• 5. Методы измерения температуры воздуха и оценки температурных условий
  • 5.2. Изучение температурных условий
  • Результаты изучения температурных условий в учебной аудитории
  • 6. Гигиеническое значение, методы измерения и оценки влажности воздуха
  • 6.1. Гигиеническое значение и оценка влажности воздуха
  • Максимальное напряжение водяных паров при разных температурах воздуха,
  • Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
  • 6.2. Измерение влажности воздуха
  • Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
  • (При скорости движения воздуха 0,2 м/с)
  • 7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
  • 7.1. Гигиеническое значение движения воздуха
  • 7.2. Приборы для определения направления и скорости движения воздуха
  • Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
  • Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
  • Шкала скорости движения воздуха в баллах
  • 8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
  • 8.1. Гигиеническое значение теплового (инфракрасного) излучения
  • Соотношение прямой и рассеянной солнечной радиации, %
  • Пределы переносимости человеком тепловой радиации
  • 8.2. Приборы для измерения и методы оценки лучистой энергии
  • Относительная степень черноты некоторых материалов, в долях единицы
  • 9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
  • 9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
  • Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
  • Результирующей температур по основной шкале
  • Результирующей температур по нормальной шкале
  • 9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
  • Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
  • Ветрохолодовой индекс (вхи)
  • 10. Методы физиолого-гигиенической оценки теплового состояния организма человека
  • Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
  • Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
  • 11. Физиолого-гигиеническая оценка атмосферного давления
  • 11.1. Общие гигиенические аспекты значения атмосферного давления
  • Характеристика форм декомпрессионной болезни по тяжести заболевания
  • Зоны высоты над уровнем моря в зависимости от реакции организма человека
  • 11.2. Единицы измерения и приборы для измерения атмосферного давления
  • Единицы измерения атмосферного давления
  • Соотношение единиц измерения барометрического давления
  • Приборы для измерения атмосферного давления.
  • 12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
  • 12.1. Гигиеническое значение ультрафиолетовой радиации
  • 12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
  • Основные характеристики приборов серии «Аргус»
  • 13. Аэроионизация; ее гигиеническое значение и методы измерения
  • 14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
  • Режимы работы прибора ивтм -7
  • Требования к измерительным приборам
  • 15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
  • Характеристика отдельных категорий работ
  • Допустимые величины интенсивности теплового облучения поверхности тела
  • Критерии допустимого теплового состояния человека (верхняя граница)*
  • Критерии допустимого теплового состояния человека (нижняя граница)*
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
  • Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
  • Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
  • Гигиенические требования к теплозащитным показателям
  • (Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
  • Применительно к метеорологическим условиям различных климатических регионов
  • (Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
  • Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
  • Рекомендуемые величины интегрального показателя тепловой нагрузки среды
  • Классы условий труда по показателям микроклимата для рабочих помещений
  • Охлаждающим микроклиматом
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа-iIб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
  • Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па-Пб
  • Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
  • Характеристика классов погоды момента при положительной температуре воздуха
  • Характеристика классов погоды момента при отрицательной температуре воздуха
  • Физиолого-климатическая типизация погод теплого времени года
  • Журнал регистрации сведений о погодных условиях в______________
  • Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
  • Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
  • Уровни уф-а излучения (400-315 нм)
  • 2.2.4. Гигиена труда. Физические факторы
  • 2. Нормируемые показатели аэроионного состава воздуха
  • 3. Требования к проведению контроля аэроионного состава воздуха
  • 4. Требования к способам и средствам нормализации аэроионного состава воздуха
  • Термины и определения
  • Библиографические данные
  • Классификация условий труда по аэроионному составу воздуха
  • 16. Ситуационные задачи
  • 16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
  • Ультрафиолетового облучения с помощью биодозиметра
  • 16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
  • 17. Литература, нормативные и методические материалы
  • 17.1. Библиография
  • 17.2. Нормативные и методические документы
  • Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
  • Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
  • Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
  • Психрометрическая будка (будка Вильде, английская будка)
  • Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
  • Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
  • Нормальная шкала эффективных температур
  • Единицы измерения атмосферного давления

    Обозначение единицы

    Соотношение с единицей системы СИ –

    паскалем (Па) и другими

    Миллиметр ртутного столба

    (мм рт. ст.)

    1 мм. рт. ст. = 133,322 Па

    Миллиметр водного столба

    (мм вод. ст.)

    1 мм вод. ст. = 9,807 Па

    Атмосфера техническая (ат)

    1 ат = 9,807  10 4 Па

    Атмосфера физическая (атм)

    1 атм = 1,033 ат = 1,013  10 4 Па

    1 тор = 1 мм рт. ст.

    Миллибар (мб)

    1 мб = 0,7501 мм рт. ст. = 100 Па

    Таблица 24

    Соотношение единиц измерения барометрического давления

    мм рт. ст.

    мм вод. ст.

    Паскаль, Па

    Атмосфера нормальная, атм

    Миллиметр ртутного столба,

    мм рт. ст.

    Миллибар, мб

    Миллиметр водного столба, мм вод. ст.

    Из приведенных в таблицах 23 и 24 единиц измерения наибольшее распространение в России получили мм. рт. ст. имб . Для удобства пересчетов в необходимых случаях можно использовать следующее соотношение:

    760 мм рт. ст. = 1013мб = 101300Па (36)

    Более простой способ:

    Мб = мм. рт. ст.(37)

    Мм рт. ст. = мб(38)

    Приборы для измерения атмосферного давления.

    В гигиенических исследованиях применяются два типа барометров :

      жидкостные барометры ;

      металлические барометры – анероидные .

    Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.

    Наибольшее распространение получили ртутные барометры , так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.

    Используются три системы ртутных барометров:

      чашечные ;

      сифонные ;

      сифонно-чашечные .

    Указанные системы ртутных барометров схематически представлены на рисунке 35.

    Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление.

    Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб.

    Рис. 35. Чашечный барометр (слева)

    А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью

    Ртутный сифонный барометр (справа)

    А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке

    В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.

    Пример. Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.

    Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0С) и барометрического давления (760 мм рт. ст.).

    В чашечных экспедиционных барометрах перед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.

    Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05мм рт. ст . При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.

    Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0С.

    На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.

    Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.

    Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.

    Рис. 36. Барометр-анероид

    Рис. 37. Барограф

    Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.

    Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.

    Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.

    Барограф (барометр-самописец). Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху. При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан. Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.

    Чернила для записи барограмм можно приготовить по следующей прописи:

    Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0 С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.

    Приведение объема воздуха к нормальным условиям производится по формуле:

    Пример . Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0С и 760 мм рт. ст.

    Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:

    Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л , а не 200л .

    Для упрощения расчетов объема воздуха при нормальных условиях можно пользоваться поправочными коэффициентами на температуру и давление (таблица 25) или рассчитанными готовыми величинами формулы 39 и(таблица 26).

    Таблица 25

    Поправочные коэффициенты на температуру и давление для приведения объема воздуха к нормальным условиям

    (температура 0 о

    Барометрическое давление, мм рт. ст.

    Окончание таблицы 25

    Барометрическое давление, мм рт. ст.

    Таблица 26

    Коэффициенты для приведения объемов воздуха к нормальным условиям

    (температура 0 о С, барометрическое давление 760 мм рт. ст.)

    мм рт. ст.

    мм рт. ст.

    Метеозависимые люди чаще других интересуются, какое атмосферное давление считается нормальным для человека. Вес воздушной массы настолько велик, что тело человека выдерживает нагрузку свыше 15-ти тонн. Не чувствовать такую нагрузку помогает компенсация, которая осуществляется давлением внутренних органов. Когда вследствие неполадок в организме система адаптации не справляется, метеозависимый человек становится рабом погодного катаклизма. Интенсивность симптоматики зависит от того, насколько низким или высоким будет артериальное давление.

    О чем говорит барометр?

    Известно, что сила давления воздушной оболочки Земли на 1 см² поверхности, уравновешивается столбиком ртути высотой 760 мм. Этот показатель принят за норму. Когда барометр дает результат выше 760 мм ртутного столба, говорят о повышенном атмосферном давлении, когда меньше 760 мм рт. ст. - о пониженном. Учитывая тот факт, что поверхность Земли нагревается неравномерно и неоднороден рельеф (горы, низины) показания барометра будут отличаться.

    Укажите своё давление

    Двигайте ползунки

    Благоприятная погода

    Каждый человек уникален. Также уникальной будет норма атмосферного давления для него. Кто-то не заметит перелета в другую климатическую зону, а кто-то почувствует приближение циклона, что проявится головной болью и «выкручиванием» коленей. Другие забрались повыше в горы и чувствуют себя замечательно, не обращая внимание на разреженный воздух. Совокупность природных и погодных условий, при которых можно чувствовать себя комфортно и есть нормальное атмосферное давление для человека. Чем старше становиться человек, тем сильнее он чувствует перемены климата.

    Таблица оптимальных погодных условий

    Каждый испытывает на себе влияние не только давления атмосферы, но и температуры воздуха, влажности как на улице, так и в доме. Оптимальные показатели и возможные последствия отклонений от нормы поданы в таблице:

    Параметр Норма Отклонение
    Атмосферное давление 750-760 мм рт. ст. выше 760 мм рт. ст. меньше 750 мм рт. ст.
    Влияние Комфортное для самочувствия человека.
    • головная боль,
    • слабость,
    • снижение иммунитета.
    • учащается пульс,
    • затруднено дыхание,
    • повышено содержание лейкоцитов в крови.
    Температура воздуха 18-20° С Выше 25 °C Менее 16° С
    Воздействие Подходит для работы, отдыха, сна. Превышение температуры воздуха даже на 5° С от нормы приводит к значительному снижению работоспособности, переутомлению.
    Влажность 50-55% Менее 45% Более 60%
    Эффект Комфортная для самочувствия. Слизистая поверхность носоглотки пересыхает, ее способность противостоять вирусам и бактериям снижается. Уменьшается сопротивляемость организма холоду.

    Что такое метеозависимость?

    Метеозависимость - это неспособность организма человека приспособится к меняющимся погодным условиям.

    К метеозависимости больше предрасположены люди, страдающие вегетососудистой дистонией, гипертонической болезнью, атеросклерозом, эндокринными заболеваниями. Барорецепторы наших органов реагируют на приближение циклона или антициклона, снижая или повышая АД, делая зависимыми от погодных условий.

    Влияние высокого атмосферного давления на артериальное

    Организм обладает свйством выравнивать атмосферное давление с артерильным.

    Рост атмосферного давления принуждает давление крови выравнивать дисбаланс. Артериальное давление снижается, стенки сосудов расширяются. Последствия гипотонии:

    • беспокоит плохое самочувствие и общая слабость;
    • мучают головные боли;
    • ощущается неприятная «заложенность» в ушах;
    • обостряются хронические заболевания.

    Химический состав крови в этих условиях покажет снижение уровня лейкоцитов, а это значит, что иммунной системе будет труднее справиться с инфекцией или вирусом. Лучшее решение в такой ситуации:

    • не перенапрягаться и хорошо отдохнуть;
    • ограничить прием спиртных напитков в это время;
    • обогатить рацион продуктами, содержащими калий (сухофрукты) и магний (злаковые каши, ржаной хлеб).

    Влияние пониженного атмосферного давления на человека

    Падение атмосферного давления при изменении погоды, приводит к появлению симптомов, которые аналогичны горному восхождению. Недостаточное количество кислорода неспособно насытить органы тела человека. Появляется одышка, сердце стучит чаще боль давит в висках и обручем сжимает голову. На это остро реагируют люди с повышенным внутричерепным давлением, травмами головы, сердечно-сосудистыми заболеваниями.

    Под атмосферным давлением подразумевается давление толщи атмосферного воздуха на поверхность Земли и предметы, расположенные на ней. Степень давления соответствует весу атмосферного воздуха с основанием определённой площади и конфигурации.

    Основной единицей измерения атмосферного давления в системе СИ выступает Паскаль (Па). Помимо Паскалей также используются другие единицы измерения:

    • Бар (1 Ба=100000 Па);
    • миллиметр ртутного столба (1 мм рт. ст.= 133,3 Па);
    • килограмм силы на квадратный сантиметр (1 кгс/см 2 =98066 Па);
    • техническая атмосфера (1 ат=98066 Па).

    Приведённые выше единицы измерения используются в технических целях, за исключением миллиметров ртутного столба, который служит для прогнозов погоды.

    В роли основного прибора для измерения атмосферного давления выступает барометр. Устройства делятся на два типа - жидкостные и механические. Конструкция первых основана на колб, заполненной ртутью и погружённой открытым концом в сосуд с водой. Вода в сосуде передаёт давления столба атмосферного воздуха ртути. Его высота и выступает в роли показателя давления.

    Механические барометры более компактны. Принцип их работы заключен в деформации металлической пластины под действием атмосферного давления. Деформирующаяся пластина давит на пружину, а та, в свою очередь, приводит в движение стрелку прибора.

    Влияние атмосферного давления на погоду

    Атмосферное давление и его влияние на состояние погоды разнится в зависимости от места и времени. Оно меняется в зависимости от высоты над уровнем моря. Более того, существуют динамические изменения, связанные с движением областей высокого (антициклоны) и низкого давления (циклоны).

    Изменения в погоде, связанные с атмосферным давлением, возникают из-за движения воздушных масс между областями с разным давлением. Перемещение воздушных масс образуют ветер, скорость которого зависит от разницы давлений в локальных областях, их масштабов и удаления друг от друга. Кроме того, движения воздушных масс приводят к изменению температуры.

    Стандартное атмосферное давление равняется 101325 Па, 760 мм рт. ст. или 1,01325 бар. Однако человек может спокойно переносить широкий спектр давления. К примеру, в городе Мехико, столице Мексике с населением в почти 9 млн. человек, средний показатель атмосферного давления составляет 570 мм рт. ст.

    Таким образом, величина стандартного давления определена точно. А комфортное давление имеет значительный диапазон. Эта величина достаточно индивидуальна и полностью зависит от условий, в которых родился и проживал конкретный человек. Так, резкое перемещение из зоны с относительно высоким давлением в область более низкого может отразиться на работе кровеносной системы. Однако при длительной акклиматизации негативное влияние сходит на нет.

    Повышенное и пониженное атмосферное давление

    В зонах высокого давления погода носит спокойный характер, небо безоблачно, а ветер умеренный. Высокое атмосферное давление летом приводит к жаре и засухам. В зонах низкого давления погода носит преимущественно облачный характер с ветром и осадками. Благодаря таким зонам летом настаёт прохладная облачная погода с дождём, а зимой случаются снегопады. Высокая разность давления в двух областях выступает одним из факторов, приводящих к образованию ураганов и штормовых ветров.

    Атмосферное давление - одна из важнейших климатических характеристик, оказывающих влияние на и человека. Оно способствует формированию циклонов и антициклонов, провоцирует развитие сердечно-сосудистых заболеваний у людей. Доказательства, что воздух имеет вес, были получены еще в 17 веке, с тех пор процесс изучения его колебаний является одним из центральных для синоптиков.

    Что такое атмосфера

    Слово «атмосфера» имеет греческое происхождение, дословно оно переводится как «пар» и «шар». Это газовая оболочка вокруг планеты, которая вращается вместе с ней и образует единое целое космическое тело. Она простирается от земной коры, проникая в гидросферу, и заканчивается экзосферой, постепенно перетекая в межпланетное пространство.

    Атмосфера планеты - это важнейший ее элемент, обеспечивающий возможность жизни на Земле. В ней содержится необходимый человеку кислород, от нее зависят показатели погоды. Границы атмосферы весьма условны. Принято считать, что они начинаются на расстоянии около 1000 километров от поверхности земли и затем на расстоянии еще 300 километров плавно переходят в межпланетное пространство. По теориям, которых придерживается NASA, эта газовая оболочка заканчивается на высоте около 100 километров.

    Она возникла в результате извержения вулканов и испарения веществ в космических телах, падавших на планету. Сегодня состоит из азота, кислорода, аргона и других газов.

    История открытия атмосферного давления

    До 17 века человечество не задумывалось о том, имеет ли воздух массу. Не было и никаких представлений о том, что такое атмосферное давление. Однако, когда герцог Тосканский решил оборудовать знаменитые флорентийские сады фонтанами, его проект с треском провалился. Высота водяного столба не превышала 10 метров, что противоречило всем представлениям о закономерностях природы в то время. Именно здесь берет начало история открытия атмосферного давления.

    Изучением этого феномена занялся ученик Галилея, итальянский физик и математик Эванджелиста Торричелли. С помощью опытов на более тяжелом элементе, ртути, спустя несколько лет ему удалось доказать наличие веса у воздуха. Он впервые создал вакуум в лаборатории и разработал первый барометр. Торричелли представлял стеклянную трубку, заполненную ртутью, в которой под воздействием давления оставалось такое количество вещества, которое уравнивало бы давление атмосферы. Для ртути высота столба равнялась 760 мм. Для воды - 10,3 метра, это именно та высота, на которую поднялись фонтаны в садах Флоренции. Именно он открыл для человечества, что такое атмосферное давление и как оно влияет на жизнь человека. в трубке было названо в его честь «торричеллиевой пустотой».

    Почему и вследствие чего создается атмосферное давление

    Один из ключевых инструментов метеорологии - изучение движения и перемещения воздушных масс. Благодаря этому можно получить представление о том, вследствие чего создается атмосферное давление. После того как было доказано, что воздух имеет вес, стало ясно, что на него, как и на любое другое тело на планете, действует сила притяжения. Именно этим обуславливается возникновение давления, когда под влиянием гравитации находится атмосфера. Атмосферное давление может колебаться из-за различий массы воздуха на разных участках.

    Там, где воздуха становится больше, оно более высокое. В разреженном пространстве наблюдается снижение атмосферного давления. Причина изменения кроется в его температуре. Он нагревается не от лучей Солнца, а от поверхности Земли. Нагреваясь, воздух становится легче и поднимается вверх, в то время как охлажденные воздушные массы опускаются вниз, создавая постоянное, непрерывное движение Каждый из этих потоков имеет разное атмосферное давление, что провоцирует появление ветров на поверхности нашей планеты.

    Влияние на погоду

    Атмосферное давление - один из ключевых терминов в метеорологии. Погода на Земле формируется из-за воздействия циклонов и антициклонов, которые образуются под воздействием перепадов давления в газовой оболочке планеты. Для антициклонов характерны высокие показатели (до 800 мм ртутного столба и выше) и низкая скорость движения, в то время как циклоны - это области с более низкими показателями и высокой скоростью. Смерчи, ураганы, торнадо также формируются из-за резких перепадов атмосферного давления - внутри смерча оно стремительно падает, достигая 560 мм ртутного столба.

    Движение воздуха приводит к изменению погодных условий. Ветры, возникающие между областями с разными уровнями давления, перегоняют циклоны и антициклоны, вследствие чего создается атмосферное давление, формирующее те или иные погодные условия. Эти движения редко имеют систематический характер, и их очень трудно предугадать. В зонах, где повышенное и пониженное атмосферное давление сталкиваются, происходит изменение климатических условий.

    Стандартные показатели

    Средним показателем в идеальных условиях считается уровень 760 мм ртутного столба. Уровень давления изменяется с высотой: на низинах или территориях, расположенных ниже уровня моря, давление будет более высоким, на высоте, где воздух разреженный, напротив, его показатели снижаются на 1 мм ртутного столба с каждым километром.

    Пониженное атмосферное давление

    Оно понижается с увеличением высоты из-за удаления от поверхности Земли. В первом случае этот процесс объясняется снижением воздействия гравитационных сил.

    Нагреваясь от Земли, газы, из которых состоит воздух, расширяются, их масса становится легче, и они поднимаются в более высокие Движение происходит до тех пор, пока соседние воздушные массы не окажутся менее плотными, тогда воздух распространяется по сторонам, а давление выравнивается.

    Традиционными территориями с более низким атмосферным давлением считаются тропики. На экваториальных территориях всегда наблюдается пониженное давление. Однако зоны с повышенным и пониженным показателем распространены над Землей неравномерно: в одной географической широте могут присутствовать участки с разными уровнями.

    Повышенное атмосферное давление

    Самый высокий уровень на Земле наблюдается на Южном и Северном полюсах. Это объясняется тем, что воздух над холодной поверхностью становится холодным и плотным, его масса увеличивается, следовательно, его сильнее притягивает к поверхности гравитацией. Он опускается, а пространство над ним заполняется более теплыми воздушными массами, вследствие чего создается атмосферное давление с повышенным уровнем.

    Влияние на человека

    Нормальные показатели, характерные для местности проживания человека, не должны оказывать никакого воздействия на его самочувствие. Вместе с тем атмосферное давление и жизнь на Земле неразрывно связаны. Его изменение - повышение или понижение - может спровоцировать развитие сердечно-сосудистых заболеваний у людей с повышенным артериальным давлением. Человек может испытывать боли в области сердца, приступы беспричинной головной боли, снижается работоспособность.

    Для людей, страдающих заболеваниями дыхательных путей, опасными могут стать антициклоны, приносящие повышенное давление. Воздух опускается и становится более плотным, увеличивается концентрация вредных веществ.

    Во время колебаний атмосферного давления у людей снижается иммунитет, уровень лейкоцитов в крови, поэтому не рекомендуется в такие дни нагружать организм физически или интеллектуально.

    ПЕНАТЫ

    ПЕНАТЫ

    (лат. от penus - съестные припасы). Римские домашние боги-хранители как отдельных семейств, так и государства.

    Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н. , 1910 .

    ПЕНАТЫ

    лат. Penates , от penitus , внутри. Римские домашние боги-покровители; им приписывалось благотворное влияние на внутреннюю жизнь и хозяйство.

    Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней.- Михельсон А.Д. , 1865 .

    ПЕНАТЫ

    у древних римл. семейные боги, представляли души умерших предков; им приносились жертвы, они почитались хранителями семей и хозяйства. Теперь употребл. в переносн. смысле; возвратиться к родным пенатам - образное выражение, значить - вернуться домой.

    Полный словарь иностранных слов, вошедших в употребление в русском языке.- Попов М. , 1907 .

    ЛАРЫ И ПЕНАТЫ

    у римлян души умерш. предков, чтимые как боги-покровители своих домов, семейств и хозяйства. Изображения их хранились кажд. семьей в особ. божнице близ очага, где им приносились жертвы.

    Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф. , 1907 .

    Пена́ты

    (лат. penates)

    1) по верованиям древних римлян - боги-хранители; почитались п., опекавшие благополучие всего государства, а также охранители семьи и домашнего очага;

    2) родной дом, домашний очаг.

    Новый словарь иностранных слов.- by EdwART, , 2009 .

    Пенаты

    [лат. Penates ] – y древних римлян – боги, покровители домашнего очага; * родные пенаты – родной дом, домашний очаг

    Большой словарь иностранных слов.- Издательство «ИДДК» , 2007 .

    Пенаты

    ов, ед. неупотр. , м. (лат. Penates).
    1. одуш. , с прописной буквы. В древнеримской мифологии: боги-хранители, опекавшие благополучие семьи и домашнего очага, всего государства.
    2. перен. , устар. и шутл. Родной дом, домашний очаг. Вернуться к своим пенатам .

    Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык , 1998 .


    Синонимы :

    Смотреть что такое "ПЕНАТЫ" в других словарях:

      - (Penates). Древнелатинские божества, покровители дома и государства. Их изображения помещались в той части дома, которая считалась средоточием семьи, близ очага, в котором постоянно горел огонь. К Пенатам относили все божества,… … Энциклопедия мифологии

      Из древнеримской мифологии. Пенаты боги, которые наряду с другими божествами (ларами) являются покровителями домашнего очага, дома. Своим пенатам возвращенный, Владимир Ленский посетил Соседа памятник смиренный. (А.С. Пушкин. Евгений Онегин, 2,… … Словарь крылатых слов и выражений

      Дух, покровитель, пепелище, дом, родной кров, семейный очаг, родное пепелище, родной очаг, домашний очаг, хранитель, очаг, кров Словарь русских синонимов. пенаты см. дом 2 Словарь синонимов русского языка. Практический справочник. М.: Русский… … Словарь синонимов

      пенаты - Пенаты. Фрагмент рельефа Алтаря мира: Эней приносит жертвы в святилище пенатов. 13 9 до н.э. Рим. Пенаты. Фрагмент рельефа Алтаря мира: Эней приносит жертвы в святилище пенатов. 13 9 до н.э. Рим. пенаты в мифах древних римлян боги хранители,… … Энциклопедический словарь «Всемирная история»

      ПЕНАТЫ, пенатов, ед. нет (книжн. поэт. устар.). Родной дом, домашний очаг, символизируемый в образе древнеримских богов покровителей домашнего очага. «Отечески пенаты, о пестуны мои!» Батюшков. «К диффаматору ворвались в квартиру, и он, в виду… … Толковый словарь Ушакова

      Пенаты - Пенаты. Фрагмент рельефа Алтаря мира: Эней приносит жертвы в святилище пенатов. 13 9 до н.э. Рим. ПЕНАТЫ, в римской мифологии боги хранители, покровители домашнего очага, семьи, затем всего римского народа. В переносном смысле домашний очаг,… … Иллюстрированный энциклопедический словарь

      В мифах древних римлян боги хранители, покровители домашнего очага, семьи, дома, запасов продовольствия. Как и лары, с которыми пенатов иногда отождествляли, они были символом родного дома. Пенаты римского народа считались одной из главных… … Исторический словарь

      Домашніе боги. Ср. Къ диффаматору ворвались въ квартиру, и онъ, въ виду домашнихъ пенатовъ, подвергнутъ былъ исправительному наказанію... Салтыковъ. Мелочи жизни. Читатель. 3. Ср. Я оживалъ, когда одѣтъ халатомъ, Мирился вновь съ покинутымъ… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

      У римлян боги хранители, покровители домашнего очага, семьи, затем всего римского народа. В переносном смысле домашний очаг, родной дом (вернуться к своим пенатам) …

      Музей усадьба художника И. Е. Репина в пос. Репино (б. Куоккала), близ Санкт Петербурга. В Пенатах, где Репин жил в 1899 1930, дом, парк с могилой художника, парковые постройки. Музей открыт в 1940 (сгорел в 1944), восстановлен и вновь открыт в… … Большой Энциклопедический словарь

    Книги

    • Пенаты. Музей-усадьба И. Е. Репина , Е. Г. Левенфиш. "Пенаты" - первый музей, связанный с жизнью Репина, национальный памятник нашего народа - подобно Пушкинскому заповеднику, Ясной Поляне Л. Н. Толстого, домам-музеям А. П. Чехова в Ялте и П.…