Виды излучений

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Электролюминесценция (от латинского люминесценция - «свечение») – разряд в газе сопровождающийся свечением. Северное сияние есть проявление электролюминесценции. Используется в трубках для рекламных надписей.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры





Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.


Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат - спектрограф.

Схема устройства призменного спектрографа


История

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Фраунгоферовы линии


Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны . При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.


Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 - 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 - 1810), исследуя спектр, открыл, что за

его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека - загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.


Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение - самое коротковолновое электромагнитное излучение (<10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц - гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.


Электромагнитный спектр - ряд форм электромагнитного излучения, расположенных по порядку величин их частот или длин волн (рисунок 4).

Рисунок 4 - Спектр электромагнитных излучений

Электромагнитное излучение (электромагнитные волны) -- распространяющееся в пространстве возмущение электрических и магнитных полей.

Диапазоны электромагнитного излучения

  • 1 Радиоволны
  • 2. Инфракрасное излучение (Тепловое)
  • 3. Видимое излучение (Оптическое)
  • 4. Ультрафиолетовое излучение
  • 5. Жёсткое излучение

Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Особенностями электромагнитных волн c точки зрения теории колебаний и понятий электродинамики являются наличие трёх взаимноперпендикулярных векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Электромагнитные волны -- это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том, числе и через вакуум.

Общим для всех видов излучений является скорость их распространения в вакууме, равная 300 000 000 метров в секунду.

Электромагнитные излучения характеризуются частотой колебаний, показывающих число полных циклов колебаний в секунду, или длиной волны, т.е. расстоянием, на которое распространяется излучение за время одного колебания (за один период колебаний).

Частота колебаний (f), длина волны (л) и скорость распространения излучения (с) связаны между собой соотношением:

Электромагнитное излучение принято делить по частотным диапазонам. Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые или микрометровые. Волны с длиной л длиной менее 1 м (частота более 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

Инфракрасное излучение -- электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм).

Инфракрасное излучение занимает самую большую часть оптического спектра. Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.

Видимый свет представляет собой сочетание семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Перед красными областями спектра в оптическом диапазоне находятся инфракрасные, а за фиолетовыми - ультрафиолетовые. Но не инфракрасные, не ультрафиолетовые не видимы для человеческого глаза.

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-жёлтым светом. Этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.

Излучение оптического диапазона возникает при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота его излучения. При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие.

Кроме теплового излучения источником и приёмником оптического излучения могут служить химические и биологические реакции. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.

Жёсткие лучи. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ -- 0,1 МэВ, а энергия гамма-квантов -- больше 0,1 МэВ.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) -- электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 -- 10 нм, 7,9Ч1014 -- 3Ч1016 Гц). Диапазон условно делят на ближний (380--200 нм) и дальний, или вакуумный (200--10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Длинноволновое ультрафиолетовое излучение обладает сравнительно небольшой фотобиологической активностью, но способно вызвать пигментацию кожи человека, оказывает положительное влияние на организм. Излучение этого поддиапазона способно вызывать свечение некоторых веществ, поэтому его используют дли люминесцентного анализа химического состава продуктов.

Средневолновое ультрафиолетовое излучение оказывает тонизирующее и терапевтическое действие на живые организмы. Оно способно вызывать эритему и загар, превращать в организме жипотных необходимый для роста и развития витамин D в усвояемую форму, обладает мощным антирахитным действием. Излучение этого поддиапазона вредны для большинства растений.

Коротковолновое ультрафиолетовое излечение отличается бактерицидным действием, поэтому его широко используют для обеззараживания воды и воздуха, дезинфекции и стерилизации различного инвентаря и посуды.

Основной природный источник ультрафиолетового излучения на Земле Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от различных факторов.

Искусственные источники ультрафиолетового излучения многообразны. Сегодня искусственные источники ультрафиолетового излучения широко применяются в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т.д. предоставляются существенно большие возможности, чем при использовании естественного ультрафиолетового излучения излучения .

Физик Рентген открыл еще более коротковолновое излучение. Недолго думая, эти лучи назвали в честь самого Рентгена. Обладая хорошей проницающей способностью, рентгеновское излучение нашло применение в медицине и кристаллографии. Как Вы, наверное, наслышаны, рентгеновские лучи опять-таки вредны живым организмам. И атмосфера Земли из-за их проницательности, упомянутой только что, им не помеха. Нас выручает магнитосфера Земли. Она задерживает многие опасные излучения космоса. Длины волн лучей Рентгена заключены между 0,1 А и 100 А.

Самые короткие волны (меньше 0,1 А) у гамма-лучей. Это самый опасный вид радиоактивности, самое опасное электромагнитное излучение. Энергия фотонов гамма-лучей очень высока, и их излучение происходит при некоторых процессах внутри ядер атомов. Примером такого процесса может быть аннигиляция - взаимоуничтожение частицы и античастицы с превращением их массы в энергию. Регистрируемые, время от времени, таинственные гамма-вспышки на небе пока никак не объяснены астрономами. Ясно, что энергия явления, производящего вспышки, просто грандиозна. По некоторым подсчетам, на секунды, которые длится такая вспышка, она излучает больше энергии, чем вся остальная Вселенная. Гамма-излучение не пропускается к Земле ее магнитосферой .

Материал из Википедии - свободной энциклопедии

К:Википедия:Страницы на КУЛ (тип: не указан)

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа .

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны .
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

См. также

Напишите отзыв о статье "Электромагнитный спектр"

Примечания

Отрывок, характеризующий Электромагнитный спектр

– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.
Кутузов занимал небольшой дворянский замок около Остралиц. В большой гостиной, сделавшейся кабинетом главнокомандующего, собрались: сам Кутузов, Вейротер и члены военного совета. Они пили чай. Ожидали только князя Багратиона, чтобы приступить к военному совету. В 8 м часу приехал ординарец Багратиона с известием, что князь быть не может. Князь Андрей пришел доложить о том главнокомандующему и, пользуясь прежде данным ему Кутузовым позволением присутствовать при совете, остался в комнате.
– Так как князь Багратион не будет, то мы можем начинать, – сказал Вейротер, поспешно вставая с своего места и приближаясь к столу, на котором была разложена огромная карта окрестностей Брюнна.
Кутузов в расстегнутом мундире, из которого, как бы освободившись, выплыла на воротник его жирная шея, сидел в вольтеровском кресле, положив симметрично пухлые старческие руки на подлокотники, и почти спал. На звук голоса Вейротера он с усилием открыл единственный глаз.
– Да, да, пожалуйста, а то поздно, – проговорил он и, кивнув головой, опустил ее и опять закрыл глаза.
Ежели первое время члены совета думали, что Кутузов притворялся спящим, то звуки, которые он издавал носом во время последующего чтения, доказывали, что в эту минуту для главнокомандующего дело шло о гораздо важнейшем, чем о желании выказать свое презрение к диспозиции или к чему бы то ни было: дело шло для него о неудержимом удовлетворении человеческой потребности – .сна. Он действительно спал. Вейротер с движением человека, слишком занятого для того, чтобы терять хоть одну минуту времени, взглянул на Кутузова и, убедившись, что он спит, взял бумагу и громким однообразным тоном начал читать диспозицию будущего сражения под заглавием, которое он тоже прочел:
«Диспозиция к атаке неприятельской позиции позади Кобельница и Сокольница, 20 ноября 1805 года».
Диспозиция была очень сложная и трудная. В оригинальной диспозиции значилось:
Da der Feind mit seinerien linken Fluegel an die mit Wald bedeckten Berge lehnt und sich mit seinerien rechten Fluegel laengs Kobeinitz und Sokolienitz hinter die dort befindIichen Teiche zieht, wir im Gegentheil mit unserem linken Fluegel seinen rechten sehr debordiren, so ist es vortheilhaft letzteren Fluegel des Feindes zu attakiren, besondere wenn wir die Doerfer Sokolienitz und Kobelienitz im Besitze haben, wodurch wir dem Feind zugleich in die Flanke fallen und ihn auf der Flaeche zwischen Schlapanitz und dem Thuerassa Walde verfolgen koennen, indem wir dem Defileen von Schlapanitz und Bellowitz ausweichen, welche die feindliche Front decken. Zu dieserien Endzwecke ist es noethig… Die erste Kolonne Marieschirt… die zweite Kolonne Marieschirt… die dritte Kolonne Marieschirt… [Так как неприятель опирается левым крылом своим на покрытые лесом горы, а правым крылом тянется вдоль Кобельница и Сокольница позади находящихся там прудов, а мы, напротив, превосходим нашим левым крылом его правое, то выгодно нам атаковать сие последнее неприятельское крыло, особливо если мы займем деревни Сокольниц и Кобельниц, будучи поставлены в возможность нападать на фланг неприятеля и преследовать его в равнине между Шлапаницем и лесом Тюрасским, избегая вместе с тем дефилеи между Шлапаницем и Беловицем, которою прикрыт неприятельский фронт. Для этой цели необходимо… Первая колонна марширует… вторая колонна марширует… третья колонна марширует…] и т. д., читал Вейротер. Генералы, казалось, неохотно слушали трудную диспозицию. Белокурый высокий генерал Буксгевден стоял, прислонившись спиною к стене, и, остановив свои глаза на горевшей свече, казалось, не слушал и даже не хотел, чтобы думали, что он слушает. Прямо против Вейротера, устремив на него свои блестящие открытые глаза, в воинственной позе, оперев руки с вытянутыми наружу локтями на колени, сидел румяный Милорадович с приподнятыми усами и плечами. Он упорно молчал, глядя в лицо Вейротера, и спускал с него глаза только в то время, когда австрийский начальник штаба замолкал. В это время Милорадович значительно оглядывался на других генералов. Но по значению этого значительного взгляда нельзя было понять, был ли он согласен или несогласен, доволен или недоволен диспозицией. Ближе всех к Вейротеру сидел граф Ланжерон и с тонкой улыбкой южного французского лица, не покидавшей его во всё время чтения, глядел на свои тонкие пальцы, быстро перевертывавшие за углы золотую табакерку с портретом. В середине одного из длиннейших периодов он остановил вращательное движение табакерки, поднял голову и с неприятною учтивостью на самых концах тонких губ перебил Вейротера и хотел сказать что то; но австрийский генерал, не прерывая чтения, сердито нахмурился и замахал локтями, как бы говоря: потом, потом вы мне скажете свои мысли, теперь извольте смотреть на карту и слушать. Ланжерон поднял глаза кверху с выражением недоумения, оглянулся на Милорадовича, как бы ища объяснения, но, встретив значительный, ничего не значущий взгляд Милорадовича, грустно опустил глаза и опять принялся вертеть табакерку.
– Une lecon de geographie, [Урок из географии,] – проговорил он как бы про себя, но довольно громко, чтобы его слышали.
Пржебышевский с почтительной, но достойной учтивостью пригнул рукой ухо к Вейротеру, имея вид человека, поглощенного вниманием. Маленький ростом Дохтуров сидел прямо против Вейротера с старательным и скромным видом и, нагнувшись над разложенною картой, добросовестно изучал диспозиции и неизвестную ему местность. Он несколько раз просил Вейротера повторять нехорошо расслышанные им слова и трудные наименования деревень. Вейротер исполнял его желание, и Дохтуров записывал.
Когда чтение, продолжавшееся более часу, было кончено, Ланжерон, опять остановив табакерку и не глядя на Вейротера и ни на кого особенно, начал говорить о том, как трудно было исполнить такую диспозицию, где положение неприятеля предполагается известным, тогда как положение это может быть нам неизвестно, так как неприятель находится в движении. Возражения Ланжерона были основательны, но было очевидно, что цель этих возражений состояла преимущественно в желании дать почувствовать генералу Вейротеру, столь самоуверенно, как школьникам ученикам, читавшему свою диспозицию, что он имел дело не с одними дураками, а с людьми, которые могли и его поучить в военном деле. Когда замолк однообразный звук голоса Вейротера, Кутузов открыл глава, как мельник, который просыпается при перерыве усыпительного звука мельничных колес, прислушался к тому, что говорил Ланжерон, и, как будто говоря: «а вы всё еще про эти глупости!» поспешно закрыл глаза и еще ниже опустил голову.
Стараясь как можно язвительнее оскорбить Вейротера в его авторском военном самолюбии, Ланжерон доказывал, что Бонапарте легко может атаковать, вместо того, чтобы быть атакованным, и вследствие того сделать всю эту диспозицию совершенно бесполезною. Вейротер на все возражения отвечал твердой презрительной улыбкой, очевидно вперед приготовленной для всякого возражения, независимо от того, что бы ему ни говорили.

СПЕКТРАЛЬНЫЕ МЕТОДЫ АНАЛИЗА

Спектральные методы анализа основаны на регистрации спектров испускания или поглощения атомов и молекул и измерении интенсивности электромагнитного излучения в узком энергетическом диапазоне. Методы спектрального анализа подразделяются на радиочастотную, оптическую, рентгеновскую и др. виды спектрометрии в зависимости от того, в какой области электромагнитного спектра проводятся измерения.

Электромагнитное излучение может быть охарактеризовано либо волновым , либо энергетическим параметрами. Все эти величины взаимосвязаны и выбор той или иной величины определяется удобствами при работе.

Волновой параметр выражается длиной волны l (м, см, мкм, нм или Å), частотой колебаний n (с -1 или герц, 1 Гц = 1 с -1), либо волновым числом uu (м -1 , см -1). В некоторых книгах волновое число обозначают знаком . Частота электромагнитных колебаний n связана с длиной волны l соотношением n = c/l, где с - скорость света в вакууме, равная 2.997925∙10 8 м/с (приближенно 3∙10 8 м/с). В спектроскопии принято называть частотой также и волновое число u = 1/l , показывающее, сколько длин волн умещается на интервале 1 см (т.е. если l = 10 -5 м = 10-3 см, то u = 1000 см -1). В нарушение требования об использовании системы СИ волновые числа измеряют по-прежнему в обратных сантиметрах (см -1). 1 см ≡ 11.9631 Дж /моль.

Частота линии спектра поглощения связана с разностью энергий ΔЕ возбужденного и основного состояний:

ΔЕ= hν = Е возб. - Е осн.,

где h – константа Планка (h = 6.626·10 -34 Дж·с).

Как следует из вышеприведенной формулы кванты излучения с более короткой длиной волны (с более высокой частотой) имеют более высокую энергию.

Рис.1. Схема квантования энергии электрона в атомарном водороде (на схеме не указаны р - и d – подуровни). Энергия электрона с главным квантовым числом n = 1 соответствует основному состоянию атома (1s 1). Другие состояния (2s 1 , 3s 1 , 4s 1 , ….) – возбужденные. Переход электрона из возбужденных состояний 2s 1 , 3s 1 , 4s 1 , … на уровень 1s 1 соответствует серии Лаймана, из состояний 3s 1 , 4s 1 , … на уровень 2s 1 - серии Бальмера и т.д.

Рис. 2. Спектр испускания атомарного водорода - светлые линии и полосы на черном фоне. черные линии на белом фоне. Спектры поглощения выглядят иначе – черные линии и полосы (на том же самом месте) на белом фоне. белые линии и полосы на черном фоне. Расширение линий связано с

Спектр электромагнитного излучения

Е кванта →

10 5 3∙10 -4 8∙10 -7 4∙10 -7 10 -8 10 -12 l, м
Радиочастотная область Микроволновая область Инфракрасная область Видимое излучение Ультрафиолетовая область Рентгеновское излучение g - излучение космические лучи
Вращательный спектр К-вр. Электронный спектр Изменения Изменения
Изменение энергетического состояния спинов электронов (ЭПР - спектроскопия). Изменение энергетического состояния спинов ядер (ЯМР - спектроскопия) Колебательно - вращательный спектр (колебания атомов в молекуле). ИК - спектроскопия Изменения в энергетическом состоянии внешних (валентных) электронов (Спектроскопия в УФ и видимой области, КР - спектроскопия) в энергетическом состоянии внутренних электронов атомов (Рентгеноско-пия) в энергетическом состоянии ядер (ядерно- физические методы анализа)


Электромагнитный спектр простирается от жесткого g- излучения с очень короткой длиной волны до длинных радиоволн. Каждая из областей спектра связана с определенными видами внутримолекулярных движений, процессами в атомах и ядрах. При поглощении или испускании квантов света изменяется энергия электронов в электронных оболочках атомов и молекул, энергия колебания атомных ядер в молекуле и энергия вращения молекулы.

Все виды внутримолекулярных движений взаимосвязаны, но для каждого из них существует определенный набор допустимых (разрешенных) значений энергии.

1.1.1 Молекулярные спектры испускания, поглощения и комбинационного (см.п 1.4) рассеяния

Современное учение о спектрах электромагнитного излучения базируется на квантовой теории, согласно которой атомная система является устойчивой лишь в определенных стационарных состояниях, соответствующих некоторой дискретной последовательности значений энергии. Переход между двумя квантовыми состояниями 1 « 2 с энергиями Е 1 и Е 2 приводит к поглощению (абсорбции), ‌E 1 < E 2‌ , или испусканию (эмиссии), ‌E 1 > E 2‌ , энергии в виде электромагнитного излучения с частотой n, определяемой уравнением Бора:

DE =‌ ‌|E 1 - E 2‌ | ‌‌= hn,

где E 1 и E 2 - энергия начального и конечного состояний соответственно, hh - постоянная Планка, n - частота поглощаемого или испускаемого излучения. h = 6.616 10 -34 Дж∙с

Согласно уравнению частот Бора в спектре возникает линия с частотой (с -1)

n = |E 1 - E 2‌ | /h

или с волновым числом (см -1)

u = |E 1 - E 2‌ | /hc.

Переходы с нижнего энергетического уровня на верхний порождают спектр поглощения (абсорбции), с верхнего на нижний - спектр испускания (эмиссии) (рис.2).

В оптико - спектрометрических методах анализа используют дискретность энергетических уровней молекул и испускание или поглощение излучения, которое связано с переходом молекулы или атома с одного энергетического уровня на другой (Рис.1). Энергию квантов света в спектроскопии выражают в обратных сантиметрах, учитывая, что 1 см -1 ≡ 11.9631 Дж/моль. Наиболее высокую энергию имеют кванты, возникающие при электронных переходах (от 40 до 400 кДж/моль), затем следуют колебательные кванты (от 4 до 40 кДж/моль) и затем вращательные, с самой малой энергией (0.4 - 4 кДж/моль). Электронный переход одновременно сопровождается колебательными и вращательными переходами, т.е. представляет собой электронно - колебательно - вращательный переход. (рис.3).

Рис. 31. Схема энергетических уровней двухатомной молекулы: Е е - уровни энергии электронов; Е v – уровни колебательной энергии (vibration – вибрация, колебание): Е r – уровни вращательной энергии (rotation –вращение): v evr – переходы, соответствующие электронно – колебательно - вращательному спектру: v v r - переходы, соответствующие колебательно-вращательному спектру; v r – переходы, соответствующие вращательному спектру. [Золотов. Основы аналитической химии. Книга 2. с.207]

Энергия кванта такого перехода выражается формулой

e эл.-кол.-вр = e эл + e кол + e вр = hn эл + hn кол + hn вр,

а частота соответствующей линии в спектре равна сумме частот (это одна линия):

n эл.-кол.-вр = n эл + n кол + n вр.

Для краткости электронно – колебательно - вращательный спектр называют просто электронным спектром. Он состоит из множества серий полос в УФ и видимой области. Каждая серия отвечает одному электронныому переходаму с более высоких уровней на какой-либо ниже расположенный (рис.1). Энергия квантов, возбуждающих такие переходы, повторим, лежит в области 40 ÷ 400 кДж/моль. Волновые числаЧастоты νu квантов электронныхого переходова лежат в диапазоне (3.3 ÷ 33.3)∙10 3 см -1 , что соответствует длинам волнт.е. l от 0.3 до 3 мкм.

Кванты более низкой энергии в области 4 ÷ 40 кДж/моль отвечают переходам между колебательными уровнями. При этом неизбежно происходит и изменение вращательных состояний, еще более низких по энергии, и возникает колебательно-вращательный спектр. Энергия перехода и частота линий в колебательно-вращательном спектре связаны соотношениями:

e кол.-вр = e кол + e вр = hn кол + hn вр.

n кол.-вр = n кол + n вр.

При данном колебательном переходе с частотой n кол возникает полоса, отдельные линии которой отвечают разным комбинациям слагаемых в сумме n кол + n вр. Волновые числа u Частоты колебательных квантов n простираются от 30 до 4000 см -1 (l от 2.5 мкм до 0.3 мм). Это далекая инфракрасная область, вплотную смыкающаяся с областью миллиметровых радиоволн.

Кванты еще более низкой энергии (0.4 ÷ 4 кДж/моль) могут вызывать только переходы между вращательными уровнями и дают начало чисто вращательному спектру. Энергии перехода и частоты во вращательном спектре связаны соотношением

e вр = hn вр.

Каждая линия в таком спектре имеет частоту n вр , отвечающую i -му вращательному переходу. Вращательный спектр имеет частоты порядка 10 -1 ÷ 1 см -1 и простирается в область субмиллиметровых (МВ - микроволновая область) и сантиметровых (СВЧ - сверхвысокочастотная область) радиоволн.

Рис.3.Форма полос в молекулярных спектрах: а - гладкий колокообразный контур; б – полоса с выраженной тонкой структурой. Характеристики полосы: I max , v max , Δv. Спектральная полоса –это совокупность близко расположенных спектральных линий, образующихся в результате наложения на электронный переход сопутствующих ему колебательных и вращательных переходов.

Контур спектральной полосы в молекулярных спектрах может быть гладким колокообразным или обнаруживать тонкую структуру (рис.3). Полосу без разрешенной тонкой структуры принято характеризовать, как и спектральную линию, тремя параметрами: частотой n max (длиной волны l max ); значением максимальной интенсивности (пиковой интенсивности) I max ; шириной Δv λ ). Ширина полос в колебательно-вращательном спектре может достигать нескольким десятков обратных сантиметров, а в электронном – несколько тысяч обратных сантиметров.

1.1.2 Возбуждение спектра

Энергетическое воздействие на вещество может осуществляться тепловым, электромагнитным, химическим и другими путями. Все эти воздействия приводят к испусканию веществом электромагнитных излучений. Энергия излучается в виде линейчатого спектра, характеризующегося дискретными значениями длин волн. При прохождении излучения сплошного спектра через вещество, напротив, происходит поглощение энергии и образуется спектр поглощения, также характеризующийся дискретными значениями длин волн. Отношение интенсивностей полосы, отвечающей одному и тому же переходу m « n , в спектре поглощения (абсорбции) I a и спектре испускания (эмиссии) I e различно и зависит от частоты перехода. Теория приводит к соотношению

т.е. интенсивность испускания I e во много раз превосходит интенсивность поглощения I a в области высоких частот . Поэтому спектры испускания удобнее изучатьизучают в видимой и ультрафиолетовой области. В области малых частот (ИК- и СВЧ- области) удобнее изучать спектры поглощения. На этих частотах, наоборот, интенсивнее спектры абсорбции.

С другой стороны, спектры испускания известны для атомов (изучены атомные спектры) и лишь сравнительно небольшого числа достаточно простых молекул. Поэтому молекулярные спектры изучают главным образом как спектры поглощения , когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную раствором вещества. Так как каждый структурный элемент молекулы поглощает энергию только в характерной для него области, то определив частоту и количественно оценив интенсивность поглощаемого излучения можно установить структуру соединения (качественный анализ) и определить количество исследуемого вещества (количественный анализ).

электромагнитного излучения, упорядоченная по длинам совокупность монохроматических волн, на которую разлагается свет или иное электромагнитное излучение. Типичный пример спектра – хорошо известная всем радуга. Возможность разложения солнечного света на непрерывную последовательность лучей разных цветов впервые экспериментально показал И.Ньютон в 1666. Направив на трехгранную призму узкий пучок света, проникавший в затемненную комнату через маленькое отверстие в ставне окна, он получил на противоположной стене изображение окрашенной полоски с радужным чередованием цветов, которая была названа им латинским словом spectrum . Проводя опыты с призмами, Ньютон пришел к следующим важным выводам: 1) обычный «белый» свет является смесью лучей, каждый из которых имеет свой собственный цвет; 2) лучи разных цветов, преломляясь в призме, отклоняются на различные углы, вследствие чего « белый » свет разлагается на цветные составляющие. Со временем ньютоновская интерпретация природы света завоевала всеобщее признание, поскольку хорошо согласовалась с экспериментальными данными, а сам эксперимент был принят учеными за основу научного подхода к изучению явлений природы.

Видимый свет – это лишь малая часть широкого спектра электромагнитного излучения, включающего радиоволновое, микроволновое, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Каждый вид излучения представляет собой волну из взаимно перпендикулярных электрической и магнитной компонент, периодически меняющихся с определенными частотами (иначе говоря, волна имеет определенную длину). Волны, которые воспринимаются глазом человека, принадлежат видимой области; именно к ней в свое время относился введенный Ньютоном термин «спектр». В современной науке этот термин распространен на весь диапазон электромагнитного излучения.

Спектральные исследования сыграли ключевую роль в познании Вселенной. С их помощью удалось понять строение не только атомов и молекул, но и таких астрофизических объектов, как Солнце, звезды, планеты, и получить подробную информацию об их движении. Разработанная теория спектров и накопленные эмпирические данные позволили создать метод спектрального анализа для качественного и количественного определения состава химических веществ. См. также ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ; РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ; СВЕТ.

Классификация спектров. Все спектры делятся на два основных класса: спектры испускания (или эмиссионные) и спектры поглощения. Каждый класс, в свою очередь, подразделяется на непрерывные (сплошные), полосатые и линейчатые спектры. Поясним эту классификацию на примере видоизмененной схемы опыта Ньютона (которая, заметим, была применена лишь столетие спустя). Основное нововведение в этой схеме состояло в том, что круглое отверстие в ставне было заменено коллиматором – узкой щелью и линзой перед призмой. Вторая линза помещалась за призмой и предназначалась для проецирования спектра на экран, как это делал сам Ньютон в своих более поздних опытах. Если на щель простого спектроскопа (как теперь называется устройство, состоящее из щели, линз и призмы) направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Если же щель осветить пламенем, в которое внесена крупинка поваренной соли (хлорида натрия NaCl ), то спектр будет фактически состоять из двух близко расположенных ярких желтых линий. Аналогично, если щель осветить красным светом неоновой рекламной трубки, то на экране появится ряд ярких красных линий. Здесь каждая линия – это изображение щели спектроскопа, образованное светом определенной длины волны, а полученный спектр называется линейчатым спектром испускания. Существуют спектры, состоящие из групп линий, расположенных настолько тесно, что каждая группа выглядит как узкий участок непрерывного спектра. Такие спектры называются полосатыми. Линии Фраунгофера. В 1802, изучая непрерывный спектр Солнца, У.Волластон заметил в нем множество тонких темных линий. Двенадцатью годами позже Й.Фраунгофер, заменив зрительную трубу в спектроскопе Волластона трубой теодолита, точно измерил угловое положение темных линий. В честь него эти линии теперь называются фраунгоферовыми линиями солнечного спектра. См. также СОЛНЦЕ. Исследования Кирхгофа. В 1859 Г.Кирхгоф сформулировал свой знаменитый закон, связывающий поглощение и испускание. Суть его заключается в том, что любое вещество хорошо поглощает излучение именно тех длин волн, которое само интенсивно испускает. На основании этого закона Кирхгоф следующим образом объяснил появление фраунгоферовых линий в непрерывном солнечном спектре. Газ, находящийся во внешних, наиболее холодных слоях солнечной атмосферы, избирательно поглощает из сплошного спектра ярко светящейся фотосферы Солнца излучение тех длин волн, которые соответствуют линиям испускания возбужденного газа. Поэтому на отдельных участках непрерывного солнечного спектра резко падает интенсивность и появляются темные линии.

Одно из самых важных открытий физической оптики состоит в том, что каждый атом и каждая молекула испускают характерный только для них линейчатый спектр. Многие исследователи, работавшие после Фраунгофера, были близки к этому открытию, но лишь Кирхгоф смог четко сформулировать его и применить на практике. Он понял, что характеристические спектры и закон, связывающий поглощение и испускание, позволяют спектральным методом определить химический состав солнечной атмосферы и, более того, что они являются универсальным инструментом, дающим возможность в лабораторных условиях обнаруживать и анализировать различные элементы (так, к примеру, были открыты рубидий и цезий). Его работы, выполненные совместно с Р.Бунзеном, заложили основы современной спектроскопии. См. также СПЕКТРОСКОПИЯ.

СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В соответствии с длинами волн ( l ) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l , но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным. Радиоволны. Электромагнитное излучение с длинами волн примерно от 1 см до 30 000 м составляет радиоволновую часть спектра. Поскольку скорость любого электромагнитного излучения в вакууме составляет 300 000 000 м / с и равна произведению длины волны на частоту ( c = ln ), то радиоволновому интервалу соответствуют частоты примерно от 10 000 герц (Гц, 1Гц = 1 с –1 ) до 30 000 мегагерц (МГц, 1МГц = 10 6 Гц). Излучение таких частот получают с помощью ламповых или полупроводниковых генераторов, а для регистрации применяют резонансные радиосхемы.

Радиоволны используются в основном в системах связи и навигации. В 1932 было открыто радиоволновое излучение нашей Галактики, что в значительной мере стимулировало рождение новой науки – радиоастрономии. Крупного успеха радиоастрономия добилась в 1951, когда были обнаружены радиоволны, испускаемые облаками межзвездного водорода на единственной частоте, отвечающей длине волны около 21 см. В лабораториях радиоспектроскопия широко применяется для исследования атомов и молекул. См. также РАДИОАСТРОНОМИЯ.

Микроволновое излучение. Излучение с длинами волн примерно от 0,5 мм до 30 см (частотный интервал от 600 000 до 1000 МГц) относится к микроволновому диапазону спектра. Для генерации микроволнового излучения применяются специальные электронные лампы (клистроны). Бурное развитие микроволновая техника получила в период Второй мировой войны в связи с резко возросшими требованиями к эффективности средств связи и радиолокации. Микроволновое излучение естественных источников обусловлено главным образом вращением молекул, хотя известны и СВЧ-спектры атомов. Исследование микроволновых вращательных спектров молекул является одни из самых точных методов определения структуры молекул газа. Инфракрасное излучение. Инфракрасное (ИК) излучение было открыто английским астрономом В.Гершелем в 1800. Пользуясь простым термометром, он установил, что тепловое излучение имеет наибольшую интенсивность за пределами видимой области вблизи его красной границы. Инфракрасная область спектра начинается примерно от 0,8 мкм и простирается примерно до 1 мм. Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней ИК-области (до ~ 1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами – детекторами, чувствительными к нагреву инфракрасным излучением.

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.

Видимая область. Видимой области соответствует диапазон длин волн от 400 нм (фиолетовая граница) до 760 нм (красная граница), что составляет ничтожную часть полного электромагнитного спектра. Источниками видимого света в лаборатории обычно служат раскаленные твердые тела, электрический разряд и лазеры (обычно лазеры на красителях). Перестраиваемые лазеры на красителях позволяют перекрывать большие участки видимого спектра (например, краситель родамин 6 G излучает в интервале 570–660 нм). Наиболее распространенными детекторами видимого излучения являются глаз человека, фотопластинки, фотоэлементы, фотоумножители. Видимые спектры связаны с квантовыми переходами внешних электронов атомов и молекул и содержат важнейшую информацию об их электронной структуре. Ультрафиолетовое излучение. Ультрафиолетовая (УФ) спектральная область была открыта в 1801, когда И.Риттер и У.Волластон, наблюдая солнечный спектр, обнаружили, что наибольшее почернение хлорида серебра вызывается излучением, более коротковолновым, нежели фиолетовое. К УФ-области относится излучение с длинами волн от 10 до 400 нм. УФ-излучение с длинами волн короче 185 нм поглощается воздухом, поэтому приборы для этого диапазона должны быть вакуумными. Поскольку лишь немногие из обычно прозрачных веществ остаются прозрачными для «вакуумного ультрафиолета», в таких приборах применяется отражательная оптика. Для регистрации ультрафиолетового излучения используются специальные фотопластинки и фотоэлектрические детекторы. Большинство УФ-спектров связано с квантовыми переходами внешних электронов атомов и молекул, поэтому УФ-спектроскопия применяется для исследования строения атомов. Рентгеновское излучение. В 1895 было сделано одно из самых важных открытий физики: В.Рентген, изучая электрические разряды в газах, заметил, что бумажный экран, подвергнутый специальной обработке, начинает светиться, если его поднести к работающей газоразрядной трубке, и сделал вывод, что свечение возникает под действием нового, неизвестного проникающего излучения, названного им X -лучами. Из дальнейших экспериментов выяснилось, что X -лучи – это электромагнитное излучение, длинноволновая граница которого перекрывается с вакуумным ультрафиолетом, а коротковолновая составляет малую долю нанометра.

Рентгеновское излучение с непрерывным спектром часто называют тормозным излучением, поскольку оно возникает при замедлении электронов, бомбардирующих анод рентгеновской трубки. См. также РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.

Гамма-излучение. Гамма-излучение отличается от рентгеновского меньшей длиной волны (0,1–10 –6 нм) и своим происхождением. Ядро, получив в результате ядерной реакции избыточную энергию, может оказаться в возбужденном состоянии. Возвращаясь в состояние с более низкой энергией, оно отдает избыточную энергию, испуская гамма-квант. Изучение спектров гамма-излучения позволяет получить важную информацию о строении ядер и ядерных взаимодействиях, подобно тому, как оптические спектры помогают понять строение атомов и молекул и действующие в них силы. ЛИТЕРАТУРА Ельяшевич М.А. Атомная и молекулярная спектроскопия . М., 1962
Собельман И.И. Введение в теорию атомных спектров . М., 1964