Самым ярким представителем квантовых размерных эффектов является туннельный эффект – чисто квантовое явление, сыгравшее важную роль в развитии современной электронике и приборостроении. Феномен туннелирования был открыт в 1927 г. нашим соотечественником Г. А. Гамов, который впервые получил решения уравнения Шрёдингера, описывающие возможность преодоления частицей потенциального барьера, даже если её энергия меньше высоты барьера. Найденные решения помогли понять многие экспериментальные данные, которые невозможно было понять в рамках представлений классической физики.


Впервые в физике туннельный эффект был использован для объяснения радиоактивного - распада атомных ядер, например:

Дело в том, что - частица – ядро атома гелия - не имеет достаточной энергии для того, чтобы покинуть нестабильное ядро. На этом пути - частице необходимо преодолеть огромный (28 МэВ), но достаточно узкий (10 -12 см – радиус ядра) потенциальный барьер. Советский учёный Г. Гамов (1927) показал, что распад атомного ядра в таком случае становится возможным именно за счёт тунелирования переноса - частицы. Благодаря туннельному эффекту происходит также холодная эмиссия электронов из металлов и многие другие явления. Многие считают, что за грандиозность результатов его работ, ставших основополагающими для многих наук, Г.А. Гамов должен был быть удостоен нескольких Нобелевских премий. Лишь спустя тридцать лет после открытия Г. А. Гамова появились первые приборы на основе туннельного эффекта – туннельные диоды, транзисторы, датчики, термометры для измерения сверхнизких температур, и, наконец, сканирующие туннельные микроскопы, положившие начало современным исследованиям наноструктур. Туннельный эффект представляет собой процесс преодоления микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелированный неизменной) меньше высоты барьера. Туннельный эффект – явление исключительно квантовой природы, которое не возможно было объяснить в рамках классических представлений. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда с точки зрения геометрической оптики, происходит полное внутреннее отражение. В общем случае, туннельный эффект представляет собой процесс преодоления микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. В классической механике движение происходит при условии, что полная энергия частицы больше, чем её потенциальная энергия , т.е. имеет место неравенство:


Поскольку полная энергия равна сумме кинетической и потенциальной энергий:

и кинетическая энергия больше нуля , то соответственно разность полной и потенциальной энергий, также будет больше нуля:

и таким образом будет выполняться условие вида:

Необходимо отметить, что задача о движении частицы в потенциальном ящике удовлетворяет данному условию, поскольку внутри ящика потенциальная энергия равна нулю . Однако в квантовой механике движение возможно и при условии, когда полная энергия меньше потенциальной . Такие задачи объединяют общим названием – потенциальные барьеры. Рассмотрим потенциальный барьер прямоугольной формы. Пусть в области I значение потенциала равно нулю, . В области II значение потенциальной энергии равно определяется высотой барьера и таким образом . В области III значение потенциальной энергии равно нулю, . Обозначим волновые функции для областей: для области I, для области II и для области III. В данной задаче нас будет интересовать случай, когда полная энергия частицы меньше высоты потенциального барьера , т.е. при условии что .

Рис.8. Прохождение частицы через потенциальный барьер

Для каждой из трёх областей запишем уравнение Шрёдингера, приведём его к стандартному виду и опишем его общие решения. Рассмотрим движение частицы в области I. Обозначим волновую функцию частицы в этом случае . Как и в случае свободного движения частицы, соответствующее уравнение Шрёдингера запишется в виде:

откуда следует, что:


общее решение уравнения Шрёдингера для области I, может быть записано в виде:

первую часть функции можно интерпретировать как падающую на потенциальный барьер волну (движение частицы слева направо в области I). Коэффициенты и называют амплитудами соответственно падающей и отражённой волны. Они определяют вероятность прохождения волны через потенциальный барьер, а также вероятность её отражения от барьера. Поскольку коэффициенты разложения в выражении для волновой функции связаны с интенсивностью пучка частиц движущихся к барьеру или отражённых от него, тогда соответственно принимая амплитуду падающей волны , будем иметь:

Рассмотрим теперь движение частицы в области II. В условиях данной задачи, физический интерес для нас будет представлять случай, когда полная энергия частицы меньше высоты потенциального барьера, что отвечает выполнению условия вида:

поскольку для области II:

т.е. значения потенциальной энергии частицы определяется высотой барьера – размером области:

тогда уравнение Шрёдингера для области II будет иметь вид:

откуда следует, что:

(решение задач блока ФИЗИКА, как и других блоков, позволит отобрать ТРЕХ человек на очный тур, набравших при решении задач ЭТОГО блока наибольшее количество баллов. Дополнительно по результатам очного тура эти претенденты будут бороться за специальную номинацию «Физика наносистем ». На очный тур будет отобрано также еще 5 человек, набравших наибольшее абсолютное количество баллов, поэтому после решения задач по своей специальности есть полный смысл решать задачи из других блоков . )

Одним из основных отличий наноструктур от макроскопических тел является зависимость их химических и физических свойств от размера. Наглядным примером этого служит туннельный эффект, который заключается в проникновении легких частиц (электрона, протона) в области, недоступные для них энергетически. Этот эффект играет важную роль в таких процессах как например перенос заряда в фотосинтетических устройствах живых организмов (стоит заметить, что биологические реакционные центры являются одними из наиболее эффективных наноструктур).

Туннельный эффект можно объяснить волновой природой легких частиц и принципом неопределенности. Благодаря тому, что частицы малого размера не имеют определенного положения в пространстве, для них не существует понятия траектории. Следовательно, для перемещения из одной точки в другую частица не должна проходить по линии, их соединяющей, и таким образом может «обходить» области, запрещенные по энергии. В связи с отсутствием у электрона точной координаты, его состояние описывают с помощью волновой функции, характеризующей распределение вероятности по координате. На рисунке показан типичный вид волновой функции при туннелировании под энергетический барьер.

Вероятность p проникновения электрона сквозь потенциальный барьер зависит от высоты U и ширины последнего l (формула 1 , слева), где m – масса электрона, E – энергия электрона, h – постоянная Планка с чертой.

1. Определите вероятность, того что электрон туннелирует на расстояние 0.1 нм, если разница энергий U – E = 1 эВ (2 балла ). Рассчитайте разность энергий (в эВ и кДж/моль), при которой электрон сможет туннелировать на расстояние 1 нм с вероятностью 1% (2 балла ).

Одним из наиболее заметных следствий туннельного эффекта является необычная зависимость константы скорости химической реакции от температуры. При уменьшении температуры константа скорости стремится не к 0 (как можно ожидать из уравнения Аррениуса), а к постоянному значению, которое определяется вероятностью туннелирования ядер p (ф ормула 2 , слева), где A – предэкспоненциальный множитель, E A – энергия активации. Это можно объяснить тем, что при высоких температурах в реакцию вступают только те частицы, энергия которых выше энергии барьера, а при низких температурах реакция идет исключительно за счет туннельного эффекта.

2. Из приведенных ниже экспериментальных данных определите энергию активации и вероятность туннелирования (3 балла ).

k (T ), c – 1

В современных квантовых электронных устройствах используется эффект резонансного туннелирования. Этот эффект проявляется, если электрон встречает два барьера, разделенные потенциальной ямой. Если энергия электрона совпадает с одним из уровней энергии в яме (это – условие резонанса), то общая вероятность туннелирования определяется прохождением через два тонких барьера, если же нет – то на пути электрона встает широкий барьер, который включает потенциальную яму, и общая вероятность туннелирования стремится к 0.

3. Сравните вероятности резонансного и нерезонансного туннелирования электрона при следующих параметрах: ширина каждого из барьеров 0.5 нм, ширина ямы между барьерами 2 нм, высота всех потенциальных барьеров относительно энергии электрона равна 0.5 эВ (3 балла ). В каких устройствах используется принцип туннелирования (3 балла )?

ТУННЕЛЬНЫЙ ЭФФЕКТ , квантовый эффект, состоящий в проникновении квантовой частицы сквозь область пространства, в к-рой согласно законам классич. физики нахождение частицы запрещено. Классич. частица, обладающая полной энергией E и находящаяся в потенц. поле, может пребывать лишь в тех областях пространства, в к-рых ее полная энергия не превышает потенц. энергию U взаимодействия с полем. Поскольку волновая ф-ция квантовой частицы отлична от нуля во всем пространстве и вероятность нахождения частицы в определенной области пространства задается квадратом модуля волновой ф-ции, то и в запрещенных (с точки зрения классич. механики) областях волновая ф-ция отлична от нуля.

Т уннельный эффект удобно иллюстрировать на модельной задаче об одномерной частице в поле потенциала U(x) (x - координата частицы). В случае симметричного двухъямного потенциала (рис. а)волновая ф-ция должна "умещаться" внутри ям, т. е. она представляет собой стоячую волну. Дискретные энерге-тич. уровни, к-рые расположены ниже барьера, разделяющего минимумы потенциала, образуют близко расположенные (почти вырожденные) . Разность энергетич. уровней, составляющих , наз. туннельным расщеплени-е м, эта разность обусловлена тем, что точное решение задачи (волновая ф-ция) для каждого из дело-кализовано в обоих минимумах потенциала и все точные решения отвечают невырожденным уровням (см. ). Вероятность туннельного эффекта определяется коэффициентом прохождения сквозь барьер волнового пакета, к-рый описывает нестационарное состояние частицы, локализованной в одном из минимумов потенциала.





Кривые потенц. энергии U (х)частицы в случае, когда на нее действует сила притяжения (а - две потенц. ямы, б - одна потенц. яма), и в случае, когда на частицу действует сила отталкивания (отталкивательный потенциал, в). E -полная энергия частицы, х - координата. Тонкими линиями изображены волновые ф-ции.

В потенц. поле с одним локальным минимумом (рис. б)для частицы с энергией E, большей потенциала взаимодействия при c =, дискретные энергетич. состояния отсутствуют, но существует набор квазистационарных состояний, в к-рых велика относит. вероятность нахождения частицы вблизи минимума. Волновые пакеты, отвечающие таким квазистационарным состояниям, описывают метастабильные ; волновые пакеты расплываются и исчезают вслед-ствие туннельного эффекта. Эти состояния характеризуются временем жизни (вероятностью распада) и шириной энергетич. уровня.

Для частицы в отталкивательном потенциале (рис. в)волновой пакет, описывающий нестационарное состояние по одну сторону от потенц. барьера, даже если энергия частицы в этом состоянии меньше высоты барьера, может с определенной вероятностью (наз. вероятностью проникновения или вероятностью туннелирования) проходить по др. сторону барьера.

Наиб. важные для проявления туннельного эффекта: 1) туннельные расщепления дискретных колебат., вращат. и электронно-ко-лебат. уровней. Расщепления колебат. уровней в с неск. эквивалентными равновесными ядерными конфигурациями - это инверсионное удвоение (в типа ), расщепление уровней в с заторможенным внутр. вращением ( , ) или в , для к-рых допустимы внутримол. перегруппировки, приводящие к эквивалентным равновесным конфигурациям (напр., PF 5). Если разл. эквивалентные минимумы на оказываются разделенными потенц. барьерами (напр., равновесные конфигурации для право- и левовращающих сложных ), то адекватное · описание реальных мол. систем достигается с помощью, локализованных волновых пакетов. В этом случае дело-кализованных в двух минимумах стационарных состояний неустойчива: под действием очень малых возмущений возможно образование двух состояний, локализованных в том или ином минимуме.

Расщепление квазивырожденных групп вращат. состояний (т. наз. вращательных к л а с т е r о в) также обусловлено туннелированием мол. системы между окрестностями неск. эквивалентных стационарных осей вращения. Расщепление электронно-колебат. (вибронных) состояний происходит в случае сильных Яна - Теллера эффектов. С туннельным расщеплением связано и существование зон, образуемых электронными состояниями отдельных или мол. фрагментов в с периодич. структурой.

2) Явления переноса частиц и элементарных возбуждений. Данная совокупность явлений включает нестационарные процессы, описывающие переходы между дискретными состояниями и распад квазистационарных состояний. Переходы между дискретными состояниями с волновыми ф-циями, локализованными в разл. минимумах одного адиабатич. потенциала, соответствуют разнообразным хим. р-циям. Туннельный эффект всегда вносит нек-рый вклад в скорость р-ции, однако этот вклад существен только при низких т-рах, когда надбарьер-ный переход из исходного состояния в конечное маловероятен из-за низкой заселенности соответствующих уровней энергии. Туннельный эффект проявляется в неаррениусовском поведении скорости r -ции; характерный пример - рост цепи при ради-ационно-инициированной твердого . Скорость этого процесса при т-ре ок. 140 К удовлетворительно описывается законом Аррениуса с

Туннельный эффект
Tunneling effect

Туннельный эффект (туннелирование) – прохождение частицы (или системы) сквозь область пространства, пребывание в которой запрещено классической механикой. Наиболее известный пример такого процесса – прохождение частицы сквозь потенциальный барьер, когда её энергия Е меньше высоты барьера U 0 . В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь неё, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Поэтому можно лишь говорить о вероятности нахождения частицы в определенной области пространства ΔрΔх > ћ. При этом ни потенциальная, ни кинетическая энергии не имеют определенных значений в соответствии с принципом неопределенности. Допускается отклонение от классической энергии Е на величину ΔЕ в течение интервалов времени t, даваемых соотношением неопределённостей ΔЕΔt > ћ (ћ = h/2π, где h – постоянная Планка).

Возможность прохождения частицы сквозь потенциальный барьер обусловлена требованием непрерывной волновой функции на стенках потенциального барьера. Вероятность обнаружения частицы справа и слева связаны между собой соотношением, зависящим от разности E - U(x) в области потенциального барьера и от ширины барьера x 1 - x 2 при данной энергии.

С увеличением высоты и ширины барьера вероятность туннельного эффекта экспоненциально спадает. Вероятность туннельного эффекта также быстро убывает с увеличением массы частицы.
Проникновение сквозь барьер носит вероятностный характер. Частица с Е < U 0 , натолкнувшись на барьер, может либо пройти сквозь него, либо отразиться. Суммарная вероятность этих двух возможностей равна 1. Если на барьер падает поток частиц с Е < U 0 , то часть этого потока будет просачиваться сквозь барьер, а часть – отражаться. Туннельное прохождение частицы через потенциальный барьер лежит в основе многих явлений ядерной и атомной физики: альфа-распад, холодная эмиссия электронов из металлов, явления в контактном слое двух полупроводников и т.д.

> Квантовое туннелирование

Изучите квантовый туннельный эффект . Узнайте, при каких условиях возникает эффект туннельного зрения, формула Шредингера, теория вероятности, орбитали атомов.

Если объекту не хватает энергии, чтобы пробиться сквозь барьер, то он способен туннелироваться через воображаемое пространство с другой стороны.

Задача обучения

  • Выявить факторы, влияющие на вероятность туннелирования.

Основные пункты

  • Квантовое туннелирование используют для любых объектов перед барьером. Но в макроскопических целях вероятность возникновения небольшая.
  • Туннельный эффект возникает из-за мнимой компонентной формулы Шредингера. Так как она присутствует в волновой функции любого объекта, то может существовать в воображаемом пространстве.
  • Туннелирование сокращается с ростом массы тела и увеличением разрыва между энергиями объекта и барьера.

Термин

  • Туннелирование – квантово-механическое прохождение частички сквозь энергетический барьер.

Как возникает туннельный эффект? Вообразите, что вы бросаете мяч, но он исчезает мгновенно, так и не коснувшись стены, и появляется с другой стороны. Стена здесь останется целой. Удивительно, но существует конечная вероятность того, что это событие осуществится. Явление именуют квантовым туннельным эффектом.

На макроскопическом уровне возможность туннелирования остается незначительной, но она постоянно наблюдается в наномасштабах. Давайте посмотрим на атом с р-орбиталью. Между двумя долями расположена узловая плоскость. Есть вероятность, что в любой ее точке можно найти электрон. Однако электроны переходят от одной доли к другой путем квантового туннелирования. Им просто нельзя находиться в узловой области, и они путешествуют по воображаемому пространству.

Красная и синяя доли показывают объемы, где присутствует 90% вероятность обнаружения электрона в любой временной промежуток, если орбитальная зона занята

Временное пространство не выступает реальным, но оно активно участвует в формуле Шредингера:

Вся материя располагает волновым компонентом и может существовать в мнимом пространстве. Понять разницу вероятности туннелирования поможет комбинация массы, энергии и высоты энергии объекта.

Когда объект подходит к барьеру, волновая функция меняется от синусоидальной до экспоненциально сокращающейся. Формула Шредингера:

Вероятность туннелирования становится меньше при росте массы объекта и возрастания разрыва между энергиями. Волновая функция никогда не приближается к 0, поэтому туннелирование так часто встречается в наномасштабах.