У растений выделяют два пути окисления дыхательного субстрата: гликолиз и пентозофосфатный путь.

Гликолиз – это анаэробный процесс, происходящий в цитоплазме. С биологической оценки гликолиз весьма примитивный процесс, возникший до появления кислорода в атмосфере Земли и формирования клеточных органелл.

В сложной цепи гликолитического распада углеводов можно выделить два звена (9 реакций):

В первом звене – потребляется энергия АТФ; во втором – происходит разрыв шестиуглеродных соединений (фруктоза-1.6 дифосфат) с образованием триоз; в третьем, происходит запасание (выделение) энергии. Гидролизу подвергается не свободная молекула гликолиза, а активированная за счет АТФ. Такая активация именуется фосфорилированием.

В результате фосфорилирования образуется глюкозо-6-фосфат. Дальнейшее активирование гексозы достигается путем превращения глюкозо-6 фосфата во фруктозо-6 фосфат. На следующем этапе происходит присоединение к фруктозо-6 фосфату еще одного остатка фосфорной кислоты. Донором фосфорной кислоты и энергии необходимой для образования эфира служит молекула АТФ. Реакции переноса катализируются ферментом фосфогексокеназой. Результатом этой реакции является образование фруктозо-1.6-дифосфат.

Во втором звене: образовавшаяся молекула фруктозо-1.6-дифосфата разрывается на 3-фосфоглицериновый альдегид и *. Реакция разрыва катализируется ферментом альдолазой.

Дальнейшее участие в процессах гликолитического распада принимают только фосфоглицериновый альдегид. Фосфодиоксиацетон полностью преобразуется в фосфоглицериновый альдегид. Фосфоглицериновый альдегид окисляется с образованием 1.3дифосфоглицериновой кислоты.

В третьем звене: образовавшаяся 1.3дифосфоглицериновая кислота вступает в ферментативную реакцию с АДФ. В результате одна из её фосфорных групп переносится на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты.

Образование АТФ в цитоплазме в ходе ферментативных реакций называется субстратным фосфорилированием. 3ФГК превращается с помощью фермента * в 2ФГК. 2ФГК с помощью фермента энолазы превращается в 2 фосфоэнолпировиноградную кислоту.

При отнятии фосфорного остатка от ФСПВК образуется енолПВК, который в силу своей неустойчивости спонтанно превращается в кетокислоту ПВК.

Образование ПВК подвергается дальнейшему расщеплению как анаэробному так и аэробному в цикле ди- и трикарбоновых кислот. Анаэробное расщепление, т.е. без участия О 2 , ПВК может происходить по типу спиртового брожения или по типу молочнокислого брожения. При спиртовом брожении образуется этиловый спирт и СО 2 . Для мясистых сочных плодов спиртовое брожение является нормальным физиологическим процессом. Для целого растения или же для коневой системы длительное пребывание в условиях недостаточной аэрации, спиртовое брожение оказывает вредное действие, приводя к гибели.


Почему? Потому, что брожение сопровождается выделением небольшого количества энергии, которой недостаточно, чтобы длительно поддерживать жизнь, а накопление спирта приводит к отравлению организма. Анаэробное дыхание по типу брожения проявляется в условиях затопления.

В аэробных условиях ПВК в митохондриях окисляется полностью до СО 2 и Н 2 О. Это окисление как установлено английским биохимиком Кребсом, проходит последовательно ступенчато с образованием ди- и трикарбоновых кислот. Цикл Кребса можно разделить на три части.

В первой части происходит окисление ПВК до уксксной кислоты с образованием Ацетил КоА и ыделением СО 2 .

Вторая часть цикла начинается с реакции между ЩУК и Ацетил КоА, которая приводит к синтезу лимонной кислоты. Лимонная кислота в дальнейшем через ряд промежуточных соединений (изолимонную) превращается в щавелево-янтарную. Щавелево-янтарная подвергается декарбоксилированию в результате выделяется СО 2 и образуется Х-кетоглутаровая кислота. Х-кетоглутаровая вновь декарбоксилируется – выделяется СО 2 и образуется янтарная кислота. В этой части цикла уксусная кислота окисляется полностью (по выделению СО2) и на этом заканчивается окисление ПВК.

Третья часть цикла представляет собой взаимное превращение двуосновных кислот с 4 атомами углерода - янтарная → фумаровая → яблочная → и заканчивается регенерацией ЩУК.

Непосредственно в цикле Кребса АТФ не синтезируется, исключая субстратное фосфорилирование Х-кетоглутаровой кислоты, но в цикле возникают пять молекул восстановленных нуклеотидов:

1. при лкислительном декарбоксилировании ПВК;

2. при дегидрировании изолимонной кислоты;

3. при окислении кетоглутаровой кислоты;

4. при окислении янтарной кислоты;

5. при окислении яблочной кислоты.

Каждая пара водородных атомов (Н + , е -) после отщепления проходит путь от субстрата к кислороду через ряд переносчиков, локализованных во внутренней мембране митохондрий. С переносом электронов по ЭТЦ сопряж6ен и синтез АТФ. Процесс образования АТФ, сопряженный с переносом электронов по ЭТЦ митохондрий получил название окислительного фосфорилирования. В конце цепи электроны захватываются кислородом и объединяются с протонами (ионом воздуха) с образованием молекулы воды.

Каков энергетический выход при окислении глюкозы? В процессе дыхания при функционировании гликолиза (субстратное фосфорилирование: 8 молекул АТФ) и цикла Кребса (окислительное фосфорилирование дает 30 молекул АТФ) образуется 38 молекул АТФ. Эффективность использования энергии через гликолиз и цикл Кребса составляет КПД=1596/2721*100%=58,6%.

В клетках растений наряду с гликолизом и циклом Кребса существует и другой путь окисления углеводов – пентозофосфатный. Окисление глюкозы в этом цикле связано с отщеплением первого (альдегидного) атома углерода в виде СО 2 . Исходным продуктом в пентозофосфатном цикле является глюкозо-6фосфат, который далее окисляется в 6-фосфоглюконовую кислоту.

В пентозофосфатном цикле АТФ используется для образования исходного продукта: для фосфорилирования глюкозо-6фосфата. Все реакции пентозофосфатного пути протекают в растворимой части цитоплазмы клеток, а также в протопластидах и хлоропластах. Ни в одной реакции этого цикла АТФ не образуется, но этот цикл является поставщиком водорода для ЭТЦ дыхания. Донором водорода для ЭТЦ дыхание служит НАДН. Энергетический выход ПФП составляет 36 молекул АТФ. Основное назначение ПФП состоит в участии не столько в энергетическом, сколько в пластическом обмене. Пентозофосфатный путь имеет большое значение как источник образования углеводов с различным числом углеродных атомов в цепи – от С 3 до С 7 . ПФП служит основным внехлоропластным и внемитохондриальным источником НАДФН, который необходим для синтеза жирных кислот.

Биологическая роль пентоз, необходимых для синтеза нуклеотидов, т.е. для синтеза рибозы и дезоксирибозы. Сдвиг в сторону пентозофосфатного пути происходит в тех случаях, когда клетке требуется большие количества пятиуглеродных сахаров и когда в качестве источника энергии для синтеза используется не НАДН, а НАДФН.

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом).

В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент (ДК) - это объемное или молярное отношение С02, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени 02. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то процесс идет согласно уравнению С6Н1206 +602 -> 6С02 + 6Н20. В этом случае ДК равен единице: 6С02/602 = 1. Однако если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше единицы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэффициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке углеводов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержатся жиры или белки. В этом случае дыхательный коэффициент становится меньше единицы. При использовании в качестве дыхательного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

32. Анаэробное дыхание растений (гликолиз)

Начальный этап анаэробного распада углеводов заключается в образовании ряда фосфорных эфиров сахаров (гексоз). Гликолиз происходит в цитоплазме.

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты.

На первом этапе молекула глюкозы под действием фермента гексокиназы принимает остаток фосфорной кислоты от АТФ, которая превращается в АДФ, и в результате образуется глюкопиранозо-6-фосфат. Последний под действием фермента фосфогексоизомеразы (оксоизомеразы) превращается в фруктофуранозо-6-фосфат. На дальнейшем этапе гликолиза фруктофуранозо-6-фосфата происходит присоединение к нему еще одного остатка фосфорной кислоты. Источником энергии для образования этого эфира является также молекула АТФ. Эту реакцию катализирует фосфогексокиназа, активируемая ионами магния. В результате образуется фруктофуранозо-1,6-дифосфат и новая молекула аденозиндифосфата.

Следующий этап гликолиза заключается в окислении 3-фосфоглицеринового альдегида специфической дегидрогеназой и фосфорилировании глицериновой кислоты с использованием минеральной фосфорной кислоты. Образовавшаяся в результате этой реакции 1,3-дифосфоглицериновая кислота передает при участии фермента фосфоферазы один остаток фосфорной кислоты молекуле АДФ, которая превращается в АТФ, при этом образуется 3-фосфоглицериновая кислота. Последняя под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту, которая под влиянием фермента енолазы превращается в фосфоенолпировиноградную кислоту и наконец в пировиноградную кислоту.

Образованием пировиноградной кислоты из фосфоенолпирувата заканчивается гликолитическое расщепление гексозы по типу спиртового брожения.

Цикл Кребса

Вторая фаза дыхания - аэробная - локализована в митохондриях и требует присутствия кислорода. В аэробную фазу дыхания вступает пировиноградная кислота.

Процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления - электронтранспортная цепь (ЭТЦ) требует обязательного присутствия 0 2 .

Первые две стадии происходят в матриксе митохондрий, электронтранспортная цепь локализована на внутренней мембране митохондрий.

Первая стадия - окислительное декарбоксилирование пировиноградной кислоты. Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой пируватдекарбоксилазой. Пируватдекарбоксилаза включает в себя три фермента и пять коферментов (тиаминпирофосфат, липоевая кислота, коэнзим А - KoA-SH, ФАД и НАД). В результате этого процесса образуется активный ацетат - ацетилкоэнзим А (ацетил-КоА), восстановленный НАД (НАДН + Н+), и выделяется углекислый газ (первая молекула). Восстановленный НАД поступает в цепь переноса электронов, а ацетил-КоА вступает в цикл трикарбоновых кислот.

Вторая стадия - цикл трикарбоновых кислот (цикл Кребса). В 1935 г. венгерский ученый А. Сент-Дьердьи установил, что добавление небольших количеств органических кислот (фумаровой, яблочной или янтарной) усиливает поглощение кислорода измельченными тканями. Продолжая эти исследования, Г. Кребс пришел к выводу, что главным путем окисления углеводов являются циклические реакции, в которых происходит постепенное преобразование ряда органических кислот. Эти преобразования и были названы циклом трикарбоновых кислот или циклом Кребса. Сам исследователь за эти работы в 1953 г. был удостоен Нобелевской премии.

Суть цикла в декарбоксилировании пировиноградной кислоты.

В цикл вступает активный ацетат, или ацетил-КоА. Сущность реакций, входящих в цикл, состоит в том, что ацетил-КоА конденсируется с щавелевоуксусной кислотой (ЩУК). Далее превращение идет через ряд ди- и трикарбоновых органических кислот. В результате ЩУК регенерирует в прежнем виде. В процессе цикла присоединяются три молекулы Н 2 0, выделяются две молекулы С0 2 и четыре пары водорода, которые восстанавливают соответствующие коферменты (ФАД и НАД).

Ацетил-КоА, конденсируясь с ЩУК, дает лимонную кислоту, при этом КоА выделяется в прежнем виде. Этот процесс катализируется ферментом цитратсинтазой. Лимонная кислота превращается в изолимонную. На следующем этапе происходит окисление изолимонной кислоты, реакция катализируется ферментом изоцитратдегидрогеназой. При этом протоны и электроны переносятся на НАД (образуется НАДН + Н+). Для протекания этой реакции требуются ионы магния или марганца. Одновременно происходит процесс декарбоксилирования. За счет одного из атомов углерода, вступившего в цикл Кребса, первая молекула С0 2 вьделяется. Образовавшаяся а-кетоглутаровая кислота подвергается окислительному декарбоксилированию. Этот процесс также катализируется мультиферментным комплексом кетоглутаратдегидрогеназой. В результате за счет второго атома углерода, вступившего в цикл, выделяется вторая молекула С0 2 . Одновременно происходит восстановление еще одной молекулы НАД до НАДН и образуется сукцинил-КоА.

На следующем этапе сукцинил-КоА расщепляется на янтарную кислоту (сукцинат) и HS-КоА. Выделяющаяся при этом энергия накапливается в макроэргической фосфатной связи АТФ. Образовавшаяся янтарная кислота окисляется до фумаровой кислоты. Реакция катализируется ферментом сукцинатдегидрогеназой. Одновременно выделяется третья пара водородов, образуя ФАД-Н 2 .

На следующем этапе фумаровая кислота, присоединяя молекулу воды, превращается в яблочную кислоту с помощью фермента фумаратдегидрогеназы. На последнем этапе цикла яблочная кислота окисляется до ЩУК.

С каждым этапом цикла исчезает одна молекула пировиноградной кислоты, и от разных компонентов цикла отщепляются 3 молекулы С0 2 и 5 пар атомов водорода электронов.

Разновидностью цикла Кребса является глиоксилатный цикл. В качестве источника углеводов выступают двухуглеродные соединения, например ацетат, и участвует глиоксиловая кислота. Р-ции глиоксилатного цикла лежат в основе превращения запасного жира в углеводы. Ферменты этого цикла находятся в тельцах клетки – глиоксисомах.

В глиоксилатном цикле в отличие от цикла Кребса изолимонная кислота распадается на янтарнуюи глиоксиловую кислоты. . Глиоксилат с участием малатсинтазы взаимодействует со второй молекулой ацетил-Co А, в результате чего синтезируется яблочная кислота, которая окисляется до ЩУК.

В отличие от цикла Кребса в глиоксилатном цикле в каждом обороте участвует не одна, а две молекулы ацетил-СоА и этот активированный ацетил используется не для окисления, а для синтеза янтарной кислоты. Янтарная кислота выходит из глиоксисом, превращается в ЩУК и участвует, в глюконеогенезе (обращенном гликолизе) и других процессах биосинтеза. Глиоксилатный цикл, позволяет утилизировать запасные жиры, при распаде которых образуются молекулы ацетил-СоА. Кроме того, на каждые две молекулы ацетил-СоА в глиоксилатном цикле.

Физиологический смысл глиоксилатного цикла состоят в дополнительном пути разложения жиров и образовании ряда разнообразных промежуточных соединений, играющих важную роль в биохимических реакциях.

Энергетика цикла Кребса

Цикл Кребса. играет чрезвычайно важную роль в обмене веществ растительного организма. Он служит конечным этапом окисления не только углеводов, но также белков, жиров и других соединений. В ходе реакций цикла освобождается основное количество энергии, содержащейся в окисляемом субстрате, причем большая часть этой энергии не теряется для организма, а утилизируется при образовании высокоэнергетических конечных фосфатных связей АТФ.

В аэробной фазе дыхания при окислении пировиноградной кислоты образуются 4 молекулы НАДН + Н+. Их окисление в дыхательной цепи приводит к образованию 12 АТФ. Кроме того, в цикле Кребса восстанавливается одна молекула флавиновой дегидрогеназы (ФАДН2). Окисление этого соединения R в дыхательной цепи приводит к образованию 2 АТФ, поскольку одно фосфори-лирование не происходит. При окислении молекулы а-кетоглутаровой кислоты до янтарной кислоты энергия непосредственно накапливается в одной молекуле АТФ (субстратное фосфорилирование). Таким образом, окисление одной молекулы пировиноградной кислоты сопровождается образованием ЗС02 и 15 молекул АТФ. Однако при распаде молекулы глюкозы получается две молекулы пировиноградной кислоты.

Субстрат из смеси торфяной крошки и подстилочного торфа хорошо снабжается воздухом. Каким бы влажным ни был субстрат, корни растений все же получают достаточно кислорода для дыхания. Кроме того, торф трудно поддается разложению. Даже при сильном увлажнении и высокой температуре вряд ли вероятно его загнивание.[ ...]

Дыхание является самой совершенной формой окислительного процесса и наиболее эффективным способом получения энергии. Главное преимущество дыхания состоит в том, что энергия окисляемого вещества - субстрата, на котором микроорганизм растет, используется наиболее полно. Поэтому в процессе дыхания перерабатывается гораздо меньше субстрата для получения определенного количества энергии, чем, например, при брожениях.[ ...]

Под дыханием понимается процесс, связанный с распадом углеводов, в результате которого высвобождается энергия, обеспечивающая метаболизм и транспорт в растении. Так как кинетика метаболизма и транспорта уже описана, то из известных балансовых соотношений можно вычислить затраты субстрата на дыхание. Отметим, что при описании дыхания объединены две стадии преобразования химической энергии: стадии окисления субстрата, во время которой образуются макроэргические связи АТФ, и стадия использования энергии АТФ. Кроме того, в балансовом уравнении дыхания учитываются затраты углеводов на обеспечение энергией процесса биосинтеза и транспорта органических и неорганических веществ. В процессе дыхания выделяется углекислый газ, который частично используется в фотосинтезе. Его динамика описывается на основе балансовых соотношений.[ ...]

Разница в дыхании обеих групп плодов, по мнению Хелме и др. , вероятно, лишь относительная (см. раздел 1.3.4). У обеих групп имеются одни и те же ферменты и дыхательные субстраты. Причина дифференциации процесса дыхания заключается, по-видимому, как в неодинаковых цитологических изменениях, так и в недостаточной активности ферментов определенных реакций.[ ...]

Таким образом, при дыхании конечным акцептором водорода является кислород. У анаэробов в качестве акцепторов водорода выступают либо органические субстраты (брожение), либо неорганические вещества, такие, как нитраты или сульфаты («анаэробное дыхание»). Из схемы видно, что наиболее просто и примитивно транспорт электронов осуществляется у большинства анаэробов из-за отсутствия у них ферментов цепи переноса электронов, способных передавать электроны по цепочке вплоть до молекулярного кислорода.[ ...]

В течение всего лета субстрат поддерживают настолько влажным, чтобы из горсти его всегда можно было без большого усилия выжать несколько капель жидкости. Большая влажность уже будет затруднять дыхание корней, поэтому после каждого сильного дождя нужно на какое-то время опустить край пленки и дать избытку воды стечь.[ ...]

Увеличение скорости дыхания в листьях нескольких сортов перца (Capsicum sp.), зараженных сильным штаммом вируса гравировки, удается выявить в момент проявления видимых симптомов, причем высокая скорость дыхания сохраняется и в дальнейшем . По-иному обстоит дело с корневым дыханием больных растений. Вирус не оказывал влияния па интенсивность дыхания у тех сортов, у которых он не вызывал симптомов увядания. В то же время при инокуляции перца сорта Табаско, реагирующего па заражение вирусом увяданием, снижение интенсивности корневого дыхания происходило через 12-24 ч. после того, как проницаемость корней возросла (см. стр. 255). Было высказано предположение, что снижение дыхания в этом случае обусловлено утечкой субстратов и активаторов ферментов.[ ...]

Итак, простейший процесс аэробного дыхания представляется в следующем виде. Молекулярный кислород, потребляемый в процессе дыхания, используется в основном для связывания водорода, образующегося при окислении субстрата. Водород от субстрата передается к кислороду через ряд промежуточных реакций, проходящих последовательно с участием ферментов и переносчиков. Определенное представление о характере процесса дыхания дает так называемый дыхательный коэффициент. Под этим понимают отношение объема выделившегося углекислого газа к объему кислорода, поглощенного в процессе дыхания (С02:02).[ ...]

Соли тетразолия нашли применение и как субстрат для определения дегидрогеназной активности в опухолевых клетках (Kraus, 1957), для определения числа жизнеспособных бактерий БЦЖ в вакцине (Eidus е. а., 1958), для витальной окраски бактерий (Eidus е. а., 1959), для обнаружения термоустойчивых микробов в молоке (Leali, 1958), при распознании дрожжевых клеток с нормальной дыхательной системой и с нарушенным дыханием (Ogur, 1957) и т. д. При помощи диагностической среды, содержащей соли тетразолия, можно дифференцировать бактерии группы Pseudomonas (Selenka, 1958) и фитопатогенные бактерии (Lovrekovich, Klement, 1960).[ ...]

В. И. Палладпн первый стал рассматривать дыхание как ряд ферментативных реакций. Основное значение в процессе окисления ои придавал процессу отнятия водорода от субстрата.[ ...]

Углеводы - конечный продукт фотосинтеза и субстрат для дыхания и роста растений. Известны сведения о защитной роли сахаров при адаптации растений к неблагоприятным условиям среды (Колупаев, Трунова, 1992). Целью наших исследований было изучение содержания углеводов в растениях ячменя (Hordeum distichum L., с. Новичок) в зависимости от уровня минерального питания и температуры. В опытах использовали 3-4-не-дельные растения, выращенные в климатической камере на водной культуре при двух температурных режимах (день/ночь) - пониженном (13/8°С) и оптимальном (22/18°С). Минеральные элементы вносили в среду ежедневно в экспоненциально возрастающих количествах, чтобы обеспечить постоянную низкую - 0.05 и высокую - 0.22 г/г-сут скорость роста (Ingestad, Lund, 1986).[ ...]

В настоящее время показано, что в процессе дыхания активируется как водород субстрата, так и кислород воздуха.[ ...]

Вонрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И. II. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именпо углеводы являются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательпого коэффициента. Если в процессе дыхания используются углеводы, то процесс идет, согласно уравнению СеН 120б + 6O2 = 6СО2+6Н2О, в этом случае дыхательный коэффициент равен единице- р = 1.Однако,если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, дыхательный коэффициент становится больше единицы. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и дыхательный коэффициент становится меньше единицы.[ ...]

Вопрос о влиянии света на интенсивность дыхания изучался многими физиологами. Решение этого вопроса осложнено методическими трудностями. На свету трудно отделить процесс фотосинтеза от процесса дыхания. Трудно разграничить прямое и косвенное влияние света. Так, на свету идет фотосинтез, растет содержание углеводов - это сказывается на процессе дыхания. Все же применение метода меченых атомов позволило, хотя и не полиостыо, отграничить процесс фотосинтеза от дыхания. В настоящее время полагают, что влияние света на процесс дыхания многообразно. Под влиянием света, особенно коротковолновых сине-фиолетовых лучей, интенсивность обычного темнового дыхания возрастает. Активация дыхания светом хорошо показана на бесхлорофилльвых растениях. Возможно, что свот активирует ферменты оксидазы. Свет может оказывать косвенное влияние на дыхание зеленых растений благодаря тому, что происходит процесс фотосинтеза. В свою очередь, влияние фотосинтеза па дыхание может быть различным и даже противоположным. Так, с одной стороны, в процессе фотосинтеза образуются основпы© субстраты дыхания - углеводы. Вместе с т[ ...]

На схеме 1 (табл. 36) показан транспорт электронов при дыхании и различных типах анаэробного способа получения энергии. Водород и электроны отщепляются от субстратов с помощью пиридиннуклеотидных ферментов (ПН). Поток электронов направлен от системы с более низким (более отрицательным потенциалом) к системе с более высоким (более положительным) потенциалом, от - 0,8 - 0,4 в (потенциал субстрата) до +0,8 в (потенциал кислорода).[ ...]

В методе оценки кинетики потребления дополнительного субстрата микробной популяцией для вычисления гетеротрофной активности первоначально не учитывается возможная потеря меченого углерода вследствие образования двуокиси углерода в течение периодов инкубации. Было найдено, что в зависимости от типа субстрата 8-60% введенного меченого углерода может быть потеряно при дыхании в течение даже 3-часового инкубационного периода .[ ...]

Механизм изъятия из раствора и последующей диссимиляции субстрата носит весьма сложный и многоступенчатый характер взаимосвязанных и последовательных биохимических реакций, определяемых типом питания и дыхания бактерий.[ ...]

Поранение органов и тканей растения усиливает интенсивность дыхания. Возможно, это связано с разрушением клеток, из-за чего повышается соприкосновение дыхательных субстратов и ферментов. Частично поранение может вызывать переход клеток в меристематическую фазу роста. Интенсивность дыхания делящихся клеток всегда выше по сравнению с закончившими рост.[ ...]

Многие простые фенолы оказывают влияние на энергетику системы и окисление субстратов в процессе клеточного дыхания.[ ...]

Относительная роль этих путей дыхапия может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от условии внешней среды. Процесс дыхания растений осуществляется во всех ваешпих условиях, в которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от -50 до +50вС. Нет приспособлений у растений и к поддержанию равномерного распределения кислорода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена и к еще большему разнообразию ферментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в растительном организме. Изменение пути дыхательного обмена приводит к глубоким изменениям во всем метаболизме растительных организмов.[ ...]

Содержание воды. Небольшой водный дефицит растущих тканей увеличивает интенсивность дыхания. Это связано с тем, что водный дефицит и даже подвядание листьев усиливает процессы распада сложных углеводов (крахмала) на более простые (сахара). Увеличение содержания сахаров этого основного субстрата дыхания усиливает сам процесс. Вместе с тем при водном дефиците нарушается сопряжение окисления и фосфоршшрования. Дыхание в этих условиях представляет в основном бесполезную трату сухого вещества. При длительном завядании растение расходует сахара и интенсивность дыхания падает. Иная закономерность характерна для органов, находящихся в состоянии покоя. Увеличение содержания воды в семенах с 12 до 18% уже увеличивает интенсивность дыхания в 4 раза. Дальнейшее повышение содержания воды до 33% приводит к увеличению интенсивности дыхания примерно в 100 раз. При перемещении растения или ткани из воды в раствор солей дыхание услливается - это так называемое солевое дыхание.[ ...]

Недостаток воды изменяет и такие основные физиологические процессы, как фотосинтез и дыхание. Прежде всего при обезвоживании устьица закрываются, это резко снижает поступление углекислоты в лист н, клк следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосинтеза и у растений, не имеющих устьиц (мхп, лишайплки). По-видимому, обезвоживание, изменяя конформацию ферментов, участвующих в процессе фотосинтеза, уменьшает их активность. Это связано с тем, что в результате усплеппя под влиянием 8авядания процесса распада крахмала возрастает количество сахаров - этого основного субстрата дыхания. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, пе аккумулируется в АТФ, а в основном выделяется в виде тепла. В силу зтого усиление дыхания, сопровождаемое распадом органических веществ, может принести вред растительному организму.[ ...]

Наиболее часто плесиевение вызывают грибы из родов Ми-cor, Aspergillus, Dematium, обитающих на разных субстратах и очень распространенных в природе. Наиболее сильно поражаются плесневением семена, содержащие большое количество воды, поврежденные, а также хранящиеся в условиях повышенной влажности. Вред от плесневения заключается в том, что грибы обволакивают грибницей семена, нарушают дыхание и другие физиологические процессы, происходящие в семенах при хранении, и часто вызывают их отмирание. Иногда плесневелые семена дают всходы, но они развиваются медленно и, как правило, сильно поражаются различными возбудителями болезней.[ ...]

Денитрификация, являясь микробиологическим процессом, представляет собой лишь особую форму дыхания при нехватке кислорода. Множество бактерий в установке по биологической очистке сточных вод, главным образом протеолитических бактерий, может обеспечить сокращение содержания азота и нитратов при отсутствии свободного кислорода и в присутствии пригодного субстрата, служащего источником водорода. Тем самым, химически связанный кислород может использоваться для метаболических процессов этих бактерий. Способность к денитрификации приобретается бактериями в процессе адаптации. Углеводородный источник должен быть дозирован в минимальной пропорции, соответствующей содержанию нитратов.[ ...]

Поскольку окисление является частью любого аэробного процесса, это означает, что органический субстрат никогда не может быть превращен на 100% в органическое вещество биомассы. Конечно, если учитывать образование диоксида углерода, потерь углерода не будет. В процессах накопления запасных веществ прирост может достигать 0,95 г ХПК/г ХПК(Б). Другая предельная ситуация - весь субстрат расходуется на поддержание жизнедеятельности клеток (эндогенное дыхание), в результате прирост биомассы равен нулю или даже отрицателен. При заданном количестве субстрата прирост биомассы зависит от длительности процесса .[ ...]

Включение (Эю в экстрагированные митохондрии приводит к значительному увеличению индуцируемого субстратом сигнала (в среднем на 80%) и восстанавливает его зависимость от Фн, но не от АДФ. Введение (Эю приводило также к значительному увеличению дыхания, но не к восстановлению фосфорилирования, что связано, по-видимому, с нарушением мембранных структур при экстракации убихинона.[ ...]

Диссимиляция углеводов может происходить двумя путями. В плодах семечковых пород сахар в основном расходуется на дыхание по пути ЭМ.П (Эмбдена - Мей-ерхофа - Парнаса) . При этом в связи с процессами фосфорилирования глюкоза расщепляется до пировиноградиой кислоты (гликолиз). Кроме того, существует возможность расщепления углеводов по пентоз-ному циклу . В каком размере этот цикл участвует в преобразовании дыхательных субстратов, пока нельзя сказать. В настоящее время предполагается, что на определенных этапах развития яблока или других плодов преобладает тот или иной путь. Преобладающий у плодов семечковых пород путь ЭМП заканчивается пировиноградиой кислотой, которая играет важнейшую роль в дыхании. С этого момента дальнейшие превращения пировиноградиой кислоты зависят от среды: в аэробных - с расходованием кислорода, в анаэробных - когда кислород не требуется.[ ...]

По характеру диссимиляции различают аэробные и анаэробные организмы. Аэробные (от греч. аег - воздух) организмы для дыхания (окисления) используют свободный кислород. Аэробами является большинство ныне живущих организмов. Напротив, анаэробы окисляют субстраты, например, сахара в отсутствие кислорода, следовательно, для них дыханием является брожение. Анаэробами являются многие микроорганизмы, гельминты. Например, динитрифицирующие анаэробные бактерии окисляют органические соединения, используя нитриты, являющиеся неорганическим окислителем.[ ...]

Как уже указывалось, многие группы бактерии (например, факультативные анаэробы) способны и к аэробному, и к анаэробному дыханию, но конечные продукты этих двух реакций различны и количество высвобождающейся энергии при анаэробном дыхании значительно меньше. На рис. 2.7 представлены результаты интересного исследования, в котором один и тот же вид бактерий, АегоЪас1ег, выращивали в анаэробных и аэробных условиях с использованием глюкозы в качестве источника углерода. В присутствии кислорода почти вся глюкоза превращалась в бактериальную биомассу и СО2; в отсутствие же кислорода разложение было неполным, гораздо меньшая часть глюкозы превращалась в углеродсодержащие вещества клеток и во внешнюю среду выделялся ряд органических соединений. Чтобы окислить их, потребовались бы другие специализированные виды бактерий. Когда скорость поступления органического детрита в почву и донные отложения высока, бактерии, грибы, простейшие и другие организмы создают анаэробные условия, используя кислород быстрее, чем он диффундирует в субстрат. При этом разложение органического вещества не прекращается - оно продолжается, хотя часто в замедленном темпе, если в среде имеются микроорганизмы с достаточно широким диапазоном анаэробных типов метаболизма.[ ...]

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК. Величина коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения (органические кислоты), то ДК[ ...]

Динамика выделения углекислого газа (С?со2), поглощения кислорода ([ ...]

Как только в семена начинает поступать вода, в них прежде всего резко усиливается, дыхание и одновременно активизируются различные ферменты, образовавшиеся еще в период созревания. Под их влиянием запасные питательные вещества гидролизуются, превращаясь в подвижную легко усвояемую форму. Жиры и крахмал превращаются, в органические кислоты, и сахара, белки - в аминокислоты. Перемещаясь в зародыш из запасающих органов, питательные вещества становятся субстратом для начинающихся в нем процессов синтеза, в первую очередь новых нуклеиновых кислот и ферментативных белков, необходимых для начала роста.[ ...]

Метаболический характер второй стадии потребления подтверждается также отсутствием, после первой стадии поглощения вещества, дальнейшего накопления С14 культурой при ингибировании дыхания бактерий путем введения в субстрат цианистого калия.[ ...]

Чрезмерно развитая растительность препятствует правильной эксплуатации прудов, способствует ухудшению гидрохимического и газового режимов, особенно в ночные часы, когда кислород потребляется всеми водными организмами на дыхание и создается его дефицит. При разложении отмирающей растительности выделяются токсичные продукты гниения (аммиак, сероводород и др.), а ее остатки являются субстратом для сохранения и размножения сапрофитных и патогенных грибов, бактерий.[ ...]

Для нормального протекания синтеза белка в растительном организме пуяшы следующие условия: 1) обеспеченность азотом; 2) обеспеченность углеводами (углеводы необходимы и как материал для построения углеродистого скелета аминокислот, и как субстрат для дыхания); 3) высокая интенсивность и сопряженность процесса дыхания и фосфорилировапия. На всех этапах преобразования азотистых веществ (восстановление нитратов, образование амидов, активизация аминокислот при синтезе белка и др.) необходима энергия, заключенная в макроэргических фосфорных связях (АТФ); 4) присутствие нуклеиновых кислот: ДНК необходима как вещество, в котором зашифрована информация о последовательности аминокислот в синтезируемой молекуле белка; и-РНК - как агент, обеспечивающий перенос информации от ДНК к рибосомам; т-РНК - кап обеспечивающая перенос аминокислот к рибосомам; 5) рибосомы, структурные единицы, где происходит синтез белка; 6) белки-ферменты, катализаторы синтеза белка (аминоацил-т-РНК-спптетазы); 7) ряд минеральных элементов (ионы М§2+, Са2+).[ ...]

В дельте Волги в развитии обрастаний К. В. Горбуновым (1955) было выделено 4 периода: эмбриональный, бурного роста, умеренной активности и сокращения биомассы. Число видов и биомасса обрастаний достигали максимума на 10-й день. К этому времени интенсивность фотосинтеза и дыхания снижались, более половины биомассы обрастаний приходилось на простейших, коловраток, бактерий. По данным других авторов (Cattaneo, 1975) для стабилизации обрастаний и достижения их сходства с сообществами на естественных субстратах требовалось около 4 недель.[ ...]

Все физиологические процессы в растении нормально протекают лишь при оптимальном его обеспечении водой. Вода не только растворитель, но и активный структурный компонент клетки. Она участвует в биологических превращениях, например, облегчает взаимодействие между молекулами, служит субстратом для фотосинтеза, участвует в дыхании и многочисленных гидролитических и синтетических процессах.[ ...]

Среди других классов позвоночных животных рыбы, особенно пресноводные, пожалуй, чаще чем другие, сталкиваются с неблагоприятным кислородным режимом, в частности с его сезонными и суточными колебаниями в водоемах, с острым дефицитом в зимний период. Поэтому по характеру энергетического обмена, по соотношению удельного веса гликолиза и дыхания рыбы занимают как бы промежуточное положение между факультативными анаэробами (беспозвоночными) и типичными аэробами (высшие позвоночные). Специальные исследования показали, что для рыб характерны пониженный уровень окислительных процессов и пониженная активность цитохромной системы в сравнении с теплокровными животными. По мнению этих авторов, окислительные системы рыб устроены "примитивнее", чем у высших позвоночных. Так, например, активность цитохромоксидазы у отдельных видов костистых рыб высокая, а содержание цитохрома Ь невелико. К тому же субстратом цитохромоксидазы рыб служит не только цитохром Ь. Следовательно, важнейший дыхательный фермент, завершающий стадии дыхания, лишен строгой специфичности. Система окислительного фосфорилирования рыб функционирует менее эффективно, чем у других групп позвоночных.[ ...]

При анализе связи размеров с метаболизмом у растений часто нелегко решить, что же, собственно говоря, считать «особью». Так, большое дерево можно рассматривать как одну особь, но при изучении связи размеров с площадью поверхности «функциональными особями» можно считать листья (вспомним понятие «индекс листовой поверхности»). Изучая разные виды крупных морских многоклеточных водорослей, мы обнаруживаем, что виды с тонкими, или узкими, «ветвями» (т. е. с высоким соотношением поверхность/объем) характеризуются более высоким уровнем продукции пищи на 1 г биомассы, более интенсивным дыханием и поглощением радиоактивного фосфора из воды, чем виды с толстыми «ветвями» (Е. Odum, Kuentzler, Blunt, 1958). В этом случае «функциональными особями» являются «ветви» или даже отдельные клетки, а не все растение, которое может быть образовано множеством «ветвей», прикрепленных к субстрату одним ризоидом.

В качестве основного субстрата дыхания растения используют углеводы, причем в первую очередь окисляются свободные сахара. При их недостатке могут быть использованы полисахариды, белки, жиры после их гидролиза. Поли- и дисахариды гидролизуются до моносахаридов, белки - до аминокислот, жиры - до глицерина и жирных кислот.

Использование жиров начинается с их гидролитического расщепления липахой до глицерина и жирных кислот, что происходит в сферосомах. Благодаря фосфорилированию и последующему окислению глицерин превращается в фосфотриозу – ФГА, который включается в основной путь обмена углеводов.

Жирные кислоты окисляются по механизму β-окисления, в результате которого от жирной кислоты последовательно отщепляются двууглеродные ацетильные остатки в форме ацетил-СоА. Данный процесс происходит в глиоксисомах, где, кроме того локализованы ферменты глиоксилатного цикла. Ацетил-СоА включается в реакции глиоксилатного цикла, конечный продукт которого – сукцинат – покидает глиоксисому и в митохондриях участвует в цикле Кребса (рис.). Синтезированный в ЦТК малат в цитоплазме при участии малатдегидрогеназы превращается в оксалоацетат, который с помощью ФЕП-карбоксилазы дает ФЕП. ФГА и ФЕП служат исходным материалом для синтеза глюкозы (а также фруктозы и сахарозы) в в обращенных реакциях гликолиза. Процесс образования глюкозы из неуглеводных предшественников получил название глюконеогенеза. . Экспериментально доказано, что по мере прорастания в семенах снижается содержание жиров и увеличивается – сахаров.

Запасные белки используются для дыхания в результате гидролиза до аминокислот и последуешего окисления до ацетил-СоА или кетокислот, которые затем поступают в цикл Кребса (рис.)

Полное окисление рассмотренных субстратов осуществляется до углекислого газа и воды с освобождением энергии окисляемых веществ.

Отношение количества молей СО 2 выделяемого при дыхании к количеству молей поглощенного О 2 называется дыхательным коэффициентом (ДК). Для гексоз он равен единице:/

С 6 О 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О; ДК= 6СО 2 /6О 2 =1

Количество кислорода, необходимое для окисления субстрата, находится в обратной зависимости от содержания его в молекуле субстрата. Поэтому если субстратом дыхания являютяс более бедные кислородом (по сравнению с углеводами)жирные кислоты, то ДК будет меньше елиницы:

С 18 Н 36 О 2 + 26О 2 → 18СО 2 + 18Н 2 О; ДК=18 СО 2 /26 О 2 =0,69

На величину ДК влияют и другие факторы, например, недостаток кислорода (при затоплении корней и др.) усиливается брожение и ДК возрастает; если в результате недоокисления продуктов в тканях накапливаются органические кислоты, а количество углекислого газа снижается, ДК падает.



Рис. Использование полисахаридов, белков и жиров в качестве дыхательных субстратов.

  1. Зависимость дыхания от факторов внешней среды

1. Концентрация кислорода

Процесс дыхания связан с непрерывным потреблением кислорода. Но окислительные превращения субстратов включают аэробные и анаэробные процессы (гликолиз, брожение). Снижение парциального давления кислорода с 21% до 5% интенсивность дыхания тканей меняется незначительно.

Впервые влияние кислорода на величину расходования дыхательных субстратов обнаружил Л.Пастер. В его опытах с дрожжами в присутствии кислорода снижались распад глюкозы и интенсивность брожения, но одновременно наблюдался интенсивный рост биомассы. Торможение распада сахаров и более эффективное их использование в присутствии кислорода получило название «эффекта Пастера».. Это объясняется тем, что при высоком парциальном давлении кислорода весь пул ADP и Р расходуется на синтез АТР. В результате происходит торможение гликолиза из-за снижения количества ADP и Р, необходимых для субстратного фосфорилирования и высокое содержание АТР угнетает некоторые гликолитичесие ферменты (фосфофруктокиназу). В итоге снижается интенсивность гликолиза и активируются синтетичесие кроцессы (глюконеогенез)

Важным фактором, определяющим интенсивность дыхания клетки, является концентрация ADP. Зависимость скорости потребления кислорода от концентрации ADP, называется дыхательным контролем, или акцепторным контролем дыхания. Соотношение суммы концентраций АТР и 1/2ADP к сумме концентраций АТР, ADP, AMP называют энергетическим зарядом .

Избыток кислорода в тканях растений может возникать лишь локально. В атмосфере чистого кислорода дыхание растений снижается, а затем растение погибает. Это связано с усилением в клетках свободнорадикальных реакций, окислением липидов мембран, и, как следствие – нарушением всех обменных процессов.

2. Концентрация углекислого газа

Повышение концентрации СО 2 приводит к снижению интенсивности дыхания, т.к. тормозятся реакции декарбоксилирования и активность сукцинатдегидрогеназы. При наблюдается закисление тканей – ацидоз.

3. Температура

Дыхание, как ферментативный процесс, зависит от температуры. В определенных температурных границах эта зависимость подчиняется правилу Вант-Гоффа (скорость химических реакций удваивается при повышении температуры на 10 о С). Для дыхания каждого вида растений и его органов существуют определенные минимальные, оптимальные и максимальные температуры.

4. Водный режим

В листьях проростков при быстрой потере воды в начале отмечается усиление дыхания. При постепенном снижении обводненности этого не происходит. Длительный водный дефицит приводит к снижению дыхания. Особенно отчетливо влияние воды прослеживается при изучении дыхания семян. При повышении влажности семян до 14-15% дыхание возрастает в 3-4 раза, до 30-35% - в тысячи раз. При этом важную роль играет температура.

5. Минеральное питание

Добавление раствора солей, в воду, где выращивались проростки, обычно усиливает дыхание корней. Этот эффект получил название «солевого дыхания». В тканях других органов этот эффект удается получить не всегда

  1. Повреждения и механические воздействия

Механические воздействия вызывают кратковременные усиления поглощения кислорода по трем причинам: 1) из-за быстрого окисления фенольных и других соединений, которые выходят из вакуолей поврежденных клеток и становятся доступными для соответствующих оксидаз; 2) в связи с увеличением количества субстрата для дыхания; 3) вследствие активации процессов восстановления мембранного потенциала и поврежденных клеточных структур.

Вопрос о веществах, используемых в процессе дыхания, издавна занимал фи­зиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсив­ность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении данного вопроса большое значение имеет определение дыхательного коэффи­циента. Дыхательный коэффициент (ДК) - это объемное или молярное отно­шение СО 2 , выделившегося в процессе дыхания, к поглощенному за этот же про­межуток времени О 2 . При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то про­цесс идет согласно уравнению С 6 Н 12 О 6 +6О 2 → 6СО 2 + 6Н 2 О. В этом случае ДК равен единице: 6СО 2 /6О 2 = 1. Однако если разложению в процессе дыхания под­вергаются более окисленные соединения, например органические кислоты, по­глощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше едини­цы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэф­фициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке угле­водов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного пита­тельного вещества содержатся жиры или белки. В этом случае дыхательный ко­эффициент становится меньше единицы. При использовании в качестве дыха­тельного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Существуют две основные системы и два основных пути превращения дыхатель­ного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); 2) пентозофосфатный (апотомтеский). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Расти­тельный организм не имеет приспособлений к регуляции температуры, поэтому

В процесс дыхания осуществляется при температуре от -50 до +50°С. Нет при­способлений у растений и к поддержанию равномерного распределения кисло­рода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разно­образных путей дыхательного обмена и к еще большему разнообразию фер­ментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути ды­хательного обмена приводит к глубоким изменениям во всем метаболизме рас­тений.