Если планета Земля – наш «дом», а Солнечная система – «страна», то галактику Млечный путь можно сравнить с «материком». Размеры нашего «материка» поражают воображение: лучу света, чтобы долететь от одного края этого грандиозного диска до другого, требуется 100 000! В километрах это будет один квинтиллион. Счёт звёзд идёт на сотни миллиардов (точно не известно, но предположительно – от 200 до 400 миллиардов). Все эти звёзды – вместе с межзвёздным газом – вращаются вокруг галактического центра, где, по мнению учёных, располагается сверхмассивная чёрная дыра.

Кажется, что это великолепие существует вечно… но ведь по современным научным представлениям, даже сама Вселенная имела начало во времени, следовательно, у нашей Галактики тоже есть вполне определённый возраст. Судя по количеству межзвёздного газа (которого осталось сравнительно немного), она не намного моложе Вселенной: приблизительно 12 миллиардов лет. Как же она родилась?

В начале была протогалактика – огромное газовое облако, гораздо больше по размерам чем та, галактика, которую мы имеем сейчас. Состояло оно из самых лёгких элементов, чьи атомы возникли первыми в горниле Большого взрыва – водорода и гелия (водород – 75%, гелий – 25%). Облако это медленно вращалось, а сила гравитации тем временем сжимала его – и так продолжалось три миллиарда лет, пока под воздействием этих сил облако не потеряло свою однородность, оно стало распадаться на части, образуя более плотные скопления вещества.

Эти скопления подчинялись тем же законам – они вращались и сжимались, а сжимаясь – разогревались. В конце концов, их плотность и температура достигла такой степени, что под воздействием того и другого атомы водорода и гелия начали сливаться друг с другом, образуя другие атомы и выделяя энергию – т.е. начался термоядерный синтез. Так родились звёзды первого поколения, состоящие исключительно из водорода и гелия, поскольку не было больше ничего – т.е. обладали минимальной металличностью (в астрономии металлами называются все химические элементы тяжелее гелия).

Эти звёзды-первопроходцы были более массивными и более горячими, чем современные, а чем массивнее звезда – тем меньше она живёт и тем ярче «умирает», взрываясь мощной вспышкой сверхновой. При этом в окружающее космической пространство выбрасываются все те химические элементы, которые возникли в ходе термоядерного синтеза. Таким образом звёзды первого поколения своей жизнью и смертью обогатили хтмический состав протогалактики, и звёзды второго поколения обладали уже более высокой металличностью – т.е. содержали примеси других химических элементов.

Тем временем тот газ, который ещё не был «израсходован» на звездообразование, продолжал вращаться, стягиваясь к центру, образуя диск – вот в этом диске и родились звёзды второго поколения. Их становилось всё больше, и в конце концов они своей кинетической энергией уравняли энергию гравитационного взаимодействия, сжатие прекратилось. Тогда возникли области более плотного газа – те самые рукава, из-за которых нашу Галактику и подобные ей называют спиральными. Там продолжалось звездообразование, порождающее звёзды третьего поколения – с ещё более высокой металличностью (одна из них – наше Солнце).

Вот так галактика Млечный путь приобрела современный вид. Что ждёт её в будущем? По мере звездообразования «запасы» межзвёздного газа будут и дальше истощаться, и через несколько миллиардов лет он будет израсходован весь. Новые звёзды рождаться уже не будут, имеющиеся состарятся, дойдя до состояния красных звёзд и белых карликов, а Галактика из спиральной превратится в линзовидную.

Впрочем, нас ожидает и ещё одно примечательное событие – столкновение с галактикой Туманность Андромеды. Только не надо представлять это как «конец света» – две галактики сольются в одну (для неё даже название придумали – Милкомеда), причём процесс этот будет происходить так медленно, что люди на Земле ничего и не заметят. Единственное, что может случиться – так это то, что Солнце вместе с планетами выбросит за пределы новой галактики, и станет оно межгалактическим блуждающим объектом. Но структура Солнечной системы при этом сохранится, так что на Землю опять же заметного влияния не окажет – вот только наше прекрасное звёздное небо пропадёт… Впрочем, возможно, это уже не будет иметь значения: Солнце, превратившееся в красный гигант, к тому времени уничтожит всё живое на Земле.

Согласно существующей гипотезе, наша галактика возникла примерно 14 миллиардов лет назад. Первоначально это было огромное газовое облако, четверть объема которого было представлено гелием, а остальная часть водородом. Оно медленно вращалось и постепенно сжималось, под действием гравитации. Этот процесс продолжался около трех миллиардов лет и, в конечном итоге, привел к распаду облака на отдельные части, из которых и были сформированы первые звезды.

Согласно той же гипотезе, процесс рождения звезды стартует после того, как газовое облако, в своей центральной части, достигает необходимой, для начала термоядерной реакции, плотности и температуры. Эти процессы, внутри образовавшихся звезд, происходят и сегодня. В них участвуют элементы, масса которых несколько тяжелее гелия. В водородно – геливое облако они попадают в результате взрывов космических объектов, а также естественным образом. При взрыве сверхновой звезды в космическое пространство выбрасывается огромное количество различных элементов, молекулярная масса которых больше железа. Они также оказываются захваченными газовым облаком. В конечном итоге, оно до предела напитывается различными химическими элементами, которые и приводят к образованию звезд первого поколения. На сегодняшний день они считаются самыми древними. В их основу входят: водород, гелий, тяжелые металлы (в небольших количествах).

Однако в звезды первого поколения трансформируется лишь малая часть газа. Остальной его объем продолжает процесс сжатия по направлению к центру галактики, что приводит к образованию новых звезд. Это космические объекты второго поколения. В их составе уже гораздо больше тяжелых элементов, ведь возникли они из обогащенного газа.

Из оставшегося газа возникает новый диск, который начинает вращаться и сжиматься под действием гравитации. В результате формируются современные звезды.

К моменту прекращения сжатия газового облака, кинетическая энергия диска галактики полностью компенсируется силой гравитации образовавшихся звезд. Создаются благоприятные условия для возникновения галактической спирали, в пределах которой и будет происходить зарождение звезд нового поколения. Кстати, именно к таким космическим объектам и относится наше солнце, в недрах которого происходит реакция термоядерного синтеза.

Что произойдет после этого?

По мнению ученых, количество газа будет постепенно снижаться, а вместе с этим, значительно снизится интенсивность процесса звездообразования. После того, как все газовые запасы будут исчерпаны, галактика изменит свою спиральную форму, на линзообразную. Вместе с этим эволюция звезд выйдет на свою последнюю стадию. Ну а галактика будет состоять из малых звезд, представленных белыми и красными карликами


Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Задали хороший вопрос о том, отражают ли все эти чудные снимки объектов Вселенной, которые в изобилии усеивают любой сайт астрономической направленности, то, «как видно глазу» или нет.

Ну что ж, давайте разберемся. Очень коротко, тезисно, не без упрощений, конечно.

ЦВЕТ - реакция нашего мозга на свет разной длины волны, попавший на колбочки на сетчатке глаз. Синтез миллионов цветов по сути происходит из трех основных - синего, зеленого и красного, более того, наши глаза имеют естественный встроенный фильтр с центром на длине волны около 555 нанометров, в желто-зеленой области. У каждого человека есть свои нюансы восприятия света - так, например, у меня левый глаз видит в слегка холодных, а правый - в немного теплых цветах, и, подозреваю, у других людей здесь может быть что-то свое:-/

Матрицы монохромны, лишены этих недостатков и имеют кучу своих, матричных. В бытовых фотоаппаратах, утрируя, на матрице не одна, а три точки, чья чувствительность к свету выровнена технически, условно, по основным цветам, и все миллионы цветов опять получаются сложением этих трех основных, хотя вовсе и не очевидно, что графики чувствительности матриц на разных длинах волн в точности повторяют наши глаза - по уже упомянутым выше причинам.

Любители-астрофотографы используют неплохие монохромные матрицы, вводя в поток света перед ними градуированные широкополосные фильтры RGB (красный, зеленый, синий) и, еще, иногда фильтр альфа водорода, чтобы подчеркнуть яркость отдельных областей туманностей и галактик. Процесс выглядит так: навел на объект, проверил фокус, на специальной револьверной головке поставил синий фильтр - щелк, сделал экспозицию (секунды, минуты, реже - десятки минут), убрал фильтр, проверил фокус, поставил зеленый фильтр - щелк, сделал экспозицию, и так далее... потом в специальной программе сложил многие изображения, сделанные через каждый отдельный фильтр, чтобы усилить, потом в Фотошопе приписал каждому фильтру свой цвет, сложил все вместе, и получил итоговое цветное изображение. Нелегка и неказиста...

Астрономы-профи предпочитают иметь дело с объективными, научными данными. Поэтому они используют график излучения черного тела, показывающий, сколько света на каких длинах волн пришло к нам от объекта. Из этого полного спектра узкополосными фильтрами вырезают четкие окна в диапазонах U - ультрафиолетовый (365 нм), B - синий (445 нм), V - визуальный (551 нм), R (658 нм) - красный, I (806 нм) - инфракрасный, и многие, многие другие, дополнительные полосы. В общем случае, ученых обычно интересует даже не флюксы (потоки излучения) на указанных длинах волн, а разница между ними - U-B, B-V и т.д. Теоретически можно опять таки в фотошопе приписать каждому узкому фильтру свой цвет и экспериментировать с этими изображениями до посинения. Судите сами, соответствует ли все это вашему представлению о том, «как видно глазу». Процесс калибровки узкополосных фотометрических фильтров будет похлеще Фауста Гёте, посему о нем умолчим, пощадив ваше время и нервы...

Наш любимый телескоп Хаббл, кроме фотометрического, использует еще и другой набор фильтров, пропускающих излучение строго определенной длины волны - ионизованного водорода, кислорода и серы, как основные цвета (ну, и несколько дополнительных тоже). Водороду припишем красный, кислороду - синий, а сере - зеленый, сложим опять все вместе в фотошопе, и на выходе мы получим именно то, что сейчас представляют почтеннейшей публике, как фото объектов Вселенной... называется палитра Хаббла.

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.


Наконец, используя полный электромагнитный спектр, ученые стали приписывать условные цвета даже невидимым нам радио-, инфракрасному, рентгеновскому и гамма излучению. Очень часто теперь можно встретить снимки, где красным, например, кодированы какие-то волны из инфракрасного диапазона (скажем, от телескопа Спитцер), зеленым - визуального (Хаббл), а фиолетовым - рентгеновского (от обсерватории Чандра). Называется цветовое кодирование.

А теперь, в эру многосигнальной астрономии, ожидайте появления на снимках еще и гравитационных волн, выраженных каким-нибудь еще цветом:)

Подобные изображения используют уже не столько для восхищения и созерцания, сколько для серьезной науки, изучая морфологию и динамику объектов - например, сравнивая распределение горячего газа в скоплениях галактик с визуальными искажениями изображений галактик, которые дает гравитация, можно судить о наличии темной материи в этих скоплениях.

Насколько все это соответствует вашему интуитивному представлению «как надо»? Нет, совсем не соответствует? Погодите бежать с чемоданами через поле, мы еще немного усугубим общую картину...

Глаз - замечательный инструмент, само совершенство (хотя и не настолько, как собачий нос), но он имеет еще недостатки - например, слепое пятно, из которого пучок проводящих нервов идет в мозг, естественные физиологические отклонения - астигматизм, близорукость/дальнозоркость, дальтонизм как неспособность различать цвета...

Есть и еще один недостаток. При низком освещении колбочки, которые дают ощущение цвета, почти не работают, мы видим так называемыми «палочками», которым цвет особо ни к чему, их задача - обеспечить вас ночным зрением. Ночью все кошки серы, правда? В отличие от матриц, умеющих накапливать фотон за фотоном, при низком освещении - сколько не гляди, сильно больше не увидишь. Под утро зрачок вследствие естественной адаптации расширяется почти до максимального предела - до 6 или 8 мм, у кого как, но такой разницы, как у матриц между экспозициями в секунду и в десятки минут, нет и близко.

Сев на космический корабль, и прилетев к какой-нибудь туманности, мы, в зависимости от ее яркости и площади, занимаемой в нашем поле зрения, вполне можем увидеть вместо шикарного разноцветного калейдоскопа форм и цветов, просто серое, невнятное и непривлекательное скопление пыли и газа... разочарование? Гнев? Отрицание? Отчаяние?

И как вам теперь с этим знанием? Умножил вашу скорбь?

Истинная красота Вселенной заключена даже не в зрелищах, коими она насыщена чуть более, чем полностью, а в том, что она дает пытливому уму возможность понимать красоту законов, ей управляющих...

Галактикой называют крупные формирования звезд, газа, пыли, которые удерживаются вместе силой гравитации. Эти крупнейшие соединения во Вселенной могут различаться формой и размерами. Большая часть космических объектов входит в состав определенной галактики. Это звезды, планеты, спутники, туманности, черные дыры и астероиды. Некоторые из галактик обладают большим количеством невидимой темной энергии. Из-за того, что галактики разделяет пустое космическое пространство, их образно называют оазисами в космической пустыне..

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
20% 55% 5%

Наша галактика

Ближайшая к нам звезда Солнце относится к миллиарду звезд в галактике Млечный путь. Посмотрев на ночное звездное небо, тяжело не заметить широкую полосу, усыпанную звездами. Скопление этих звезд древние греки назвали Галактикой.

Если бы у нас была возможность посмотреть на эту звездную систему со стороны, мы бы заметили сплюснутый шар, в котором насчитывается свыше 150 млрд. звезд. Наша галактика имеет такие размеры, которые тяжело представить в своем воображении. Луч света путешествует с одной ее стороны на другую сотню тысяч земных лет! Центр нашей Галактики занимает ядро, от которого отходят огромные спиральные ветви, заполненные звездами. Расстояние от Солнца до ядра Галактики составляет 30 тысяч световых лет. Солнечная система расположена на окраине Млечного пути.

Звезды в Галактике несмотря на огромное скопление космических тел встречаются редко. Например, расстояние между ближайшими звездами в десятки миллионов раз превышает их диаметры. Нельзя сказать, что звезды разбросаны во Вселенной хаотично. Их местоположение зависит от сил гравитации, которые удерживают небесное тело в определенной плоскости. Звездные системы со своими гравитационными полями и называют галактиками. Кроме звезд, в состав галактики входит газ и межзвездная пыль.

Состав галактик.

Вселенную составляет также множество других галактик. Наиболее приближенные к нам отдалены на расстояние 150 тыс. световых лет. Их можно увидеть на небе южного полушария в виде маленьких туманных пятнышек. Их впервые описал участник Магеллановой экспедиции вокруг мира Пигафетт. В науку они вошли под названием Большого и Малого Магеллановых Облаков.

Ближе всего к нам расположена галактика под названием Туманность Андромеды. Она имеет очень большие размеры, поэтому видна с Земли в обычный бинокль, а в ясную погоду – даже невооруженным глазом.

Само строение галактики напоминает гигантскую выпуклую в пространстве спираль. На одном из спиральных рукавов за ¾ расстояния от центра находится Солнечная система. Все в галактике кружится вокруг центрального ядра и подчиняется силе его гравитации. В 1962 году астрономом Эдвином Хабблом была проведена классификация галактик в зависимости от их формы. Все галактики ученый разделил на эллиптические, спиральные, неправильные и галактики с перемычкой.

В части Вселенной, доступной для астрономических исследований, расположены миллиарды галактик. В совокупности их астрономы называют Метагалактикой.

Галактики Вселенной

Галактики представлены крупными группировками звезд, газа, пыли, удерживаемых вместе гравитацией. Они могут существенно отличаться по форме и размерам. Большинство космических объектов относятся к какой-либо галактике. Это черные дыры, астероиды, звезды со спутниками и планетами, туманности, нейтронные спутники.

Большинство галактик Вселенной включают огромное количество невидимой темной энергии. Так как пространство между различными галактиками считается пустотным, то их нередко называют оазисами в пустоте космоса. Например, звезда по имени Солнце – одни из миллиардов звезд в галактике «Млечный Путь», находящейся в нашей Вселенной. В ¾ расстояния от центра данной спирали находится Солнечная система. В этой галактике все беспрерывно движется вокруг центрального ядра, которое подчиняется его гравитации. Однако и ядро тоже движется вместе с галактикой. При этом все галактики двигаются на сверхскоростях.
Астроном Эдвин Хаббл в 1962 году провел логическую классификацию галактик Вселенной с учетом их формы. Сейчас галактики разделяются на 4 основные группы: эллиптические, спиральные, галактики с баром (перемычкой) и неправильные.
Какая самая большая галактика в нашей Вселенной?
Наиболее крупной галактикой во Вселенной является линзовидная галактика сверхгиганских размеров, находящаяся в скоплении Abell 2029.

Спиральные галактики

Они представляют собой галактики, которые по своей форме напоминают плоский спиралевидный диск с ярким центром (ядром). Млечный Путь – типичная спиральная галактика. Спиральные галактики принято называть с буквы S, они разделяются на 4 подгруппы: Sa, Sо, Sc и Sb. Галактики, относящиеся к группе Sо, отличаются светлыми ядрами, которые не имеют спиральных рукавов. Что касается галактик Sа, то они отличаются плотными спиральными рукавами, плотно обмотанными вокруг центрального ядра. Рукава галактик Sc и Sb редко окружают ядро.

Спиральные галактики каталога Мессье

Галактики с перемычкой

Галактики с баром (перемычкой) похожи на спиральные галактики, но все же имеют одно отличие. В таких галактиках спирали начинаются не от ядра, а от перемычек. Около 1/3 всех галактик входят в эту категорию. Их принято обозначать буквами SB. В свою очередь, они разделяются на 3 подгруппы Sbc, SBb, SBa. Разница между этими тремя группами определяется формой и длиной перемычек, откуда, собственно, и начинаются рукава спиралей.

Спиральные галактики с перемычкой каталога Мессье

Эллиптические галактики

Форма галактик может варьироваться от идеально круглой до вытянутого овала. Их отличительной чертой является отсутствие центрального яркого ядра. Они обозначаются буквой Е и разделяются на 6 подгрупп (по форме). Такие формы обознаются от Е0 до Е7. Первые имеют почти круглую форму, тогда как Е7 характеризуются чрезвычайно вытянутой формой.

Эллиптические галактики каталога Мессье

Неправильные галактики

Они не имеют какой-либо выраженной структуры или формы. Неправильные галактики принято разделять на 2 класса: IO и Im. Наиболее распространенным является Im класс галактик (он имеет только незначительный намек на структуру). В некоторых случаях прослеживаются спиральные остатки. IO относится к классу галактик, хаотических по форме. Малые и Большие Магеллановы Облака – яркий пример Im класса.

Неправильные галактики каталога Мессье

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются нет
Процент от общего числа галактик 20% 55% 5%

Большой портрет галактик

Не так давно астрономы начали работать над совместным проектом для выявления расположения галактик во всей Вселенной. Их задача – получить более детальную картину общей структуры и формы Вселенной в больших масштабах. К сожалению, масштабы Вселенной сложно оценить для понимания многими людьми. Взять хотя бы нашу галактику, состоящую более чем из ста миллиардов звезд. Во Вселенной существуют еще миллиарды галактик. Обнаружены дальние галактики, но мы видим их свет таким, который был практически 9 млрд лет назад (нас разделяет такое большое расстояние).

Астрономам стало известно, что большинство галактик относятся к определенной группе (ее стали называть «кластер»). Млечный путь – часть кластера, который, в свою очередь, состоит из сорока известных галактик. Как правило, большинство таких кластеров представлены частью еще большей группировки, которую называют сверхскоплениями.

Наш кластер – часть сверхскопления, которое принято называть скоплением Девы. Такой массивный кластер состоит больше чем из 2 тыс. галактик. В то время, когда астрономы создали карту расположения данных галактик, сверхскопления начали принимать конкретную форму. Большие сверхскопления собрались вокруг того, что представляется как бы гигантскими пузырями или пустотами. Что это за структура, никто еще не знает. Мы не понимаем, что может находиться внутри этих пустот. По предположению, они могут быть заполнены определенным типом неизвестной ученым темной материи или же иметь внутри пустое пространство. Перед тем как мы узнаем природу таких пустот, пройдет много времени.

Галактические вычисления

Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).

В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.

Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.

Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.

Типы галактик

  • Спиральные галактики. По форме напоминают плоский спиралевидный диск с ярко выраженным центром, так называемым ядром. Наша галактика Млечный путь относится к этой категории. В данном разделе портала сайт Вы встретите много различных статей с описанием космических объектов нашей Галактики.
  • Галактики с перемычкой. Напоминают спиральные, только от них они отличаются одним существенным отличием. Спирали отходят не от ядра, а от так называемых перемычек. К этой категории можно отнести треть всех галактик Вселенной.
  • Эллиптические галактики обладают различными формами: от досконально круглой до овально вытянутой. Сравнительно со спиральными, у них отсутствует центральное ярко выраженное ядро.
  • Неправильные галактики не обладают характерной формой или структурой. Их нельзя отнести к какому-либо из перечисленных выше типов. Неправильных галактик насчитывается куда меньшее количество на просторах Вселенной.

Астрономы в последнее время запустили совместный проект по выявлению расположения всех галактик во Вселенной. Ученые надеются получить более наглядную картину ее структуры в большом масштабе. Размер Вселенной тяжело оценить человеческому мышлению и пониманию. Одна только наша галактика – это соединение сотней миллиардов звезд. А таких галактик насчитываются миллиарды. Мы можем видеть свет от обнаруженных дальних галактик, но не подразумевать даже того, что смотрим в прошлое, ведь световой луч доходит до нас за десятки миллиардов лет, настолько великое расстояние нас разделяет.

Астрономы также привязывают большинство галактик к определенным группам, которые называют кластерами. Наш Млечный путь относится к кластеру, который состоит из 40 разведанных галактик. Такие кластеры объединяют в большие группировки, называющиеся сверхскоплениями. Кластер с нашей галактикой входит в сверхскопление Девы. В составе этого гигантского кластера находится более 2 тысяч галактик. После того как ученые начали рисовать карту размещения данных галактик, сверхскопления получили определенные формы. Большинство галактических сверхскоплений окружали гигантские пустоты. Никто не знает, что может быть внутри этих пустот: космическое пространство наподобие межпланетного или же новая форма материи. Понадобится много времени, чтобы раскрыть эту загадку.

Взаимодействие галактик

Не менее интересным для взора ученых представляется вопрос о взаимодействии галактик как компонентов космических систем. Не секрет, что космические объекты находятся в постоянном движении. Галактики не исключение из этого правила. Некоторые из видов галактик могли бы стать причиной столкновения или слияния двух космических систем. Если вникнуть, какими представляются данные космические объекты, более понятными становятся масштабные изменения как результат их взаимодействия. Во время столкновения двух космических систем выплескивается гигантское количество энергии. Встреча двух галактик на просторах Вселенной – даже более вероятное событие, чем столкновение двух звезд. Не всегда столкновение галактик заканчивается взрывом. Небольшая космическая система может свободно пройти мимо своего более крупного аналога, изменив только незначительно его структуру.

Таким образом, происходит образование формирований, схожих внешним видом на вытянутые коридоры. В их составе выделяются звезды и газовые зоны, часто формируются новые светила. Бывают случаи, что галактики не ударяются, а только слегка соприкасаются друг с другом. Однако даже такое взаимодействие запускает цепочку необратимых процессов, которые приводят к огромным изменениям в структуре обеих галактик.

Какое будущее ожидает нашу галактику?

Как предполагают ученые, не исключено, что в далеком будущем Млечный путь сумеет поглотить крохотную по космическим размерам систему-спутник, которая расположена от нас на расстоянии 50 световых лет. Исследования показывают, что этот спутник имеет продолжительный жизненный потенциал, но при столкновении с гигантским соседом, вероятнее всего, закончит отдельное существование. Также астрономы предрекают столкновение Млечного пути и Туманности Андромеды. Галактики движутся друг другу навстречу со скоростью света. До вероятного столкновения ждать примерно три миллиарда земных лет. Однако будет ли оно на самом деле сейчас – тяжело рассуждать из-за нехватки данных о движении обеих космических систем.

Описание галактик на Kvant . Space

Портал сайт перенесет Вас в мир интересного и увлекательного космоса. Вы узнаете природу построения Вселенной, ознакомитесь со структурой известных больших галактик, их составляющими. Читая статьи о нашей галактике, нам становятся более понятными некоторые из явлений, которые можно наблюдать в ночном небе.

Все галактики от Земли находятся на огромном расстоянии. Невооруженным глазом можно увидеть только три галактики: Большое и малое Магеллановы облака и Туманность Андромеды. Все галактики сосчитать нереально. Ученые предполагают, что их количество составляет около 100 миллиардов. Пространственное расположение галактик неравномерно – одна область может содержать огромное их количество, во второй вовсе не будет ни одной даже маленькой галактики. Отделить изображение галактик от отдельных звезд астрономам не удавалось до начала 90-х годов. В это время насчитывалось около 30 галактик с отдельными звездами. Всех их причисляли к Местной группе. В 1990 году состоялось величественное событие в развитии астрономии как науки – на орбиту Земли был запущен телескоп Хаббла. Именно эта техника, а также новые наземные 10-метровые телескопы дали возможность увидеть значительно большее число разрешенных галактик.

На сегодняшний день «астрономические умы» мира ломают голову о роли темной материи в построении галактик, которая проявляет себя лишь в гравитационном взаимодействии. Например, в некоторых больших галактиках она составляет около 90% общей массы, в то время как карликовые галактики могут вовсе ее не содержать.

Эволюция галактик

Ученые считают, что возникновение галактик – это естественный этап эволюции Вселенной, который проходил под воздействием сил гравитации. Приблизительно 14 млрд. лет тому назад началось формирование протоскоплений в первичном веществе. Далее, под воздействием различных динамических процессов состоялось выделение галактических групп. Изобилие форм галактик объясняется разнообразием начальных условий в их формировании.

На сжатие галактики уходит около 3 млрд. лет. За данный период времени газовое облако превращается в звездную систему. Образование звезд происходит под воздействием гравитационного сжатия газовых облаков. После достижения в центре облака определенной температуры и плотности, достаточной для начала термоядерных реакций, образуется новая звезда. Массивные звезды образованы из термоядерных химических элементов, по массе превосходящих гелий. Данные элементы создают первичную гелиево-водородную среду. Во время грандиозных взрывов сверхновых звезд образуются элементы, тяжелее железа. Из этого следует, что галактика состоит из двух поколений звезд. Первое поколение – это наиболее старые звезды, состоящие из гелия, водорода и очень небольшого количества тяжелых элементов. Звезды второго поколения обладают более заметной примесью тяжелых элементов, поскольку они формируются из первичного газа, обогащенного тяжелыми элементами.

В современной астрономии галактикам как космическим структурам отводится отдельное место. В деталях изучаются виды галактик, особенности их взаимодействия, сходства и отличия, делается прогноз их будущего. Эта область содержит еще много непонятного, того, что требует дополнительного изучения. Современная наука решила много вопросов относительно видов построения галактик, но осталось также много белых пятен, связанных с образованием этих космических систем. Современные темпы модернизации исследовательской техники, разработка новых методологий исследования космических тел дают надежды на значительный прорыв в будущем. Так или иначе, галактики всегда будут в центре научных исследований. И основано это не только на человеческом любопытстве. Получив данные о закономерностях развития космических систем, мы сможем спрогнозировать будущее нашей галактики под названием Млечный путь.

Самые интересные новости, научные, авторские статьи об изучении галактик Вам предоставит портал сайт. Здесь Вы сможете найти захватывающие видео, качественные снимки со спутников и телескопов, которые не оставляют равнодушными. Погружайтесь в мир неизведанного космоса вместе с нами!

Галактика - это огромное скопление звёзд. Весь обозримый с Земли космос состоит из таких образований, в каждом из которых насчитываются миллиарды светил. Это как бы сияющие острова в бескрайней чёрной бездне. Все эти "острова" имеют сплюснутую к краям форму. То есть в центе наблюдается утолщение, а к краям звёздное скопление утончается. Звёздные "острова" располагаются на разном расстоянии друг от друга. Наиболее близкие объединяются в группы. Такие группы называются сверхскоплениями галактик .

К примеру, планета Земля входит в Солнечную систему . Та, в свою очередь, является составной частью Млечного пути , а тот считается частью Сверхскопления Девы . В это гигантское образования входят также Туманность Андромеды и галактика Треугольника. Это огромные звёздные гиганты. А помимо них существуют небольшие звёздные островки, которых на сегодняшний день насчитывается около 60. Все они принадлежат к местной группе, а всего в Сверхскопление Девы входит около 2 тыс. галактик. Пересечь из конца в коней это звёздное изобилие можно за 200 млн. световых лет.

Классификация галактик

Все, без исключения, галактики классифицируются по видам. Насчитывается их четыре: эллиптические (Е), линзообразные (SO), спиральные (S), неправильные (Ir).

Эллиптические имеют сферическую структуру с заметно уменьшающейся к краям яркостью. Между собой они различаются по степени сжатия. Чем она выше, тем быстрее скорость вращения. Примечательной чертой является отсутствие пылевых облаков. Из космоса они обычно видны в виде тёмных полос и пятен.

Спиральные состоят из ядра (балджа) и рукавов, которые представляют собой плотные скопления звёзд. Между ними простираются газопылевые облака, а также наблюдаются плотные скопления газа и звёзд. Данные образования имеют форму диска и окружены светящейся сферой (гало). Представляет она собой разреженный газ, звёзды и тёмную материю. Скорость вращения таких галактик высокая. В них наблюдаются активные процессы звёздообразования. Млечный путь относится именно к этим звёздным скоплениям. В одном из его рукавов (рукав Ориона) вращается наше Солнце.

Линзообразные напоминают спиральные. У них есть балдж, но отсутствуют рукава. Таких образований в видимой части космоса насчитывается порядка 15%. Со стороны они выглядят как яркое утолщение, окружённое слабо сияющим плоским ореолом.

Неправильные представляют собой продукт деформации спиральных либо эллиптических галактик. Огромные силы гравитации придали им хаотичную форму, в которой невозможно обнаружить чётко выраженное ядро и рукава. Наблюдается большое скопление газопылевых облаков. Таких звёздных скоплений насчитывается порядка 25% от общего числа ярких космических «островов».

Масса галактики и тёмная материя

Масса галактики складывается из массы миллиардов звёзд, газопылевых облаков и гало. Основной вес гало составляет тёмная материя . Это загадочная сущность, которая содержит в себе гипотетические космические объекты. Их масса составляет 95% всей массы Вселенной. На их невидимое присутствие указывает гравитация. То есть тёмная материя воздействует на видимые человеческим глазом светила.

Выражается это в неестественно высокой скорости движения звёзд, расположенных у края галактического диска. Создаётся впечатление, что их ускоряет какая-то неведомая сила. А породить её может только большая масса. Стало быть, она существует, но у неё никак не проявляется электромагнитное излучение. Поэтому нет ни гамма-излучения, ни ультрафиолета, ни инфракрасного излучения, ни видимого света. Есть только сплошная чернота, которую и воспринимает человеческий глаз. Тёмная материя характерна для всех видов галактик. Различается она лишь по процентному соотношению к светящейся массе.

Огромные газопылевые облака являются теми зонами, в которых рождаются новые звёзды. Некоторые из этих облаков имеют высокую температуру, поэтому их хорошо видно в телескопы. К примеру, в созвездии Ориона существует гигантская туманность, которую видно даже невооружённым взглядом. А вот холодные газопылевые образования поглощают свет, поэтому смотрятся как чёрные провалы среди сияющих мириад звёзд.

Распределение звёзд, а стало быть, светимости и массы в звёздных скоплениях неравномерное. В центре плотность максимальная, а ближе к краям она падает. Существуют шаровые скопления звёзд, диаметры которых составляют сотни световых лет. Постоянно вспыхивают сверхновые звёзды. Много чёрных дыр, которые образуются в основном на месте погасших массивных звёзд. Например, в Млечном пути их насчитывается около 100 млн.

Возникновение галактик и их эволюция

Как возникают галактики ? Вначале существует первичное вещество или гигантское газопылевое облако. В нём под действием динамических процессов, обусловленных силами гравитации, происходит выделение галактических групп. Эти группы начинают сжиматься и постепенно превращаются в звёздные системы. Сами звёзды также образуются за счёт сжатия облаков газа и пыли.

Растёт плотность и температура. Наконец, они повышаются до такой степени, что начинается термоядерная реакция. Так на небе возникает звезда или солнце. Звёзды бывают первого, второго и третьего поколения. В звёздах первого поколения наблюдается высокое содержание водорода и гелия. А вот примесей тяжёлых элементов мало. В звёздах второго поколения концентрация тяжёлых элементов более существенная, так как они образуются позже из того газа, который уже обогащён тяжёлыми элементами.

Звёзды рождаются, а галактика сжимается. Она приобретает рукава, в которых продолжается процесс образования солнц. Это уже возникают звёзды третьего поколения. Именно к ним принадлежит и наше родное Солнце.

Наконец, звёздное скопление приобретает спиральную форму, а запасы газопылевых облаков начинают истощаться. Проходят миллиарды лет, и спиральная форма меняется на линзообразную, так как запасы газа и пыли исчерпываются. Поэтому рукава исчезают, а свечение звёзд становится слабым.

По своему возрасту галактики соответствуют возрасту Вселенной, а та, как известно, расширяется. Возраст её оценивается в 13,5 млрд. лет, а её существование началось после Большого Взрыва. Именно, благодаря ему, и образовалось большинство космических объектов.

Чем же завершится расширение нашего космического пространства ? Здесь существует два прогноза. В первом случае расширение через какое-то время закончится, и силы притяжения начнут стягивать звёздные системы обратно в кучу. Когда всё вещество Вселенной соберётся вместе, то опять последует Большой Взрыв, и родится новая Вселенная. Во втором случае гигантские скопления звёзд будут разбегаться вечно.

А где заканчивается Вселенная ? Здесь можно привести аналогию с Землёй. Двигаясь всё время в одну сторону, можно вернуться в начальную точку. То же самое, по всей видимости, происходит и в космосе. Только изогнуто в нём само пространство. Поэтому края, как такового, нет.

Существует ли разумная жизнь в других звёздных системах ? Во Вселенной триллионы звёзд, а возле них вращаются планеты. Вполне возможно, что на некоторых из них существует жизнь, аналогичная земной. Но, учитывая гигантские расстояния, обнаружить очаги разума очень сложно. Так что остаётся надеяться только на Его величество случай.

Может быть, "попутный ветер" занесёт представителей высокоразвитой цивилизации на просторы Млечного пути, да ещё и в рукав Ориона. Вот тогда земляне и увидят пришельцев во всём их первозданном великолепии. Это будет самое величайшее событие в истории человечества.

Cтатью написал Александр Щербаков