В ряде планет она сходна с соседями Марсом, Меркурием, Венерой, ее строение предопределило возможность появления жизни и человека разумного. Верхняя оболочка Земли дает человеку металлы, топливо, почву для выращивания хлеба. Она последовательно предоставила людям для топлива древесину, каменный уголь, нефть, уран. Уникальность Земли предопределили два фактора: размер планеты и расстояние от Солнца. Расстояние от Солнца определило температуру на поверхности Земли благоприятную для биосферы в отличие от горячей поверхности Венеры и холодной Марса. В создании климатического оптимума велика роль атмосферы, о чем скажем в 4-ой лекции. Земля – единственная планета, сохраняющая вулканическую активность. Это обеспечивает выделение углекислого газа, необходимого зеленым растениям для производства органического вещества и кислорода. Активность обеспечивает поставку всех элементов таблицы Менделеева, обеспечивает денудацию, благодаря чему обнажаются месторождения полезных ископаемых, формируется прекрасный рельеф гор, холмистых местностей и морских побережий. Альтернатива этому - бесплодная равнина, сухая или заболоченная (Казахстан, Западная Сибирь). Эндогенная активность Земли может продлиться еще 1-1,5 млрд. лет. Человек – последнее творение Божие. Перед ним были созданы животные. Господь создал для человека все необходимое для жизни с самого начала предусмотрев все. Земля – идеальный дом для человека, в котором все заготовлено для активной жизни.

15. Строение молекулы воды и его экологическое значение.

В молекуле воды химически связаны два атома водорода с одним атомом кислорода. Её химическая формула Н 2 О. В молекуле воды химически связаны два атома водорода с одним атомом кислорода. Её химическая формула Н 2 О. Расположение ядер атомов таково, что ни образуют равнобедренный треугольник с углом 104 о 27’ при вершине. Вокруг них вращаются 5 пар электронов. Одна из этих пар вращается вокруг ядра кислорода. Она показана на рисунке небольшим кружком, охватывающим нижнюю жирную точку. Две пары связывают ядро кислорода О с двумя ядрами водорода H. Их орбиты показаны двумя большими эллипсами. Ещё две пары электронов вращаются по двум эллиптическим орбитам у ядра кислорода. Последние две пары создают слабые отрицательные заряды в нижней части фигуры молекулы. В верхней части её, напротив, имеются слабые положительные заряды, созданные не полностью компенсированными положительными зарядами ядер водорода. Таким образом, у молекулы воды имеются 4 вершины, из которых две имеют положительный заряд и две имеют отрицательный. Нижняя пара эллипсов и верхняя пара эллипсов расположены в разных плоскостях. Эти плоскости взаимно перпендикулярны. Поэтому ось, проведенная через полюса молекулы с положительными зарядами перпендикулярна к оси, проведенной через полюса с отрицательными зарядами. Оси эти не пересекаются. Они расположены по разные стороны молекулы. Такое строение молекулы воды создаёт её создает особые свойства, Вода это универсальный слабый растворитель. Молекулы воды своими зарядами растаскивают кристаллы солей и молекулы органических кислот на ионы. В веществе, попавшем в воду, межатомные силы ослабляются в 80 раз. Для физических тел, попавших в воду этот эффект действует только на поверхностях, контактирующих с водой. В зависимости от прочности внутренних связей в веществе, оно растворяется в воде с той или иной скоростью. Вода, разлогая вещества на ионы, сама не разлагается. Очень устойчива. Благодаря этому она «моет» лицо Земли, каждое животное и растение снаружи. Она «моет» их внутри, выводя шлаки из организма. Она инертный растворитель и сама не влияет на ткани, а только несет нужное и уносит лишнее. Вода растворяет газы: несет кислород водной фауне. Пространственная решетка жидких кристаллов воды имеет пустоты внутри себя. В пустотах могут располагаться ионы растворенного неорганического вещества или целые органические молекулы.

16. Межмолекулярые связи в воде и их экологическое значение. Молекулы воды не разделяются на ионы. Напротив, в статичной массе воды они соединяются в цепи и решетчатые структуры. В жидкой воде существуют жидкие кристаллы. Структура молекулы воды, тетраэдр с четырьмя электрически заряженными вершинами. В броуновском беспорядочном медленном движении молекулы воды встречаются противоположно заряженными вершинами. При этом они слабо соединяются между собой, гася заряды. Ядра водорода приближаются относительно свободным электронам кислорода и временно скрепляются с ними. Эти связи называются водородными. Они в несколько раз слабее ковалентных и не разрушают молекул. Водородные связи легко разрушаются при механических воздействиях в бурном турбулентном потоке или при интенсивном нагревании воды, тем более при её кипении. Тетраэдрическая фигура молекулы воды позволяет образовать четыре связи для одной молекулы, которая благодаря этому может ассоциироваться с одной, двумя, тремя или четырьмя молекулами в пары, цепи, плоские и пространственные решетки. Структурированная в жидкие кристаллы вода имеет как бы резервную, «зачехленную», способность к растворению. Она медленно растворяет погруженное вещество, но стоит её взболтать или согреть в теплокровном организме, как водородные связи частично разрушаются и вода расчленяет на ионы растворимое тело. Пространственная решетка жидких кристаллов воды имеет пустоты внутри себя. В пустотах могут располагаться ионы растворенного неорганического вещества или целые органические молекулы. Реально можно убедиться в существовании пустот следующим простейшим экспериментом. В стакан воды можно насыпать сахар(органическое вещество) или поваренную соль, наполнив тем его до краев. Когда твердое вещество растворится, то раствор снова не будет доставать краев сосуда, как это было до заполнения его сахаром (солью). Твердое вещество вошло в пространство между молекулами воды. При этом плотность раствора станет больше чем плотность пресной воды.Особенно значительно для биосферы и значительно для нас, желающих видеть волю Творца, что пустоты жидких кристаллов создаются по форме подобными форме сложных биологически активных молекул, например, молекул ДНК, несущих генетический код организма. В организме вокруг молекул ДНК возникает защитный каркас из молекул воды, «футляр» по форме молекулы. Если же защищаемая длинная закрученная молекула ДНК все-таки будет повреждена каким-либо излучением или механическим воздействием, то защитный жидкий кристалл нарушается в месте повреждения, что служит сигналом для биологических систем, отвечающих за восстановление жизненно необходимой молекулы ДНК.

17. Химические и физико-химические свойства воды. Вода это универсальный слабый растворитель. Молекулы воды своими зарядами растаскивают кристаллы солей и молекулы органических кислот на ионы. В веществе, попавшем в воду, межатомные силы ослабляются в 80 раз. Для физических тел, попавших в воду этот эффект действует только на поверхностях, контактирующих с водой. В зависимости от прочности внутренних связей в веществе, оно растворяется в воде с той или иной скоростью. Для наблюдателя эта скорость может субъективно представляться значительной или незначительной. Ни одно вещество кроме воды не обладает таким универсальным свойством растворять почти любые материалы. Есть более сильные и потому более опасные растворители. Вода, разлогая вещества на ионы, сама не разлагается. Главные химические свойства воды : 1). Устойчивое соединение, потому является надежной не разрушаемой базой для жизни. 2). Вода – универсальный растворитель газов и твердых частиц, благодаря чему доставляет питательные вещества в организмы и уносит вещества-шлаки из них. 3). Вода плохо растворяет органические вещества с большой молекулярной массой. Потому она не разрушает живые ткани организмов, но служит им по п.2. 4). Растворимость веществ в воде зависит от температуры – она снижается с охлаждением воды. Разогретая в организме вода выносит много веществ, охлаждается вне организма, осаждает вещества в водоемы, испаряется и вновь готова принять порцию загрязнителей. Физические свойства воды: а) капиллярность - на поверхности воды натянута плёнка, точнее сеть из молекул Н 2 О, связанных между собой водородными связями. Эта плёнка способствует сохранению воды в водоёме, сдерживает испарение. Только некоторые молекулы в броуновском движении имею скорость достаточную для прорыва сквозь сеть поверхностного натяжения. Сеть поверхностного натяжения в сосуде с водой прогибается, удерживая висящие на ней молекулы воды в подобие того, как натянутая веревка прогибается от собственного веса. Такая прогнутая (или выпуклая) поверхность воды называется мениск. Чем меньше площадь мениска, тем меньше масса воды, висящей на нем. Потому в тонких капиллярах вода может подниматься выше, чем в более широких. Она поднимается на высоту до нескольких метров, теоретически до 10 м. В стеблях и листьях растений имеются капилляры, по которым растворы от корня поднимаются до вершины растения; капилляр обеспечивает питание растения и его устойчивость; б) изменение плотности от температуры - Плотность всякого вещества, увеличивается при охлаждении. Происходит сжатие тела. Экологический аспект расширения воды при замерзании и сокращения объема льда проявляется при выветривании горных пород. Дробление их осуществляется водой, замерзающей в микротрещинах. Выветриванием извлекаются из глубинных пород микроэлементы, необходимые растениям и животным, подготовляются обновляемые тектоническими движениями участки земной коры к формированию почвы и первичной сукцессии, то есть к образованию экосистем на обновленных участках. Другой экологический аспект высокой удельной теплоты замерзания и испарения воды видим в климатической аномалии хода среднесуточных температур в течение года, что особенно существенно весной; в) очень высокая удельная теплота плавления (кристаллизации, замерзания) - Вещество H 2 O (лед - вода - пар) обладает высокой удельной теплотой плавления и очень высокой удельной теплотой испарения. Это свойство воды позволяет ей регулировать климат и микроклимат на поверхности Земли. Во влажных районах климат мягче, без резких переходов между днем и ночью, между зимой и летом. В сухих и потому пустынных районах этот переход значительно резче. Говорят о морском и континентальном типах климата. Мягкий климат удобен не только людям и животным. Он необходим растениям, которые, будучи прикрепленными, не могут укрыться ни от холода, ни от зноя в отличие от животных и человека.

Характеристики планеты:

  • Расстояние от Солнца: 149,6 млн км
  • Диаметр планеты: 12 765 км
  • Сутки на планете: 23ч 56мин 4с *
  • Год на планете: 365 дней 6ч 9мин 10с *
  • t° на поверхности: средняя по планете +12°C (В Антарктиде до -85°C; в пустыне Сахара до +70°C)
  • Атмосфера: 77% Азот; 21% кислород; 1% водяной пар и остальные газы
  • Спутники: Луна

* период вращения вокруг собственной оси (в земных сутках)
** период обращения по орбите вокруг Солнца (в земных сутках)

C самого начала развития цивилизации людей интересовало происхождение Солнца, планет и звезд. Но больше всего вызывает интерес планета, являющаяся нашим общим домом, Земля. Представления о ней менялись вместе с развитием науки, само понятие о звездах и планетах, так как мы это понимаем сейчас, сформировалось всего лишь несколько веков назад, что ничтожно мало по сравнению с самим возрастом Земли.

Презентация: планета Земля

Третья от Солнца планета, ставшая нашим домом, имеет спутник - Луну, и входит в группу планет земного типа, таких как Меркурий, Венера и Марс. Планеты-гиганты существенно отличаются от них по физическим свойствам и строению. Но даже такая крохотная по сравнению с ними планета, как Земля, имеет невероятную по осмыслению массу - 5, 97х1024 килограмм. Она вращается вокруг светила по орбите на среднем расстоянии от Солнца в 149, миллиона километров, вращаясь вокруг своей оси, что является причиной смены дней и ночей. А сама эклиптика орбиты характеризует времена года.

Наша планета играет уникальную роль в Солнечной системе, ведь Земля - единственная планета, на которой есть жизнь! Расположилась Земля крайне удачным образом. Она путешествует по орбите на расстоянии почти 150 000 000 километров от Солнца, а это означает лишь одно - На Земле достаточно тепло, чтобы вода сохранялась в жидком виде. При условии жарких температур вода бы просто выпарилась, а в холоде превращалась бы в лед. Только на Земле присутствует атмосфера, в которой может дышать человек и все живые организмы.

Истрия возникновения планеты Земля

Отталкиваясь от Теории Большого Взрыва и основываясь на исследовании радиоактивных элементов и их изотопов, ученые выяснили, приблизительный возраст земной коры, - он составляет около четырех с половиной миллиардов лет, а возраст Солнца - около пяти миллиардов лет. Так же, как и вся галактика, Солнце образовалось в результате гравитационного сжатия облака межзвездной пыли, а вслед за светилом образовались и планеты, входящие в Солнечную систему.

Что касается образования самой Земли как планеты, само ее рождение и формирование продолжалось сотни миллионов лет и проходило в несколько фаз. На фазе рождения, подчиняясь законам гравитации, на ее все растущую поверхность падало большое количество планетезималей и крупных космических тел, составивших впоследствии практически всю современную массу земли. Под действием такой бомбардировки произошло разогревание, а затем и расплавление вещества планеты. Под воздействием сил гравитации тяжелые элементы, такие как феррум и никель, создали ядро, а из более легких соединений образовались земная мантия, кора с лежащими на ее поверхности континентами и океанами, и атмосфера, которая первоначально сильно отличалась от настоящей.

Внутренне строение Земли

Из планет своей группы Земля обладает наибольшей массой и поэтому имеет самую большую внутреннюю энергию — гравитационную и радиогенную, под воздействием которых процессы в земной коре еще продолжаются, что видно по вулканической и тектонической деятельности. Хотя уже успели образоваться магматические, метаморфические и осадочные породы, сформировавшие очертания ландшафтов, которые под действием эрозии постепенно видоизменяются.

Под атмосферой нашей планеты расположилась твердая поверхность, которая называется земной корой. Она делится на огромные куски (плиты) из твердой породы, которые могут двигаться и при движении задевать и толкать друг друга. В результате такого движения появляются горы и иные особенности земной поверхности.

Земная кора имеет толщину от 10 до 50 километров. Кора «плавает» на жидкой земной мантии, масса которой составляет 67% массы всей Земли и простирается в глубину на 2890 километров!

За мантией следует наружное жидкое ядро, которое тянется в глубину еще на 2260 километров. Это слой является также подвижным и способен издавать электрические токи, которые и создают магнитное поле планеты!

В самом центре Земли находится внутреннее ядро. Оно очень твердое и содержит уйму железа.

Атмосфера и поверхность Земли

Земля единственная из всех планет Солнечной системы, имеет океаны, - они покрывают более семидесяти процентов ее поверхности. Первоначально находящаяся в атмосфере в виде пара вода сыграла большую роль в образовании планеты - парниковый эффект поднял температуру на поверхности на те десятки градусов, необходимые для существования воды в жидкой фазе, а в сочетании с солнечной радиацией дал начало фотосинтезу живого вещества - органики.

Из космоса атмосфера кажется голубой каймой вокруг планеты. Эта тончайший купол состоит на 77% из азота, на 20% из кислорода. Остальное - это смесь разнообразных газов. Земная атмосфера содержит намного больше кислорода, чем любая другая планета. Кислород жизненно необходим животным и растениям.

Это уникальное явление можно расценивать как чудо или считать невероятным совпадением случайностей. Именно океан дал начало зарождению жизни на планете, и, как следствие, возникновению гомо сапиенс. Удивительно, но океаны еще хранят множество тайн. Развиваясь, человечество продолжает изучать космос. Выход на околоземную орбиту дал возможность по новому осмыслить многие геоклиматические процессы, происходящие на Земле, дальнейшее изучение тайн которой еще предстоит не одному поколению людей.

Спутник Земли - Луна

У планеты Земля есть свой единственный спутник - Луна. Первым, кто описал свойства и характеристики Луны был итальянский астроном Галилео Галилей, он описал горы, кратеры и равнины на поверхности Луны, а в 1651 году астроном Джованни Риччоли написал карту видимой стороны лунной поверхности. В XX веке 3 февраля 1966 года на Луну впервые прилунился спускаемый аппарат Луна-9, а несколькими годами позже 21 июля 1969 года на поверхность Луны впервые ступила нога человека.

Луна всегда повернута к планете Земля только одной своей стороной. На этой видимой стороне Луны видны равнинные "моря", цепочки гор и множественные кратеры самых разных размеров. Другая, невидимая с Земли, сторона имеет на поверхности большое скопление гор и еще больше кратеров, а отражающий от Луны свет, благодаря которому ночью мы можем видеть ее в бледно-лунном цвете, это слабо отражаемые лучи от Солнца.

Планета Земля и ее спутник Луна сильно отличаются по многим свойствам, при этом соотношение стабильных изотопов кислорода у планеты Земля и ее спутника Луны совпадает. Проводимые радиометри́ческие исследования показали, что возраст обоих небесных тел одинаковый, примерно 4,5 миллиардов лет. Эти данные вызывают предположение о происхождении Луны и Земли из одного вещества, что рождает несколько интересных гипотез о происхождении Луны: от происхождения из одного протопланетного облака, захватом Землей Луны и до образования Луны от столкновения Земли с крупным объектом.

Земля состоит из тех же веществ, что и другие планеты Солнечной системы. Однако только на ней сложились уникальные условия, благоприятные для возникновения жизни.

В июле 1997 г. марсоход «Соджорнер» («Компаньон») передал на Землю фантастические снимки Красной планеты. Детальное исследование Солнечной системы началось еще в 1960-х гг. С тех пор многие космические аппараты доставили на Землю образцы лунного грунта и огромное количество снимков объектов Солнечной системы, в том числе спутников, колец Сатурна и Урана, раскаленной атмосферы Венеры, красных пустынь Марса.

Рождение Солнечной системы

Где-то в рукавах Млечного Пути 4,5 млрд лет назад в центре газопылевого облака сформировался плотный вращающийся газовый шар, который под действием сил тяготения сжимался до тех пор, пока не разогрелся и не превратился в звезду, одну из сотен миллиардов других. Оставшийся материал (менее 1 % вещества) пустился в пляс вокруг новорожденной звезды и скоро принял форму тонкого диска из газа и пыли, образовав так называемую солнечную туманность. Из нее сформировались восемь планет, в том числе Земля.

Советский астроном Виктор Сафронов выдвинул в 1970 г. гипотезу, согласно которой планеты формировались в три этапа. На первом непродолжительном этапе (около 1000 лет) из пыли солнечной туманности образовалось множество твердых планетезималей (предшественников планет) диаметром 1-5 км. Солнечная система в то время была неспокойным местом: небесные тела постоянно сталкивались. На промежуточном этапе, в результате столкновения друг с другом и аккреции - слипания, подобного слипанию комка пыли при подметании пола, - планетезимали превращались в более крупные тела — протопланеты, зародыши планет. На последней стадии протопланеты стали увеличиваться в размерах, притягивая к себе всё новые и новые пролетающие мимо планетезимали. С ростом массы протопланет увеличивалась и сила гравитации, что подпитывало их дальнейший рост. Наконец, поймав все планетезимали, какие мог, зародыш становился планетой. Последние два этапа, видимо, заняли около 100 млн лет.

Так началась история Солнца и возникшей под действием его силы тяготения системы. Кроме восьми настоящих планет — Меркурия, Венеры, Земли, Марса, Юпитера, Сатурна, Урана и Нептуна, есть несколько карликовых, в том числе Плутон, который раньше считали девятой планетой Солнечной системы.

Ближайшие к Солнцу Меркурий, Венера, Земля, Марс имеют твердую поверхность и состоят в основном из силикатов и железа. Эти четыре планеты называют внутренними. Они меньше остальных. Радиус самой маленькой из них, Меркурия, составляет 2439 км, а самой большой, Земли, — 6370 км. Значения их средней плотности тоже близки: если принять плотность воды за 1, плотность Марса равна 3,9, Меркурия — 5,4, Земли - 5,5. Планеты-гиганты Юпитер, Сатурн, Уран и Нептун составляют внешнюю часть Солнечной системы. Радиус самой маленькой из них, Нептуна, равен 24 750 км, самой крупной, Юпитера, — 71 600 км. Сформировавшиеся в условиях низких температур на большом удалении от Солнца, они состоят в основном из уплотненных газов, преимущественно водорода и гелия. Карликовая планета Плутон и расположенная за ее орбитой планета-карлик Эрида, видимо, твердые. Их средняя плотность примерно вдвое больше плотности воды.

Вокруг восьми планет Солнечной системы обращаются многочисленные спутники (известно 168). Единственный естественный спутник Земли — Луна. Кроме планет, их спутников и карликовых планет(и их спутников), в Солнечной системе есть и другие объекты. В частности, астероиды (небольшие твердые небесные тела), сосредоточенные в основном в поясе между Марсом и Юпитером, кометы и пылевые кольца вокруг четырех гигантских планет.

Всё еще в прекрасной форме

Разумеется, лучше всех планет изучена Земля. Она отличается колоссальным разнообразием ландшафтов. У нее есть атмосфера, которая защищает поверхность от солнечной радиации, и огромные запасы жидкой воды. Три четверти земной поверхности занимают океаны. Совсем не то что, например, испещренные кратерами бескрайние пустыни Меркурия. Почему же Земля, возникшая в одно время с другими планетами, так сильно отличается от них?

Планеты представляют собой своего рода огромные геологические тепловые машины, приводимые в действие теплом, производимым их недрами. У этого тепла два разных источника. Во-первых, аккреция во время образования планеты. Во-вторых, радиоактивный распад элементов, которые вошли в состав Земли в период ее формирования. Планеты различного размера и массы отличаются мощностью источников тепла и, следовательно, скоростью их истощения. Самые маленькие объекты Солнечной системы уже геологически мертвы, а на Земле, самой большой из твердых планет, геологические процессы все еще продолжаются.

На протяжении первых 700 млн лет после образования твердые планеты подвергались интенсивной бомбардировке метеоритами. Следы обстрелов в виде многочисленных кратеров хорошо видны на Луне, Меркурии и на части поверхности Марса, но на Земле они практически исчезли. Движение литосферных плит, вулканическая активность и эрозия — проявления геологических процессов - удалили шрамы былых времен с лица нашей планеты. На Венере и Марсе вулканическая активность тоже сыграла свою роль: 75% поверхности Венеры и 50% Марса покрыто вулканическими породами. Сегодня вулканическая активность здесь не наблюдается.

Воздух!

Землянина могут привести в ужас атмосферные условия Венеры: все небо затянуто плотными облаками, а средняя температура поверхности достигает 450°С. И все же Венера могла бы стать близнецом Земли. Планеты имеют близкие величины диаметра и массы, а кроме того, Венере удалось сохранить первоначальную атмосферу.

После рождения каждая планета проходит стадию дифференциации своей внутренней структуры, в ходе которой формируются слои (кора, мантия, ядро). Молодая Земля была мало похожа на ту Голубую планету, которая так восхищает космонавтов. На нее непрерывно падали метеориты и астероиды. За счет бомбардировки космическими телами, сжатия собственного планетного вещества и энергии распада радиоактивных элементов поверхность Земли разогрелась до 2000°С, и составляющий ее материал начал плавиться. Наиболее обильные элементы — железо, кислород, кремний и магний — распределились неравномерно. Самые тяжелые - железо и никель — опустились к центру и образовали ядро, а более легкие поднялись вверх, сформировав мантию и литосферу. На железо приходится 35% массы Земли, однако в земной коре его довольно мало (всего около 5%), а большую часть ее массы составляют кислород и кремний (в основном в виде силикатов). В период дифференциации выделяется очень много тепла и газов, что приводит к формированию первичной атмосферы. От массы планеты зависит, сможет ли она удержать эту атмосферу.

Так, Меркурий потерял свою атмосферу — она растворилась в космосе. Точнее, у него есть сверхразреженная атмофера, состоящая из атомов, захваченных из солнечного ветра или выбитых им с поверхности планеты. Атмосферное давление на Меркурии примерно в 500 млрд раз меньше, чем на Земле. Марс крупнее, поэтому смог удержать определенную часть первичной атмосферы, состоящей почти исключительно из углекислого газа.

Более массивные Земля и Венера удержали намного большую часть атмосферы. Но на Венере она тоже состоит в основном из углекислого газа. Ее состав долгое время определялся вулканической активностью и не обновлялся. Укутанная в плотные облака Венера окружена атмосферой, которая не пропускает инфракрасное излучение горячей поверхности планеты, превращая ее в огромный перегретый парник, жизнь в котором невозможна.

Первичная атмосфера Земли в значительной степени тоже состояла из углекислого газа, который высвобождался в ходе вулканической активности. Его и сейчас было бы много в нашей атмосфере, так же как в атмосферах Марса и Венеры, если бы входящий в состав этого газа углерод не оседал на дно морей в виде карбоната кальция.

На Земле, благодаря определенным химическим процессам, значительная часть углекислого газа оказалась связана горными породами. Затем «очищение» атмосферы продолжилось в результате фотосинтеза первых организмов. В итоге возникла земная атмосфера в ее нынешнем виде. Она необходима для поддержания большинства существующих сегодня форм жизни.

Что касается воды, то, возможно, часть ее попала на Землю извне, например с кометами, которые обращались вокруг Солнца по вытянутым орбитам. Значительная часть ядра кометы состоит изо льда, который в случае столкновения кометы с Землей мог растаять. Кроме водорода и кислорода, составляющих воду, в ядре кометы содержатся и другие элементы, в том числе углерод и азот.

Зарождение жизни

Мы всё еще не знаем, как зародилась жизнь на Земле. Ученые выдвинули несколько гипотез. Несомненно, что первые органические молекулы возникли в водной среде, и на их основе могли появиться первые самовоспроизводящиеся структуры, от которых произошли одноклеточные организмы. Очень важно, что древние одноклеточные научились связывать атмосферный углекислый газ и производить кислород. Когда в атмосфере накопилось достаточно кислорода, стало возможным кислородное дыхание. Под действием солнечной радиации в верхних слоях атмосферы из кислорода стал возникать озон, слой которого поглощает смертоносное жесткое ультрафиолетовое излучение Солнца, способное разрушать органические молекулы, в особенности ДНК. Благодаря этому живые организмы смогли выйти из воды на сушу.

Отдаленное будущее

Когда возраст Солнца достигнет почти 9 млрд лет, оно раздуется настолько, что выйдет из равновесия. Мощный источник энергии, так долго питавший Землю, начнет прожигать свои последние запасы водорода. Жар в его глубине достигнет 100 млн градусов Цельсия. Интенсивность солнечного излучения многократно возрастет. Цвет излучения станет краснеть, пока Солнце не превратится в красного гиганта. В результате температура на Земле будет расти, весь лед у полюсов растает, реки и озера высохнут, оставшуюся сушу займут пустыни, и на всей планете будут бушевать чудовищные бури. Растения, а за ними и все биологические виды, включая человека, один за другим погибнут. Последними останутся самые примитивные формы жизни, меньше всех зависящие от остальных организмов и способные переносить жар и жесткое излучение.

Умирающее Солнце продолжит расширяться и наконец его внешние слои поглотят Землю. Нагретая до 4000°С поверхность необитаемой планеты расплавится и вновь станет почти такой же, какой была при рождении, за 10 млрд лет до того…

Но это лишь один из вероятных вариантов конца Света. Земля может погибнуть и задолго до поглощения ее Солнцем в результате столкновения с астероидом или кометой. Даже если при этом наша планета и не будет полностью уничтожена, равновесие на ней окажется сильно нарушенным. Такое столкновение приведет к глобальным бедствиям, череде извержений вулканов, подъему уровня моря, катастрофическому загрязнению атмосферы.

3063

Краткая характеристика планеты Земля. Географические координаты. Уникальность Земли в семействе планет солнечной системы в первую очередь связана с тем, что только на нашей планете существует жизнь. Шансы обнаружить хотя бы простейшие формы жизни на сосœедних планетах (даже на Марсе) большинством ученых оцениваются как близкие к нулю. Другие уникальные особенности Земли (наличие атмосферы с высоким содержанием кислорода, наличие океана, занимающего 70% поверхности планеты, высокая тектоническая активность, сильное магнитное поле и др.) так или иначе связаны с наличием жизни: они либо способствовали ее возникновению, либо являются следствиями жизнедеятельности.

Шарообразность Земли (а о том, что Земля представляет собой шар, знали еще древние греки) предопределяет выделœение в ее строении концентрических оболочек. Впервые такой подход к изучению нашей планеты предложил австрийский геолог Э. Зюсс, он же предложил называть эти оболочки геосферами . Реальная форма Земли несколько отличается от сферической и при строгом математическом моделировании ее формы чаще всœего используют такие понятия как эллипсоид и геоид . Геоид (что означает землеподобный ) - ϶ᴛᴏ наиболее точная модель Земли, он представляет собой уникальное геометрическое тело, поверхность которого совпадает с поверхностью среднего уровня спокойной воды в океане, мысленно продолженной под материками так, что отвесная линия в любой точке пересекает эту поверхность под прямым углом. Поверхности эллипсоида и геоида не совпадают, расхождение между ними может достигать ±160 м. Относительно поверхности геоида измеряют высоты и глубины точек реальной поверхности Земли. Максимальную высоту (8848 м) имеет Эверест, а наибольшую глубину (11022 м) – Марианский желоб в Тихом океане. Экваториальный радиус Земли составляет 6375,75 км, полярные же радиусы неодинаковы: северный на 30 метров больше южного и равен 6355,39 км, (соответственно, южный - 6355, 36 км).

Ось вращения Земли, проходящая через полюса и центр планеты, наклонена к плоскости ее орбиты на угол 66°33"22". Именно эта величина определяет продолжительность дня и ночи на разных широтах и существенно влияет на тепловые (климатические) характеристики различных поясов Земного шара. Один оборот вокруг своей оси Земля совершает за 23 ч 56 мин 4 с, данный промежуток времени называют звездными сутками, а сутки, в которых ровно 24 часа, называют средними или солнечными сутками.

Единственный спутник Земли Луна имеет размеры, близкие к размерам Меркурия, ее диаметр составляет 3476 км., а средний радиус орбиты – 384,4 тыс. км. Орбита Луны наклонена к орбите Земли на 5 градусов. Период вращения Луны вокруг своей оси абсолютно совпадает с периодом ее обращения вокруг Земли, в связи с этим с Земли можно видеть только одно лунное полушарие.

Линии сечения земного шара плоскостями, параллельными экваториальной, называют параллелями, а линии сечения плоскостями, проходящими через ось вращения Земли – меридианами. Каждой параллели соответствует своя широта (северная или южная), а каждому меридиану – своя долгота (западная или восточная). Совокупность параллелœей и меридианов называют географической сеткой, с ее помощью определяют географические координаты любой точки на поверхности Земли.

Географическая широта произвольной точки - ϶ᴛᴏ угол между плоскостью экватора и проходящей через эту точку нормалью (отвесной линией), широта изменяется от нуля (на экваторе) до 90 градусов. Долгота - ϶ᴛᴏ угол между меридиональной плоскостью данной точки и плоскостью некоторого меридиана, условно принятого за начальный (такой начальный меридиан проходит через Гринвичскую астрономическую обсерваторию * и принято называть Гринвичским). Долгота изменяется в пределах от нуля до 180°, меридиан, которому соответствует широта 180°, является линией смены дат.

Для удобства отсчета времени и временной координации деятельности людей поверхность Земли разделœена (в первом приближении по меридианам) на 24 часовых пояса. Применять для отсчета времени систему часовых поясов предложил канадский инженер Флемингв 1879 ᴦ., сегодня этой системой пользуется весь мир.
Размещено на реф.рф
Изменению времени на 1 час должно соответствовать изменение долготы на 15°, однако границы часовых поясов строго совпадают с меридианами лишь в мировом океане, на суше смежные часовые пояса разделяют, как правило, не меридианы, а какие-либо близкие к ним (а иногда и не очень близкие) административные границы.

Наклон земной оси к плоскости эклиптики, как уже отмечалось, определяет широтные границы климатических зон (поясов). Центральный пояс земной поверхности, границами которого являются северный и южный тропики, называют тропическим, широта каждого тропика – 23° 26" 38"". В тропическом поясе Солнце два раза в год в полдень проходит через зенит, а на широте тропиков оно бывает в зените только один раз: в полдень 21 июня на северном тропике и 22 декабря - на южном.

Географические параллели, которым соответствует широта 66° 33" 22"" называют полярными кругами, область между полюсом и полярным кругом называют полярным поясом. Только за полярным кругом (т.е в более высокоширотной области) имеют место такие явления как полярный день и полярная ночь. Между полярным кругом и тропиком в каждом полушарии расположен умеренный пояс (область умеренного климата).

Строение Земли. Внешние и внутренние геосферы. К внешним геосферам принято относить атмосферу, гидросферу и биосферу, хотя последнюю из них следовало бы рассматривать как промежуточную оболочку, так как она включает в себя гидросферу и те области атмосферы и земной коры (а это уже внутренняя оболочка), в пределах которых существует органическая жизнь. Иногда в качестве внешней геосферы рассматривают магнитосферу, что также не вполне оправданно, так как магнитной поле присутствует в любой из геосфер.

Атмосфера. Атмосфера Земли представляет собой смесь газов, в ее нижних слоях содержатся также влага и пылевые частицы. В сухом очищенном воздухе вблизи поверхности Земли содержится азота примерно 78 % азота͵ чуть меньше 21 % кислорода и около 1 % аргона. На долю углекислого газа приходится примерно 0,03 %, а на долю всœех остальных газов (водород, озон, инœертные газы и др.) – около 0,01 %. Состав атмосферы практически не меняется вплоть до высот порядка 100 км. На уровне моря при нормальном давлении (1 атм = 1,033 кг/см 2 = 1,013 10 5 Па) плотность сухого воздуха составляет 1,293 кг/м 3 , но при удалении от поверхности Земли плотность воздушной массы и связанное с ней давление быстро уменьшаются. Атмосфера непрерывно увлажняется за счёт испарений воды с поверхности водоемов. Концентрация паров воды уменьшается с увеличением высоты быстрее, чем концентрация газов – 90 % влаги сосредоточено в нижнем пятикилометровом слое.

С изменением высоты меняются не только плотность, давление и температура воздуха, но и другие физические параметры атмосферы, а на больших высотах меняется и ее состав. По этой причине в атмосфере принято выделять несколько сферических оболочек с разными физическими свойствами. Основные из них - ϶ᴛᴏ тропосфера , стратосфера и ионосфера . Высотную протяженность (толщину) какой-либо сферической оболочки Земли (это относится и к внутренним оболочкам) часто называют ее мощностью.

Тропосфера содержит около 80 % всœей воздушной массы, ее мощность составляет 8…12 км в средних широтах, а над экватором – до 17 км. С увеличением высоты температура воздуха в пределах тропосферы непрерывно понижается вплоть до значений порядка -85°С (скорость понижения температуры составляет примерно 6 градусов на километр). Вследствие неравномерного прогрева поверхности земного шара тропосферные массы воздуха находятся в непрерывном движении, перенося не только тепло, но и влагу, пыль и всœевозможные выбросы. Именно эти явления в тропосфере в первую очередь формируют погоду и климат на Земле.

Над тропосферой до высот порядка 50…55 км простирается стратосфера. В пределах этого слоя имеет место повышение температуры с увеличением высоты, на верхней границе стратосферы температура близка к нулю. В стратосфере практически отсутствует водяной пар.
Размещено на реф.рф
На высотах от 20 до 40 км расположена т.н. озоносфера , ᴛ.ᴇ. слой с повышенным содержанием озона. Этот слой часто называют щитом планеты, так как в нем почти полностью поглощается губительное для всœего живого на Земле жесткое (коротковолновое) ультрафиолетовое излучение Солнца.

В промежутке между высотами 55 и 80 км расположен слой, в котором температура с высотой вновь уменьшается. У верхней границы этого слоя, который называют мезосферой , температура составляет примерно -80°С. За мезосферой вплоть до высот порядка 800…1300 км располагается ионосфера (иногда данный слой называют также термосферой, т.к. температура в данном слое с увеличением высоты непрерывно повышается).

Гидросфера. В составе гидросферы выделяют четыре вида вод: океаносферу, т. е. соленые воды морей и океанов (86,5 % массы), пресные воды суши (реки и озера), подземные воды и ледники. 97 % вод океаносферы сосредоточено в Мировом океане, являющемся не только основным хранилищем воды, но и основным аккумулятором тепла на нашей планете. Благодаря океану на Земле зародилась жизнь, образовалась и сохраняется кислородная атмосфера, океан поддерживает на низком уровне содержание в атмосфере углекислого газа, предохраняя планету от парникового эффекта (океан в существенно более высокой степени, нежели наземная растительность, выполняет функции "легких" нашей планеты).

В целом мировой океан, средняя глубина которого около 3,6 км, является холодным, только 8% воды теплее 10 о С. Давление в толще воды растет с увеличением глубины со скоростью 0,1 ат/м. Соленость океанских вод, среднее значение которой составляет около 35 промилле (35 ‰) неодинакова (от 6…8 ‰ в поверхностных водах Балтики до 40 ‰ на поверхности Красного моря). В то же время состав и относительное содержание различных солей повсюду неизменны, что свидетельствует об устойчивости динамического равновесия между растворением веществ, попадающих в океан с суши, и их осаждением.

Удельная теплоемкость воды примерно в 4 раза больше, чем воздуха, однако из-за огромной разницы в плотности (почти в 800 раз) 1 кубический метр воды, охлаждаясь на 1 градус, способен нагреть на 1 градус более 3000 кубометров воздуха. В умеренных и высоких широтах воды Мирового океана летом накапливают тепло, а зимой отдают его в атмосферу, именно в связи с этим в приморских районах климат всœегда мягче, чем в глубинœе континœентов. В экваториальных широтах вода нагревается круглый год, и это тепло переносится океанскими течениями в высокоширотные области, холодные же воды, захватываясь глубинными противотечениями, возвращаются в тропики. Помимо течений и противотечений, океанские воды перемещаются и перемешиваются за счёт приливов и отливов, а также волн другой природы, среди которых выделяют ветровые волны, барические волны и цунами.

Биосфера. Наличие гидросферы и атмосферы с высоким содержанием кислорода существенно отличает нашу планету от всœех других, входящих в солнечную систему. Но главное отличие Земли состоит в наличии на ней живого вещества – растительности и животного мира. Термин биосфера ввел в научный оборот уже упоминавшийся Э. Зюсс.

Биосфера охватывает всœе пространство, где существует живое вещество – нижнюю часть атмосферы, всю гидросферу и верхние горизонты земной коры. Масса живого вещества, составляющая примерно 2,4·10 15 кг, ничтожно мала в сравнении даже с массой атмосферы (5,15·10 18 кг), однако по степени воздействия на систему под названием Земля, эта оболочка существенно превосходит всœе другие.

Основу живого вещества составляет углерод, дающий бесконечное множество разнообразных химических соединœений. Кроме него в состав живого вещества входят кислород, водород и азот, остальные химические элементы встречаются в незначительных количествах, хотя их роль в жизнеобеспечении тех или иных организмов должна быть исключительно важной. Основная масса живого вещества сосредоточена в зелœеных растения. Процесс естественного построения органических веществ с использованием солнечной энергии – фотосинтез – вовлекает в годовой кругооборот огромные массы углекислоты (3,6·10 14 кг) и воды (1,5·10 14 кг), при этом выделяется 2,66·10 14 кг свободного кислорода. С химической точки зрения фотосинтез является окислительно-восстановительной реакцией:

СО 2 + Н 2 О → СН 2 О + О 2 .

По способу питания и отношению к внешней среде живые организмы делятся на автотрофные и гетеротрофные. Последние питаются другими организмами и их остатками, а пищей для автотрофных организмов являются минœеральные (неорганические) вещества. Большинство организмов относятся к аэробным, т. е. способны существовать только в среде, содержащей воздух (кислород). Меньшая часть (в основном это микроорганизмы) относится к анаэробным, обитающим в бескислородной среде.

При гибели живых организмов происходит процесс, обратный фотосинтезу, органические вещества разлагаются путем окисления. Процессы образования и разложения органики находятся в динамическом равновесии, благодаря чему общее количество биомассы практически не меняется со времен зарождения жизни на Земле.

Влияние биосферы на процессы геологической эволюции Земли было подробно проанализировано выдающимся российским ученым академиком В.И. Вернадским. В течение более чем трех миллиардов лет живое вещество поглощало и трансформировало энергию Солнца. Значительная часть этой энергии законсервирована в залежах полезных ископаемых органического происхождения, другая часть использована в процессах формирования различных горных пород, накопления солей в мировом океане, накопления кислорода, содержащегося в атмосфере, а также растворенного в океанской воде и входящего в состав горных пород. Вернадский первым указал на ведущую роль биосферы в формировании химического состава атмосферы, гидросферы и литосферы, обусловленную необычайно высокой геохимической активностью живого вещества.

Жизнь на Земле существует в огромном множестве форм, однако всœе эти формы существуют не автономно, а связаны сложными взаимоотношениями в единый непрерывно развивающийся гигантский комплекс.

Внутренние геосферы - ϶ᴛᴏ оболочки в твердом телœе Земли. В нем можно выделить три крупные области (главные внутренние оболочки): центральную – ядро , промежуточную – мантию и наружную – земную кору . Углубиться в недра Земли с целью непосредственного их изучения удалось пока лишь на глубину чуть более 12 км, такая сверхглубокая скважина была пробурена в нашей стране (на Кольском полуострове). Но 12 км - ϶ᴛᴏ менее 0,2 % земного радиуса. По этой причине с помощью глубокого и сверхглубокого бурения можно получить данные о строении, составе и параметрах земных недр лишь в пределах верхних горизонтов коры.

Информацию о глубинных участках, в т.ч. и о поверхностях, разделяющих различные внутренние оболочки, геофизики получают, анализируя и обобщая результаты многочисленных сейсмических (от греч. ʼʼсейсмос ʼʼ - колебание, землетрясение) исследований. Суть этих исследований (в упрощенном виде) состоит по сути в том, что по результатам измерения времени прохождения сейсмической волны между двумя точками на поверхности (или внутри) земного шара, можно определить ее скорость, а по величинœе скорости волны – параметры среды, в которой она распространялась.

Земной корой называют верхнюю каменную оболочку, мощность которой в различных участках составляет от 6 - 7 км (под глубокими океаническими впадинами) до 70 – 80 км под Гималаями и Андами. Можно сказать, что нижняя поверхность земной коры является своеобразным ʼʼзеркальным отражениемʼʼ наружной поверхности твердого тела Земли. Эту поверхность – границу раздела между корой и мантией – называют раздел Мохоровича.

В химическом составе земной коры преобладают кремний и алюминий, отсюда происходит условное название этой оболочки – "сиал". Строение земной коры отличается большой сложностью, проявлением которой являются отчетливо выраженные вертикальные и горизонтальные неоднородности. В вертикальном направлении в пределах земной коры традиционно выделяют три слоя – осадочный, гранитный и базальтовый. Породы, образующие эти слои, различны по составу и происхождению.

Мантия расположена между ядром и земной корой, поверхность, разделяющую мантию и ядро, называют раздел Вихерта-Гутенберга. Это промежуточная и самая крупная оболочка Земли, она простирается до глубин порядка 2900 км. Масса мантии составляет около 2/3 всœей массы планеты. На границе земной коры и мантии температура может превышать 1000 о С, а давление 2000 МПа. В этих условиях вещество мантии может переходить из кристаллического состояния в аморфное (стекловидное) состояние. О химическом составе вещества мантии судить значительно сложнее, тем не менее эту оболочку называют "сима ". Это означает, что преобладающими элементами в составе мантии (по крайней мере, в составе верхней мантии), являются кремний и магний.

Ядро - ϶ᴛᴏ центральная и наиболее плотная оболочка Земли, ее радиус составляет 3470 км. На границе Вихерта-Гутенберга поперечные волны пропадают, это позволяет сделать вывод о том, что наружная часть ядра находится в жидком состоянии. В пределах внутренней части ядра (его радиус примерно 1250 км) скорость продольных волн снова возрастает, и вещество, как полагают, снова переходит в твердое состояние. Химический состав внешнего и внутреннего ядра приблизительно одинаков, преобладают желœезо и никель, отсюда условное название этой оболочки – "нифе ".

Физические поля Земли. Описание строения нашей планеты будет неполным, в случае если не рассмотреть ее физические поля, в первую очередь, гравитационное и магнитное поля. Понятие ʼʼполеʼʼ используют в тех случаях, когда каждой точке в определœенной области пространства можно сопоставить значение некоторой физической величины. В этом смысле можно говорить о поле температур (тепловом поле), поле скоростей, поле сил и т. п. В соответствии с характером физической величины поля подразделяют на векторные и скалярные.

Гравитационное поле Земли. Установленный И. Ньютоном закон всœемирного тяготения выражается формулой

F т = GMm/r 2 ,

где F т - сила тяготения, М и m - массы взаимодействующих тел, r - расстояние между центрами тяжести этих тел, G = 6, 673·10 -11 м 3 с -2 кг -1 - гравитационная постоянная.

Описывая гравитационное взаимодействие какого-либо малого тела, обладающего массой m, с большим небесным телом (к примеру, с Землей), закон тяготения удобно записать в виде:

где l = GM – постоянная тяготения рассматриваемого небесного тела. В случае Земли эта постоянная имеет величину около 4·10 14 м 3 с -2 .

В случае если малое тело (тяготеющая точка) находится в непосредственной близости над поверхностью небесного тела, силу притяжения определяют как

где g = l/r 2 - ускорение свободно падающего тела. В случае Земли, как известно, g = 9,8 м/с 2 .

Отметим, что при крайне важно сти определять силу тяготения с большой точностью нужно учитывать зависимости величины g от координат точки, в которой определяется эта сила. В предположении однородного распределœения массы по объёму Земли силу тяжести в любой заданной точке можно рассчитать. Имеющиеся на практике отклонения фактических (измеренных) значений ускорения g от расчетных (т. н. гравитационные аномалии) обусловлены в первую очередь неравномерностью распределœения масс. Тщательное изучение гравитационного поля Земли позволяет не только выявлять крупные тектонические нарушения, но и вести поиски месторождений полезных ископаемых.

Магнитное поле Земли. О том, что Земля обладает магнитными свойствами, известно с давних времен. Достаточно сказать, что история непосредственных магнитных измерений на земном шаре насчитывает более 400 лет (результаты экспериментальных исследований “большого магнита - Земли” были опубликованы английским естествоиспытателœем У. Гильбертом в 1600 ᴦ.). Наша планета действительно представляет собой большой магнит, форма современного магнитного поля Земли близка к той, которая была бы создана магнитным диполем, помещенным в ядре.

Любая земная порода в момент своего образования под действием геомагнитного поля приобретает намагниченность, которая сохраняется до тех пор, пока эта порода не будет разогрета до температур, превышающих температуру Кюри. Изучая естественную остаточную намагниченность пород, возраст которых известен, можно узнать о пространственном распределœении и временных изменениях геомагнитного поля в прошлом. Можно сказать, что информация об эволюции геомагнитного поля в буквальном смысле ʼʼзаписанаʼʼ в земных недрах. Роль магнитного носителя лучше всœего выполняют магматические породы, извергавшиеся из вулканов при высокой температуре (выше температуры Кюри для содержащихся в этих породах ферромагнитных материалов). Одним из важнейших результатов подобных палеомагнитных исследований является открытие т. н. инверсий геомагнитного поля (иногда используется термин ʼʼреверсия ʼʼ), т. е. изменения направления магнитного момента Земли на противоположное.

Магнитные полюса нашей планеты не совпадают с географическими и с течением времени могут изменять свое положение. Последние 100 лет, как показывают наблюдения, северный магнитный полюс перемещается в восточном направлении (с севера Канады через Северный Ледовитый океан к Сибири), его перемещение составило уже около 1000 км. Пока не вполне ясно, что это – начало очередной инверсии, или часть нормальной осцилляции, после которой полюс вернется на свое привычное место.

Тепловое поле Земли . Планета Земля находится в термодинамическом равновесии с окружающей средой, она одновременно и поглощает, и излучает примерно равные количества тепла. Главным источником внешней энергии для Земли является Солнце. Среднее значение плотности потока солнечной энергии над атмосферой Земли составляет примерно 0,14 Вт/см 2 . Почти половина падающей энергии (порядка 45%) отражается в мировое пространство, остальная энергия аккумулируется атмосферой, водой, почвой и зелœеными растениями. Преобразуясь в тепло, энергия солнечной радиации приводит в движение массы атмосферного воздуха и огромные массы воды в мировом океане.

Определœенный вклад в создание теплового поля Земли вносят и внутренние источники. Этих источников достаточно много, но к основным следует отнести только три: распад радиоактивных элементов, плотностная (гравитационная) дифференциация вещества и приливное трение.

Скалярное тепловое поле Земли имеет достаточно сложное строение. В верхнем слое земной коры (до 30 – 40 м) сказывается влияние прогрева поверхности солнечными лучами, в связи с этим данный слой называют гелиотермической зоной . Температура в этой зоне периодически изменяется в течение суток и в течение года. Чем больше период колебаний поверхностной температуры, тем глубже эти колебания проникают в земные недра, но в любом случае амплитуда колебаний температуры экспоненциально уменьшается с увеличением глубины.

Температурный режим нижней зоны земной коры, называемой геотермической зоной , определяется внутренним теплом. В этой зоне с увеличением глубины температура повышается, скорость ее изменения различна в разных участках поверхности земного шара, что связано как с различной теплопроводностью пород, так и с неравномерностью теплового потока, идущего их земных недр.

Между гелиотермической и геотермической зонами проходит пояс постоянных температур, в пределах которого среднегодовая температура, соответствующая тому или иному региону, примерно постоянна. Глубина залегания этого пояса зависит от теплофизических свойств пород и от широты местности (увеличивается с повышением широты). В случае если среднегодовая температура какой-то области отрицательна, то атмосферные осадки, просачивающиеся в недра, превращаются в лед, в этих условиях образуется т.н. вечная мерзлота . В зонах вечной мерзлоты, общая площадь которых составляет около четверти всœей твердой поверхности нашей планеты, верхний слой почвы оттаивает в летнее время на глубину от нескольких сантиметров до 3 - 4 метров.

Развитие отечественной и мировой экономики пока базируется на росте энергопотребления. В ХХ веке населœение Земли увеличилось в 2,2 раза, а потребление энергии – в 8,5 раз. В условиях надвигающегося энергетического кризиса солнечная энергия, а также тепловая энергия земных недр могут и должны составить конкуренцию традиционным источникам энергии (нефть, газ, уголь, ядерное топливо).

Земля – уникальная планета солнечной системы. - понятие и виды. Классификация и особенности категории "Земля – уникальная планета солнечной системы." 2017, 2018.

В Писании говорится, что «Бог… создавший Землю, образовал ее для жительства» (Исаия 45:18) . Беспристрастное исследование планеты Земля убедит каждого студента в том, что за этим простым заявлением стоит огромное, потрясающее значение.

Земля

Одного мимолетного взгляда на планету Земля будет достаточно, чтобы понять, насколько она отличается от других известных нам планет. Даже если смотреть из космоса, планета Земля резко выделяется среди остальных семи планет нашей солнечной системы. Планета Земля отличается приятными ярко-голубым и белым цветами, тогда как все остальные планеты (а также их спутники) имеют непривлекательный красный, оранжевый или тускло-серый цвета. Более того, наша планета Земля – единственная из планет, вращающихся вокруг Солнца, на которой могла бы существовать и существует жизнь в известной нам форме.

Планета Земля состоит в основном из кислорода, железа, серы, кремния, магнезия, алюминия, кальция, водорода и никеля (вместе эти вещества составляют 98 % Земли). Остальные два процента включают более сотни других элементов. В отличие от любой другой планеты, планета Земля покрыта зеленой растительностью, огромнейшими зелено-голубыми океанами, на ней содержится более миллиона островов, сотни тысяч ручьев и рек, громадные массивы Земли, которые называются континентами, горы, ледниковые покровы и пустыни, которые придают Земле эффектное разнообразие цветов и текстур. Все другие известные планеты, если не принимать во внимание происходящих на них ужасных катастроф, в основном покрыты безжизненным слоем грунта или газа, который немного изменяется только благодаря слабому движению ветра или потоков воздуха. Совершенно бесплодная поверхность большинства планет разительно отличается от нашей планеты с ее яркими цветами – оттенками зеленого, голубого и белого, ведь поверхность всех других планет имеет тускло-серый или коричневый оттенок, и, зачастую, покрыта толстым слоем атмосферы.

В буквально каждой экологической нише поверхности нашей планеты можно найти какой-то из видов жизни. Даже в озерах чрезвычайно холодной Антарктики можно найти живых существ, с трудом различимых под микроскопом. В кусочках мха и лишайника обитают крохотные бескрылые насекомые и растут растения, цветущие каждый год. Жизнь на Земле присутствует везде – от самых верхних слоев атмосферы до дна океана, от самых холодных точек полюсов до самых жарких мест экватора. До сегодняшнего дня ни на одной другой планете не было найдено доказательств существования жизни.

Планета Земля имеет огромные размеры --8000 миль (12756 км) и обладает массой в 6.6 x 10 21 тонн. Планета Земля находится на расстоянии приблизительно в 93 миллиона миль от Солнца. Если бы Земля вращалась вокруг Солнца по своей орбите длиной в 584 миллионов миль быстрее, ее орбита стала бы более длинной, и Земля отдалилась бы от Солнца на большее расстояние. А если бы она слишком далеко отошла от небольшой обитаемой зоны, все виды жизни на Земле прекратили бы свое существование. Если бы планета Земля двигалась по своей орбите медленней, она бы приблизилась к Солнцу, что также привело бы к исчезновению жизни.

Путешествие Земли вокруг солнца, которое занимает 365 дней, 6 часов, 49 минут и 9.54 секунд (звездный год), всегда происходит с точностью до одной тысячной секунды! Если бы средняя годовая температура Земли изменилась хотя бы на несколько градусов, большинство форм жизни в конце-концов погибли бы от перегрева или замерзания. Такая перемена нарушила бы водно-ледный баланс, и другие важнейшие балансы, что привело бы к катастрофическим последствиям. Если бы планета Земля вращалась по своей оси медленнее, вся жизнь со временем вымерла бы либо от замерзания ночью (из-за недостатка солнечного тепла), либо от перегрева днем (из-за жары от солнца).

Солнце

Только одна миллиардная часть энергии, ежедневно производимой Солнцем, используется нашей планетой. Солнце обеспечивают ежедневно Землю энергией, сопоставимой с более 130 триллионов лошадиных сил. Хотя, по всей вероятности, во Вселенной существует несколько сотен миллиардов галактик, и в каждой из них насчитывается около 100 миллиардов звезд, на каждый атом припадает 333 литров пространства, и это значит, что пустое пространство занимает большую часть вселенной!

Если бы Луна была более крупной, или находилась бы ближе к Земле, это привело бы к возникновению цунами, которые заливали бы долины и разрушали горы. Ученые считают, что если бы континенты находились на одном уровне, вода покрыла бы всю поверхность суши на глубину более двух километров ! Если бы Земля находилась под наклоном не в 23°, а, скажем, в 90° по отношению к Солнцу, у нас бы не было четырех времен года. А без смены времен года жизнь на земле не могла бы существовать – полюса находились бы в вечных сумерках, а испаряющаяся из океанов вода относилась бы ветром на северный и южный полюс, и замерзала там. Со временем, в полярных регионах скопились бы громадные континенты из снега и льда, а остальная часть Земли стала бы сухой пустыней. В конце концов, океаны исчезли бы с лица Земли и прекратились бы дожди. Вес накопленного льда на полюсах заставил бы планету выпучиться по линии экватора, и, в результате, вращение Земли коренным образом изменилось бы.

Чудо воды

Еще один пример, который проиллюстрирует жестокие изменения, которые могли бы наступить из-за изменений под воздействием внешних условий – это существование воды. Планета Земля – единственная известная нам планета с таким огромным скоплением воды -70% ее поверхности покрыто океанами, озерами и морями, окружающими огромные массивы суши. Лишь на немногих планетах есть вода, и она содержится там либо в форме влаги, парящей в виде пара на поверхности, либо в виде льда – но нигде нет таких огромных массивов жидкости, как на Земле.

Вода уникальна тем, что она может поглощать огромное количество тепла и это не вызывает значительных изменений ее температуры. Коэффициент теплопоглощения воды в более чем в десять раз превышает коэффициент теплопоглощения стали. На протяжении дня водные массивы Земли поглощают огромное количество тепла, и таким образом, на земле сохраняется относительно прохладная температура. Ночью вода отдает большое количество тепла, поглощенного за день, что, вместе с атмосферными эффектами, не позволяет поверхности Земли замерзнуть за ночь. Если бы на Земле не было того огромного количества воды, существовали бы намного более резкие перепады дневных и ночных температур . Многие части поверхности Земли нагревались бы днем настолько, что на них можно было бы кипятить воду, и те же самые части замерзали бы ночью настолько, что на них можно было бы замораживать воду. Так как вода является превосходным стабилизатором температуры, присутствие огромных океанов является жизненно важным условием для существования жизни на нашей планете.

Однако переизбыток воды на Земле также мог бы создать проблему. Большинство материалов расширяются при нагревании и сужаются при охлаждении. Поэтому если взять два предмета одинакового размера и состоящих из одного материала, тот предмет, который будет более холодным, будет иметь большую плотность. Возможно, это и не кажется нам проблемой, но это могло бы стать серьезной проблемой в случае с водой, если бы не одна редкая аномалия.

Вода, как и почти все другие вещества, сужается при остывании, однако в отличие от буквально всех других веществ (редкими исключениями являются также резина и сурьма), она сужается при охлаждении до 4° Цельсия, а потом – удивительным образом расширяется до момента замерзания. Если бы вода продолжала охлаждаться так же, как и все другие вещества, она становилась бы более плотной, и, в результате, опускалась бы на дно океана. Более того, превращаясь в лед, вода также опускалась бы на дно океана. Со временем, дно океана все больше покрывалось бы льдом, в то время как вода на поверхности продолжала бы замерзать, опускаться и копиться на дне.

Таким образом, благодаря этой аномалии, лед, формирующийся в морях, океанах и озерах, остается на поверхности, где солнце нагревает его на протяжении дня, а теплая вода снизу помогает ему растаять летом. Благодаря этому процессу, а также эффекту Кориолиса, из-за которого возникают океанические течения, большая часть океана находится в форме жидкости и это дает возможность бесчисленному количеству существ обитать в воде и подтверждает, что истинно, «Господь премудростью основал землю, небеса утвердил разумом»; (Притчи 3:19) .

Чудо воздуха

На суше же происходит обратное. Воздух, находящийся вблизи поверхности Земли, нагревается энергией солнца, а после нагревания воздух становится менее плотным и поднимается вверх. В результате возле поверхности Земли поддерживается такая температура, при которой возможно существование жизни. Если бы воздух при нагревании сжимался и становился более плотным, температура возле поверхности Земли была бы просто невыносимой – при такой температуре большинство форм жизни не смогли бы прожить долгое время. Температура же в нескольких метрах над поверхностью наоборот была бы очень низкой и большинство форм жизни также не смогли бы прожить при ней долгое время. На земле была бы очень тонкая прослойка атмосферы, пригодной для жизни, но даже и в ней жизнь не смогла бы продержаться долгое время, так как растения и деревья, необходимые для поддержания жизни, находились бы в «холодной зоне». Таким образом, у птиц не было бы места для жизни, еды, воды или кислорода. Но благодаря тому, что воздух поднимается вверх при нагревании, на Земле возможно существование жизни.

Движение теплого воздуха вверх от поверхности Земли создает воздушные течения (ветер), которые также являются очень важной частью экологической системы Земли. Они уносят углекислый газ из местностей, где он вырабатывается в чрезмерных количествах (например, в городах) и переносят кислород в те места, где он необходим (например, в густозаселенные центры).

Смесь газов, которые содержатся в незагрязненной человеческой деятельностью атмосфере, просто идеальна для жизни . Если бы их соотношение значительно отличалось (к примеру, было бы 17% кислорода вместо 21%, или было бы слишком мало углекислого газа, или атмосферное давление было бы намного выше или ниже), жизнь на Земле прекратила бы свое существование. Если бы слой атмосферы был бы намного тоньше, миллионы метеоров, которые сжигаются, не достигая Земли, попадали бы на землю и несли с собой смерть, разруху и пожары.

Окружающая среда, пригодная для жизни: адаптация или сотворение?

Если благодаря эволюции возникают формы жизни, способные обитать в соответствующих условиях окружающей среды, то почему же жизнь не распространилась в равной мере везде? Планета Земля намного лучше приспособлена для жизни, чем любая другая планета, но даже большая часть Земли имеет либо слишком жаркий, либо слишком холодный микроклимат. Жизнь не может существовать как слишком глубоко под землей, так и слишком высоко над ее поверхностью. На расстоянии во многие тысячи километров от центра Земли до края ее атмосферы, существует лишь несколько метров окружающей среды, пригодной для обитания большинства форм жизни, и, таким образом, почти все живые создания вынуждены жить в этом промежутке. Хотя в нашей солнечной системе только планета Земля создана пригодной для обитания (Исаии 45:18 ), даже на Земле лишь тонкая прослойка атмосферы пригодна для жизни большинства форм жизни, с которыми мы лучше всего знакомы – это млекопитающие, птицы и рептилии.

И эта прослойка буквально изобилует различными формами жизни. По оценкам ученых, в одном акре обычной фермерской почвы глубиной в 15 см содержится несколько тонн живых бактерий, около тонны грибков, 90 кг простейших одноклеточных организмов, около 40 кг дрожжевых грибов и практически столько же водорослей.

Выводы

Эту экстремально тонкую грань между окружающей средой, в которой жизнь может существовать и средой, где она не может существовать, можно проиллюстрировать одним фактом. По оценке ученых, изменение средней мировой температуры всего на пять градусов со временем серьезно повлияло бы на существование жизни на Земле, а более значительные изменения температуры могли бы быть губительными для жизни.

Эти допустимые отклонения ничтожно малы, и даже если во всей вселенной есть еще и другие планеты, весьма маловероятно, что они пригодны для жизни, так как для существования жизни требуются весьма жесткие условия.

Вероятность того, что планета будет нужного размера, что она будет находиться на нужном расстоянии от звезды нужного размера, и что будут соблюдены и все остальные условия, описанные в этой статье, невероятно мала - даже если учесть, что, возможно, вокруг большинства звезд вращаются множество планет, как считают многие ученые. Математическая вероятность того, что все эти и другие важные условия существования создались по стечению астрономических обстоятельств, составляет примерно несколько миллиардов к одному!

Ссылки и примечания

  1. Г. Гиллермо, Дж. В. Ричардз. Привилегированная планета: о том, как наша планета в космосе создана для открытий. Washington, DC: Regnery. 2004.
  2. П.Д. Ворд, Д. Вроули. Редкая планета Земля: Почему сложная жизнь необычна для Вселенной. New York: Copernicus. 2000

* Благодарю за помощь в написании этой статьи доктора Девида Джонсона, профессором химии из университета Спринг Арбор, и Роберта Лейнга, президента лабораторий «Клин Флоу».