Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Данные об авторе

Стукалова Надежда Васильевна

Место работы, должность:

МБОУ СОШ №15,учитель математики

Тамбовская область

Характеристики урока (занятия)

Уровень образования:

Среднее (полное) общее образование

Целевая аудитория:

Учащийся (студент)

Целевая аудитория:

Учитель (преподаватель)

Класс(ы):

Предмет(ы):

Алгебра

Предмет(ы):

Математика

Цель урока:

Тип урока:

Комбинированный урок

Учащихся в классе (аудитории):

Используемые учебники и учебные пособия:

А. Г. Мордкович, алгебра,9 класс, учебник,2011

А. Г. Мордкович, алгебра,9 класс, задачник,2011

С.А. Теляковский, алгебра 9 класс, учебник, 2009

Используемая методическая литература:

Мирошин, В.В. Решение задач с параметрами: Теория и практика / В.В. Мирошин.- М.: Экзамен, 2009.

Л. В Кузнецова Сборник заданий для экзамена

Используемое оборудование:

Компьютер, кинопроектор

Краткое описание:

План урока: 1. Организационный момент. 2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой). 3. Решение задач с параметрами (работа в группах). 4. Самостоятельная работа с последующей проверкой. 5. Подведение итогов. 6. Домашнее задание.

Конспект урока

на тему

«Расположение корней квадратного трёхчлена

в зависимости от значений параметра»

учитель математики Стукалова Н.В. МБОУ СОШ №15

г. Мичуринск - наукоград РФ 2011г.

Цель урока:

Развивать практические умения и навыки учащихся по решению заданий с параметрами;

Подготовить учащихся к успешной сдачи ГИА по математике;

Развивать исследовательскую и познавательную деятельности учащихся;

Формировать интерес к математике;

Развивать математические способности учащихся.

План урока:

1. Организационный момент.

2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой).

3. Решение задач с параметрами (работа в группах).

4. Самостоятельная работа с последующей проверкой.

5. Подведение итогов.

6. Домашнее задание.

Ход урока.

1. Организационный момент.

Учитель сообщает тему урока, ставит цели и задачи перед учащимися, сообщает план урока.

Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.

Наш урок посвящен решению задач по расположению корней квадратного трёхчлена на числовой прямой.

2. Обобщение и систематизация знаний:

Вспомнить необходимые и достаточные условия для выполнения различных требований расположения корней квадратного уравнения относительно заданных точек или промежутков.

После ответа учащихся демонстрируются слайды с правильным ответом.

1. Расположение корней по обе стороны от заданной на числовой прямой

точки.

условию х 1 < m<х 2, необходимо и достаточно выполнения неравенства аf(x)<0.

2. Расположение корней по обе стороны от заданного отрезка.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию х 1 < m, х 2 < n, где m

системы неравенств

3. Расположение корней с одной стороны от заданной на числовой прямой

Точки.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию m<х 1 <х 2, т.е располагались на числовой прямой правее точки х = m,

необходимо и достаточно выполнения системы неравенств

Если левее точки х = m, необходимо и достаточно выполнения

системы неравенств

4. Принадлежность корней заданному интервалу.

интервалу (m;n), необходимо и достаточно выполнения системы

неравенств

5.Принадлежность корней заданному отрезку.

Для того чтобы корни квадратного уравнения при а ≠ 0 принадлежали

интервалу , необходимо и достаточно выполнения системы

неравенств

3. Решение задач с параметрами.

Учащиеся разделены на 4 группы. В каждой группе есть дети более успешные в алгебре. Каждая группа начинает решение задачи, совпадающей с номером своей группы. После обсуждения хода решения задачи, от каждой группы по одному представителю выходят к доске и оформляют решение задачи своей группы, и объясняет её решение (на откидных досках). В это время ребята должны решить задачи другой группы (можно получать консультацию у учителя).

Задача №1.

При каких значениях параметра а один корень уравнения (12а + 7)х 2 + (9а - 42)х + +11 - 3а = =0 больше 1, другой корень меньше 1?

Решение.

Графиком функции у = f(х), где f(х) = (12а + 7)х 2 + (9а - 42)х + +11 - 3а, при

а ≠ - 7/12 является параболой, ветви которой при а > - 7/12 направлены вверх, при а < - 7/12 - вниз. Тогда значения параметра а удовлетворяют неравенству

(12а +)f(1)< 0, где f(1) = 12а+7+9а-42+11-3а = 18а-24. Решив неравенство (12а+7)(18а-24)<0, получим, что - 7/12<а<4/3. Ответ: (-7/12; 4/3).

Задача № 2 .

Найдите значения параметра а, при которых корни уравнения (1+а)х 2 - 3ах +4а = 0 больше 1.

Решение.

При а≠-1 заданное уравнение является квадратным и D= -а(7а+16). Получим систему , откуда -16/7≤а≤ -1.

Значения параметра, при которых корни данного уравнения при а ≠ - 1 больше 1, принадлежат промежутку [-16/7; -1).

При а = -1 заданное уравнение имеет вид3х - 4 = 0 и единственный корень

Ответ: [-16/7; -1]

Задача № 3 .

При каких значениях параметра kкорни уравнения (k-2)х 2 -2kх+2k-3=0

принадлежат интервалу (0;1)?

Решение.

При k≠2 искомые значения параметра должны удовлетворять системе неравенств

ГдеD= 4k 2 -4(k-2)(2k-3) = -4(k 2 -7k+6), f(0) = 2k-3? F(1) = k-5, x в = k/(k-2).

Данная система не имеет решений.

При k = 2 заданное уравнение имеет вид -4х+1 = 0, его единственный корень

х = ¼, который принадлежит интервалу (0;1).

Задача №4 .

При каких значениях а оба корня уравнения х 2 -2ах+а 2 -а = 0 расположены на отрезке?

Искомые значения должны удовлетворять системе неравенств

где D= 4а 2 -4(а 2 -а) = 4а, f(2) = a 2 -5a+4, f(6) = a 2 -13a+36, х в = а.

Единственным решением системы является значение, а = 4.

4. Самостоятельная работа (контрольно - обучающая).

Учащиеся работают в группах, выполняют один и тот же вариант, так как материал очень сложный и не всем может быть по силам.

№1. При каких значениях параметра а оба корня уравнения х 2 -2ах+а 2 - 1 =0 принадлежит интервалу (-2;4)?

№2. Найдите все значения k, при которых один корень уравнения

(k-5)x 2 -2kx+k-4=0 меньше1, а другой корень больше 2.

№3. При каких значениях а число 1 находится между корнями квадратного трехчлена х 2 + (а+1)х - а 2 ?

По окончании времени демонстрируются ответы. Осуществляется самопроверка самостоятельной работы.

5. Итог урока. Закончить предложение.

«Сегодня на уроке…».

«Мне запомнилось …».

«Хотелось бы отметить …».

Учитель анализирует весь ход урока и его основные моменты, оценивает деятельность каждого ученика на уроке.

6. Домашнее задание

(из сборника заданий для подготовки к ГИА в 9 классе авт. Л. В. Кузнецова)

Квадратные уравнения с параметрами

(Методическая разработка для учащихся 9-11 классов)

учитель математики высшей квалификационной категории,

заместитель директора по УВР

Мегион 2013

Предисловие

https://pandia.ru/text/80/021/images/image002.png" height="22 src=">2.Применение теоремы Виета

Научные работы" href="/text/category/nauchnie_raboti/" rel="bookmark">научной работы учащегося. В задачах с параметрами содержится множество приёмов, необходимых не только для математического развития личности, но и и в любом другом научном исследовании. Поэтому решение задач с параметрами и в частности решение квадратных уравнений с параметрами является пропедевтикой научно-исследовательской работы учащихся. На ЕГЭ по математике (часто задания С5), ГИА (задания части 2) и на вступительных экзаменах встречаются, в основном, два типа задач с параметрами. Первый: «Для каждого значения параметра найти все решения некоторого уравнения или неравенства». Второй: «Найти все значения параметра, при каждом из которых для данного уравнения или неравенства выполняются некоторые условия». Соответственно и ответы в задачах этих двух типов различаются по существу. В ответе к задаче первого типа перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. В ответе к задаче второго типа указываются все значения параметра, при которых выполняются условия, указанные в задаче.

Как известно, решению задач с параметрами в школе уделяется очень мало внимания. Поэтому решение задач с параметрами всегда вызывает большие трудности у учащихся; трудно рассчитывать на то, что учащиеся, подготовка которых не содержала «параметрическую терапию», смогут в жесткой атмосфере конкурсного экзамена успешно справиться с подобными задачами, следовательно, учащиеся должны специально готовиться к «встрече с параметрами». Многие учащиеся воспринимают параметр как «обычное» число. Действительно, в некоторых задачах параметр можно считать постоянной величиной, но это постоянная величина принимает неизвестные значения. Поэтому необходимо рассматривать задачу при всех возможных значениях этой постоянной величины. В других задачах бывает удобно искусственно объявить параметром одну из неизвестных.

Задачи с параметрами обладают диагностической и прогностической ценностью – с помощью задач с параметрами можно проверить знание основных разделов школьной математики, уровень математического и логического мышления, первоначальные навыки научно-исследовательской деятельности , а главное, перспективные возможности успешного овладения курсом математики данного вуза.

Анализ вариантов ЕГЭ по математике и вступительных экзаменов в различные вузы показывает, что большинство предлагаемых задач с параметрами связано с расположением корней квадратного трехчлена. Будучи основной в школьном курсе математики, квадратичная функция формирует обширный класс задач с параметрами, разнообразных по форме и содержанию, но объединенных общей идеей – в основе их решения лежат свойства квадратичной функции. При решении таких задач рекомендуется работать с тремя типами моделей:

1. вербальная модель – словесное описание задачи;

2. геометрическая модель – эскиз графика квадратичной функции;

3. аналитическая модель – система неравенств, при помощи которой описывается геометрическая модель.

Методическое пособие содержит теоремы о расположении корней квадратного трехчлена (необходимые и достаточные условия расположения корней квадратичной функции относительно заданных точек), применение теоремы Виета к решению квадратных уравнений с параметрами. Приведены подробные решения 15 задач с методическими рекомендациями . Назначение данного пособия – помочь выпускнику и учителю математики в подготовке к сдаче ЕГЭ и ГИА по математике, и вступительного экзамена в вуз в виде теста или в традиционной форме.

https://pandia.ru/text/80/021/images/image004.png" width="16" height="32 src="> - лежит правее прямой х = n (условие xb>n);

3. парабола пересекается с прямой х = n в точке, лежащей в верхней полуплоскости при a>0 и в точке, лежащей в нижней полуплоскости при а<0 (условие a∙f(n) >0).

https://pandia.ru/text/80/021/images/image007.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="240">.png" width="38" height="31 src=">.png" width="263" height="264">.png" width="266" height="264">.png" width="311" height="264">.png" width="280" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="280" height="264">.png" width="311" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="290" height="264">.png" width="266" height="264">.png" width="263" height="264">.png" width="266" height="264">.png" width="153" height="43 src=">

Теорема 10. Квадратные уравнения х2 + p1x + q1 = 0 и x2 + p2x + q2 = 0,

дискриминанты которых неотрицательны, имеют по крайней мере один общий корень тогда и только тогда, когда (q2 – q1)2 = (p2 – p1)(p1q2 – q1p2).

Доказательство.

Пусть f1(x) = x2 + p1x + q1, f2(x) = x2 + p2x + q2 и числа х1, х2 являются корнями уравнения f1(x) = 0. Для того чтобы уравнения f1(x) = 0 и f2(x) = 0 имели по крайней мере один общий корень, необходимо и достаточно, чтобы f1(x)∙f2(x) = 0, т. е. чтобы (x12 + p2x1 + q2)(x22 + p2x2 + q2) = 0. Представим последнее равенство в виде

(x12 + p1x1 + q1 + (p2 – p1)x1 + q2 – q1) (x22 + p1x2 + q1 + (p2 – p1)x2 + q2 – q1) = 0.

Поскольку х12 + p1x1 + q1 = 0 и x22 + p1x2 + q1 = 0, отсюда получаем

((p2 – p1)x1 + (q2 – q1))((p2 – p1)x2 + (q2 – q1)) = 0, т. е.

(p2 – p1)2x1x2 + (q2 – q1)(p2 – p1)(x1 + x2) + (q2 – q1)2 = 0.

По теореме Виета x1 +x2 = - p1 и x1x2 =q1; следовательно,

(p2 – p1)2q1 – (q2 – q1)(p2 - p1)p1 + (q2 – q1)2 = 0, или

(q2 – q1)2 = (p2 - p1)((q2 – q1)p1 - (p2 - p1)q1) = (p2 – p1)(q2p1 – q1p1 – p2q1 + p1q1) =

(p2 – p1)(q2p1 – p2q1), что и требовалось доказать.

https://pandia.ru/text/80/021/images/image040.png" width="116" height="65 src=">

Квадратное уравнение ax 2 + bx + c = 0

1) имеет два действительных положительных корня тогда и только тогда, когда одновременно выполняются условия:

;

2) имеет два действительных отрицательных корня тогда и только тогда, когда одновременно выполняются условия:

;

3) имеет два действительных корня разных знаков тогда и только тогда, когда одновременно выполняются условия:

;

4) имеет два действительных корня одного знака, если

Замечание 1. Если коэффициент при х 2 содержит параметр, необходимо разбирать случай, когда он обращается в нуль.

Замечание 2. Если дискриминант квадратного уравнения является полным квадратом, то вначале удобней найти явные выражения для его корней.

Замечание 3. Если уравнение, содержащее несколько неизвестных, является квадратным относительно одной из них, то часто ключом к решению задачи служит исследование его дискриминанта.

Приведем схему исследования задач, связанных с расположением корней квадратного трехчлена f (x ) = ax 2 + bx + c :

1.Исследование случая а = о (если первый коэффициент зависит от параметров).

2.Нахождение дискриминанта D в случае а≠0.

3.Если D - полный квадрат некоторого выражения, то нахождение корней х1, х2 и подчинение условиям задачи.

4..png" width="13" height="22 src=">3. Примеры решения задач для подготовки к ГИА и ЕГЭ по математике

Пример 1. Решите уравнение (a - 2)x 2 – 2ax + 2a – 3 = 0.

Решение. Рассмотрим два случая: а = 2 и а ≠ 2. в первом случае исходное уравнение принимает вид - 4х + 1 = 0..png" width="255" height="58 src=">

При а = 1 или а = 6 дискриминант равен нулю и квадратное уравнение имеет один корень: , т. е. при а = 1 получаем корень , а при а = 6 – корень .

При 1 < a < 6 дискриминант положителен и квадратное уравнение имеет два корня: https://pandia.ru/text/80/021/images/image053.png" width="163" height="24 src=">уравнение не имеет корней; при а = 1 уравнение имеет один корень х = -1; при уравнение имеет два корня ; при а = 2 уравнение имеет единственный корень ; при а = 6 уравнение имеет единственный корень .

Пример 2. При каком значении параметра а уравнение (а - 2)х 2 + (4 – 2а )х + 3 = 0 имеет единственный корень?

Решение . Если а = 2, то уравнение превращается в линейное∙х + 3 = 0; которое не имеет корней.

Если а ≠ 2, то уравнение – квадратное и имеет единственный корень при нулевом дискриминанте D .

D = 0 при а 1 = 2 и a 2 = 5. Значение а = 2 исключается, так как противоречит условию, что исходное уравнение – квадратное.

Ответ : а = 5.

4.

(а - 1)х 2 + (2а + 3)х + а + 2 = 0 имеет корни одного знака?

Решение. Так как по условию задачи рассмотренное уравнение – квадратное, значит, а ≠ 1. очевидно, условие задачи предполагает также существование корней квадратного уравнения, что означает неотрицателность дискриминанта

D = (2a + 3)2 – 4(a - 1)(a + 2) = 8a + 17.

Так как по условию корни должны быть одинаковых знаков, то х 1∙х 2 > 0, т. е..png" width="149" height="21 src=">.С учетом условий D ≥ 0 и а ≠ 1 получим https://pandia.ru/text/80/021/images/image060.png" width="191" height="52 src=">.

Пример 3. Найти все значения а, для которых уравнение х2 – 2(а – 1)х + (2а + 1) = 0 имеет два положительных корня.

Решение. Из теоремы Виета для того чтобы оба корня х1 и х2 данного уравнения были положительными, необходимо и достаточно, чтобы дискриминант квадратного трехчлена х2 – 2(а – 1)х + (2а + 1) был неотрицательным, а произведение х1∙х2 и сумма х1 + х2 были положительными. Получаем, что все а, удовлетворяющие системе

И только они, являются решениями поставленной задачи. Э та система равносильна системе

Решением которой, а следовательно, и самой задачи являются все числа из промежутка целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+а-11

Графиком является парабола.

Геометрическая модель данной задачи представлена на рисунке.

Y (x )

X 1 -1 0 3 x 2 x

Y (-1)

Y (3)

При этих условиях Д>0, так как ветви параболы направлены вверх.

Ответ: а

Общий случай № 6.

При каких значениях параметра а корни квадратного трехчлена находятся вне заданного интервала (k ; m ), т.е. х 1 < k < m <х 2 .

х 2 -(2а+1)х+4-а=0 лежат по разные стороны числа от числа 3?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+4-а.

Графиком является парабола, ветви направлены вверх (первый коэффициент равен 1). Изобразим геометрическую модель задачи.


X 1 3 x 2 x

Y (3)

Перейдем от геометрической модели к аналитической.

  1. Замечаем, что у(3)<0, а ветви параболы направлены вверх. При этих условиях Д>0 автоматически. +вх+с меньше некоторого числа к: х 1 ≤ х 2

    3. При каких значениях параметра а корни квадратного трехчлена ах 2 +вх+с принадлежат интервалу (к,т) к<х 1 ≤х 2

    4. При каких значениях параметра а только меньший корень квадратного трехчлена ах 2 +вх+с принадлежит заданному интервалу (к,т),т.е.к<х 1 <т<х 2

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Корни квадратного уравнения х 2 -4х-(а-1)(а-5)=0, больше чем 1.

    Ответ: 2<а<4

    Корни квадратного уравнения х 2 +(а+1)х-2а(а-1)=0, меньше чем 1.

    Ответ:

    -0,5<а<2

    Корни квадратного уравнения х 2 -2ах+а=0, принадлежат интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    Только меньший корень уравнения х 2 -2ах+а=0, принадлежит интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Только больший корень уравнения х 2 +4х-(а+1)(а+5)=0, принадлежит промежутку [-1;0).

    Ответ:(-5;-4]U[-2;-1)

    Отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0.

    Ответ:-1 <а<3

    Корни квадратного уравнения х 2 -2(а+1)х+4-а=0, лежат по разные стороны от числа 3.

    Ответ( 10 / 7 ;∞)

    Спасибо за урок ребята!