ней проходит прямая, перпендикулярная прямой а.

Допустим, что через точку А проходит прямая , не лежащая в плоскости а. Проведем через нее и прямую а плоскость Р. Плоскость Р пересечет а по некоторой прямой с (рис. 2.20). И так как то Получается, что через точку А в плоскости Р проходят две прямые b и с, перпендикулярные прямой а. Это невозможно. Значит, прямых, перпендикулярных прямой а в точке А и не лежащих в плоскости а, нет. Все они лежат в этой плоскости.

Пример к следствию теоремы 3 дают спицы в колесе, перпендикулярные его оси: при вращении они зачерчивают плоскость (точнее, круг), принимая все положения, перпендикулярные оси вращения.

Теоремы 2 и 3 помогают дать простое решение следующей задачи.

Задача 3. Через точку данной плоскости провести прямую, перпендикулярную этой плоскости.

Пусть даны плоскость а и точка А в плоскости а. Проведем в плоскости а через точку А какую-либо прямую а. Через точку А проведем плоскость , перпендикулярную прямой а (задача 1). Плоскость пересечет плоскость а по некоторой прямой b (рис. 2.21). Проведем в плоскости Р через точку А прямую с, перпендикулярную прямой b. Так как (поскольку с лежит в плоскости

И ), то по теореме 2 . Единственность ее решения установлена в п. 2.1.

Замечание. О построениях в пространстве. Напомним, что в главе 1 мы изучаем "строительную геометрию". А в этом пункте мы решили три задачи на построение в пространстве. Что же понимают в стереометрии под терминами "построить”, "провести", "вписать" и т.п.? Сначала вспомним о построениях на плоскости. Указав, например, как строить окружность, описанную около треугольника, мы тем самым доказываем ее существование. Вообще, решая задачу на построение, мы доказываем теорему существования фигуры с заданными свойствами. Это решение сводится к составлению некоторого алгоритма построения искомой фигуры, т.е. к указанию последовательности выполнения простейших операций, приводящих к необходимому результату. Простейшие операции - это проведение отрезков, окружностей и нахождение точек их пересечения. Затем с помощью чертежных инструментов выполняется непосредственное построение фигуры на бумаге или на доске.

Итак, в планиметрии решение задачи на построение имеет как бы две стороны: теоретическую - алгоритм построения - и практическую - реализацию этого алгоритма, например, циркулем и линейкой.

У стереометрической задачи на построение остается лишь одна сторона - теоретическая, так как нет инструментов для построения в пространстве, аналогичных циркулю и линейке.

За основные построения в пространстве принимают те, которые обеспечиваются аксиомами и теоремами о существовании прямых и плоскостей. Это - проведение прямой через две точки, проведение плоскости (предложения п. 1.1 и аксиома 1 п. 1.4), а также построение прямой пересечения любых двух построенных плоскостей (аксиома 2 п. 1.4). Кроме того, мы, естественно, будем считать, что можно выполнять планиметрические построения в уже построенных плоскостях.

Решить задачу на построение в пространстве - это значит указать последовательность основных построений, в результате которых получается нужная фигура. Обычно явно указываются не все основные построения, а делаются ссылки на уже решенные задачи на построение, т.е. на уже доказанные предложения и теоремы о возможности таких построений.

Кроме построений - теорем существования в стереометрии, возможны еще два вида задач, связанных с построениями.

Во-первых, задачи на рисунке или на чертеже. Таковы задачи на сечения многогранников или других тел. Мы не строим на самом деле само сечение, а только изображаем его на

рисунке или чертеже, который у нас уже есть. Такие построения осуществляются как планиметрические с учетом аксиом и теорем стереометрии и правил изображений. Задачи такого типа постоянно решают в черчении и в конструкторской практике.

Во-вторых, задачи на построение на поверхностях тел. Задача: "Построить точки на поверхности куба, удаленные от данной его вершины на данное расстояние" - решается с помощью циркуля (как?). Задача: "Построить точки на поверхности шара, удаленные от данной точки на данное расстояние" - также решается с помощью циркуля (как?). Задачи такого типа решают не на уроках геометрии - их постоянно решает разметчик, разумеется, с точностью, которой позволяют добиться его инструменты. Но, решая такие задачи, он опирается на геометрию.

В рамках этой темы необходимо уметь:

  • 1. Задавать плоскость, перпендикулярную к прямой.
  • 2. Задавать прямую, перпендикулярную к плоскости.

При решении этих взаимосвязанных задач важно понимать, как должны быть направлены проекции перпендикуляра по отношению к проекциям плоскости. Для уяснения этого решим задачи А и Б.

Задача А

Условие. Через точку А, взятую на прямой гп, провести плоскость, перпендикулярную к этой прямой.

Решение. Известно, что плоскость перпендикулярна прямой, сели две прямые, расположенные в этой плоскости, перпендикулярны заданной прямой.

Поэтому в нашем случае через точку А достаточно провести две прямые, каждая из которых была бы перпендикулярна т. Тогда эти прямые в паре определят искомую плоскость.

Пусть одной из прямых, определяющих эту плоскость, станет горизонталь. Ее фронтальная проекция 1ъ пройдет горизонтально (рис. 4.7), а горизонтальная проекция h| - под прямым углом к m 1 (на основании теоремы о проекциях прямого угла).

Второй прямой, определяющей искомую плоскость, будет фронталь. Ес горизонтальная проекция f| пройдет горизонтально.

а фронтальная проекция f2 - иод прямым углом к mi (на основании той же теоремы).

Рис. 4.7

Таким образом, задача решена. Анализируя ее, мы можем заметить, что по отношению к построенной плоскости (f х h) заданная прямая m является перпендикуляром. Отсюда следует важный практический вывод:

горизонтальная проекция перпендикуляра к плоскости должна проходить под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция - под прямым углом к фронтальной проекции фронтали.

Задача Б

Условия. Опустить перпендикуляр из точки В на плоскость DEF (с определением его видимости но отношению к плоскости).

Рис. 4.8а - графические условия задачи

Рис. 4.86

Рис. 4.8в - определение основания и натуральной величины перпендикуляра

Решение. Вначале вычертим проекции DEF и В (рис. 4.8а).

Приступив к решению задачи, выделим в ней три

характерных этапа:

  • 1. Построение направлений для проекций перпендикуляра.
  • 2. Построение основания перпендикуляра (точки его пересечения с плоскостью).
  • 3. Определение натуральной величины перпендикуляра.

Выполним эти построения. Сначала наметим направление

проекций перпендикуляра. Для этого предварительно в плоскости DEF нужно провести горизонталь h и фронталь f, которые являются ориентирами для его проекций.

Теперь найдем основание перпендикуляра как точку пересечения полученной прямой с плоскостью DEF. Эта задача нам уже знакома (см. п. 3.3.4). В рассмотренном примере искомая точка К лежит за пределами треугольника, ограничивающего плоскость (рис. 4.8в). Она расположена на прямой 2-3, которая, по построению, принадлежит плоскости DEF. Значит, ей принадлежит и точка К. Если проекции перпендикуляра частично или полностью заслоняются проекциями треугольника DEF, то дополнительно необходимо определить видимость перпендикуляра но отношению к плоскости.

Натуральная величина перпендикуляра ВК может быть найдена любым из методов, рассмотренных ранее в и. 2.2. На рисунке 4.8в для этой цели использован метод прямоугольного треугольника.

Отметим, что данная задача зачастую формулируется как определение расстояния от точки В до плоскости треугольника DEF.

Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронтальна этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к АN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 , π 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонталъно- и фронталъно-проецирующих прямая перпендикулярна к плоскости . Но для профильно-проеци- рующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя

проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецйрующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость,

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. α (А"С"⊥ f" 0α , А"С"⊥h" 0α) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. α. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е", Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N"⊥A"D", M"N"⊥А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.


На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С", то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N"⊥В"С". Проекция A"N"||оси х, как это должно быть у горизонтали. Затем проведен через точку N"(N" - фронтальная проекция фронтального следа горизонтали AN) след f" 0α ⊥В"С", получена точка Х α и проведен след h" 0α ||A"N" (h" 0α ⊥В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"⊥В"С", A"N"⊥В"С"); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следую-щий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее γ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. γ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (γ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С", и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. γ. Для этого через прямую ВС проведена горизонтально-проецируюгцая плоскость β (на чертеже она задана только горизонтальным следом (β"). Пл. β пересекает пл. γ по прямой с проекциями 1"2" и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. γ, перпендикулярной к прямой ВС; следовательно, АК⊥ВС.

В § 15 было показано (рис. 92), как можно провести перпендикуляр из точки на прямую. Но там это было выполнено при помощи введения в систему π 1 , π 2 дополнительной плоскости и образования, таким образом, системы π 3 , π 1 , в которой пл. π 3 проводится параллельно заданной прямой. Рекомендуем сравнить построения, данные на рис. 92 и 191.

На рис. 192 изображены плоскость общего положения - α, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. π 1 в точке В".

Угол φ 1 между пл. α, и пл.π 1 и угол φ между прямой AM и пл. π 1 являются острыми углами прямоугольного треугольника В"AM", и, следовательно, φ 1 +φ=90°. Аналогично, если пл.α составляет с пл. π 2 угол σ 2 , а прямая AM, перпендикулярная к α, составляет с пл. π 2 угол σ, то σ 2 +σ=90°. Из этого, прежде всего, следует, что плоскость общего положения, которая должна составлять с пл.π 1 угол φ 1 , а с пл. π 2 угол σ 2 , может быть построена, лишь если 180° > φ 1 +σ 2 >90°.

Действительно, складывая почленно φ 1 + φ=90° и σ 2 +σ=90°, получим φ 1 +σ 2 +φ+σ=180°, т. е. φ 1 +σ 2 90°. Если взять φ 1 +σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять φ 1 +σ 2 =180°, то получится профильная плоскость, т.е. в обоих этих случаях плоскость не общего положения, а частного.

Вербальная форма Графическая форма
1. Известно, что для построения прямой, перпендикулярной плоскости, необходимо построить горизонталь и фронталь в плоскости. а) Заметим, что построение перпендикуляра упрощается, так как стороны плоскости Q(D АВС) являются прямыми уровня: АВ (А 1 В 1 ; А 2 В 2) – фронталь АС (А 1 С 1 ; А 2 С 2) – горизонталь. б) Возьмем на прямой l произвольную точку К
2. Через точку К, которая принадлежит прямой l, проводим прямую n ^ Q, т.е. n 1 ^ A 1 C 1 и n 2 ^ A 2 В 2 . Искомая плоскость будет определяться двумя пересекающимися прямыми, одна из которых задана – l , а другая – n является перпендикулярной к заданной плоскости: P(l n)^ Q (D ABC)

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия - Т.В. Хрусталева

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ
Рекомендовано Дальневосточным региональным учебно-методическим центром в качестве учебного пособия для студентов специальности 210700 “Автоматика, телемеханика и связь на жел

Геометрические образы
1. Плоскость проекций: p – произвольная; p1 – горизонтальная; p2 – фронтальная; p3 – профильная; S – центр проец

Обозначения теоретико-множественные
Сущность метода проецирования заключается в том, что проекция Аp некоторого геометрического обр

Проецирование центральное
Центральным называется проецирование, при котором все проецирующие лучи выходят из одной точки S, называемой центром проецирования. На рис. 1.3 дан пример центрального проецирования, где p – плоско

Проецирование параллельное
Параллельным называется проецирование, при котором все проецирующие лучи между собой параллельны. Параллельные проекции могут быть косоугольными (рис.1.7) и прямоугольными (рис. 1.8).

Свойства ортогональных проекций
1. Проекция точки есть точка (рис. 1.9). Рис. 1.9 2. Проекция прямой в общем

Обратимость чертежа. Метод Монжа
Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (име

Система двух взаимно перпендикулярных плоскостей
Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные

Система трех взаимно перпендикулярных плоскостей
На практике исследования и построения изображений система двух взаимно перпендикулярных плоскостей не всегда дает возможность однозначного решения. Так, например, если переместить точку А вдоль оси

Комплексный чертеж и наглядное изображение точки в I–IV октантах
Рассмотрим пример построения точек А, В, С, D в различных октантах (табл. 2.4). Таблица 2.4 Октант Наглядное изображение

Общие положения
Линия – это одномерный геометрический образ, имеющий длину; множество всех последовательных положений движущейся точки. По определению Эвклида: "Линия же – длина без ширины". Пол

Прямые уровня
Определение Наглядное изображение Комплексный чертеж Горизонталью называют всякую линию, параллельную горизонтальной

Проецирующие прямые
Определение Наглядное изображение Комплексный чертеж Горизонтально проецирующей прямой называют прямую, перпендикулярную

Построение третьей проекции отрезка по двум заданным
В нашем примере мы будем рассматривать построение прямой общего положения в первой четверти (табл. 3.3). Таблица 3.3 Вербальная форма

Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций
Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические – определение длины от

Определение натуральной величины отрезка прямой общего положения
Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника. Рассмотрим последовательность этого положения (табл.

Общие положения
Две прямые в пространстве могут иметь различное расположение: пересекаться (лежать в одной плоскости). Частный случай пересечения – под прямым углом; могут быть параллельны

Определение видимости прямых относительно плоскостей проекций
Для определения видимости прямых относительно плоскостей проекции используются конкурирующие точки. Рассмотрим комплексный чертеж скрещивающихся прямых а и b (рис. 4.1 и рис. 4.2). Определим, какая

Алгоритм построения прямых пересекающихся
Вербальная форма Графическая форма 1. Через точку К провести прямую h|| p1 и пересекающую прямую а

Плоскости проецирующие
Определение Наглядное изображение Комплексный чертеж Горизонтально-проецирующей плоскостью называют плоскость, перпендику

Плоскости уровня
Характеристика Наглядное изображение Эпюр Фронтальнаяплоскость – это плоскость, параллельная плоскости p2. Эта

Прямые особого положения в плоскости
Прямыми особого положения в плоскости являются горизонталь h, фронталь f и линии наибольшего наклона к плоскостям проекций. Рассмотрим графическое изображение этих линий (табл. 5.6). Та

Алгоритм построения фронтали
Вербальная форма Графическая форма Дана плоскость a (a|| b), следовательно, a1 || b1; a2

Алгоритм построения второй проекции точки К
Вербальная форма Графическая форма Плоскость a – задана плоской фигурой a (D АВС), K2 – фронтальная проекция точки K

Алгоритм построения плоскости, параллельной данной
Вербальная форма Графическая форма 1. Для решения задачи в данной плоскости Р(D АBC) берутся любые пересекающиеся прямые. Например, АВ

Плоскости пересекающиеся
Две плоскости пересекаются по прямой линии. Для построения линии их пересечения необходимо найти две точки, принадлежащие этой линии. Задача упрощается, если одна из пересекающихся плоскостей заним

Алгоритм построения прямой, параллельной плоскости
Вербальная форма Графическая форма 1. Построим в плоскости Р(D АВС) прямую А1, которая принадлежит плоскости Р

Алгоритм пересечения прямой линии с плоскостью общего положения
Вербальная форма Графическая форма 1. Чтобы построить точку пересечения прямой l с плоскостью

Алгоритм построения перпендикуляра к плоскости
Вербальная форма Графическая форма 1. Для того чтобы построить перпендикуляр к плоскости Р(D АВС) через точку D, необходимо сначала по

К главе 3
1. Построить проекции прямой АВ (рис. 3), если она: а) параллельна p1; б) параллельна p2; в) параллельна ОХ; г) перпендикулярна p1

К главе 5
В плоскости, заданной двумя параллельными прямыми, построить фронталь на расстоянии 15 мм от p1 (рис. 9):

К главе 6
1. Дана плоскость Р(а|| b) и фронтальная проекция m2 прямой m, проходящей через точку D. Построить горизонтальную проекцию прямой m1 так, чтобы прямая m была параллельна плоск

Тесты к главе 3
Выберите соответствие обозначения отрезка АВ его изображению (рис. 6): 1. АВ || p 1 2. АВ || p 2 3. АВ ^ p 1 4.

Тесты к главе 6
1. На каком из чертежей (рис. 12) плоскость S (D АВС) параллельна плоскости Р(m C n).

Рекомендуемый библиографический список
1. ГОСТ 2.001-70. Общие положения // В сб. Единая система конструкторской документации. Основные положения. – М.: Изд-во стандартов, 1984. – С. 3–5. 2. ГОСТ 2.104-68. Основные надписи // В