Инструкция

Истоки геологии относятся еще к глубокой древности и связаны с самыми первыми сведениями о породах, рудах и минералах. Термин «геология» был введен норвежским ученым М.П. Эшольтом в 1657 году, а в самостоятельную отрасль естествознания она выделилась в конце ХVIII века. Рубеж ХIХ-ХХ столетий ознаменовался качественным скачком в развитии геологии – превращении ее в комплекс наук в связи с введением физико-химических и математических методов исследования.

Современная геология включает множество составляющих ее дисциплин, раскрывающих тайны Земли в разных областях. Вулканология, кристаллография, минералогия, тектоника, петрография – вот далеко не полный перечень самостоятельных отраслей геологической науки. А еще геология тесно связана с направлениями, имеющими прикладное значение: геофизика, тектонофизика, геохимия и т.д.

Геологию часто называют наукой о «мертвой» природе, в отличие от . Конечно, изменения, происходящие с оболочкой Земли, не столь явные и занимают по времени столетия и тысячелетия. Именно геология рассказывает о том, как формировалась наша планета и какие процессы происходили на ней в течение многих лет ее существования. О современном лике Земли, созданном геологическими «деятелями» - ветром, холодом, землетрясениями, извержениями вулканов - подробно рассказывает наука геология.

Практическое значение геологии для человеческого общества трудно переоценить. Она занимается исследованием земных недр, позволяя извлекать из них , без которых существование человека было бы невозможным. Человечество проделало огромный путь эволюции – из «каменного» периода в век высоких технологий. И каждый его шаг сопровождался новыми открытиями в области геологии, приносившими ощутимую пользу для развития общества.

Геологию также можно назвать исторической наукой, потому что с ее помощью можно проследить за изменениями состава , минералов. Изучая останки живых существ, населявших планету тысячи лет назад, геология дает ответы на вопросы о том, когда эти виды населяли Землю и почему вымерли. По окаменелостей можно судить о последовательности событий, происходивших на планете. Путь развития органической жизни в течение миллионов лет запечатлен в слоях Земли, которые изучает наука геология.

Видео по теме

Обратите внимание

Что такое геология. Геология (от гео и логия) - комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых.

Полезный совет

В этой статье пойдет речь о том, что такое геология. Раскрывается вопрос, о чем эта наука, что она изучает и каковы ее цели и задачи. Мы расскажем об основах и методах геологии. У абсолютно каждого из этих направлений имеются свои методы, а также принципы исследования. Историческая геология изучает последовательность геологических процессов, которые происходили в прошлом.

Связанная статья

Источники:

  • геология что такое

В сознании большинства людей геолог – это бородатый человек с молотком и рюкзаком, который занимается исключительно поиском полезных ископаемых в полном отсутствии связи с цивилизацией. На самом же деле геология – очень сложная и многогранная наука.

Чем занимаются геологи?

Геология состава земной коры, ее строения, а также истории ее формирования. Выделяется три основных направления геологии: динамическая, историческая и описательная. Динамическая исследует изменения земной коры в результате различных процессов, таких как эрозия, разрушение, землетрясения, вулканическая активность. Геологи-историки сосредоточены на том, чтобы представить себе те процессы и изменения, которые происходили с планетой в прошлом. Больше всего привычному образу геолога соответствуют специалисты описательной геологии, так как именно эта отрасль науки занимается изучением состава земной коры, содержания в ней тех или иных ископаемых, или пород.

Геология стала востребованной наукой в эпоху научно-технической революции, когда человечеству потребовалось множество новых ресурсов и энергии.

Исследования недр для описательной геологии включают в себя не только экспедиции со сбором образцов или разведывательное бурение, но и анализ данных, составление геологических карт, оценку перспективности разработки, построение компьютерных моделей. Работа «в поле», то есть непосредственные изыскания на местности, занимают лишь несколько месяцев сезона, а остальное время геолог проводит . Естественно, основным объектом поиска являются полезные ископаемые.

Именно геология занимается, в частности, выяснением точного возраста планеты Земля. Благодаря развитию научных методов, известно, что планете около 4,5 миллиарда лет.

Задачи прикладной геологии

Специалисты геологии полезных ископаемых традиционно делятся на две основные группы: те, кто ищет рудные месторождения, и те, кто нерудные полезные ископаемые. Такое деление обусловлено тем, что принципы и закономерности формирования для и нерудных ископаемых различны, поэтому геологи, как правило, специализируются на чем-то одном. К полезным рудным относится большинство металлов, например, железо, никель, золото, а также некоторые виды минералов. Нерудные ископаемые включают в себя горючие материалы (нефть, газ, каменный ), различные строительные материалы (глина, мрамор, щебень), химические ингредиенты и, наконец, драгоценные и полудрагоценные камни, такие как алмазы, рубины, изумруды, яшма, сердолик и многие другие.

Работа геолога заключается в том, чтобы на основании аналитических данных спрогнозировать залегание в том или ином районе полезных ископаемых, провести исследование в экспедиции с целью подтвердить или опровергнуть свои предположения, а затем, опираясь на полученные сведения, сделать заключение о перспективности промышленной разработки месторождения. При этом геолог исходит из предполагаемого количества ископаемых, их процентного содержания в земной коре, коммерческой оправданности добычи. Поэтому геолог должен быть не только физически выносливым, но и иметь способность к аналитическому мышлению, знать основы экономики, геодезии, постоянно совершенствовать свои знания и навыки.

Видео по теме

Геоэкология – научное направление, охватывающее области изучения экологии и географии. Предмет и задачи этой науки точно не определены, в ее рамках исследуют множество различных проблем, связанных с взаимодействием природы и общества, с влиянием человека на ландшафты и другие географические оболочки.

История геоэкологии

Геоэкология выделилась в отдельную науку около ста лет назад, когда немецкий географ Карл Тролль описал область изучения ландшафтной экологии. С его точки зрения, эта должна объединять и экологические принципы в исследовании экосистем.

Геоэкология развивалась медленно, в Советском Союзе этот термин впервые был озвучен в 70-х годах. К началу XXI века обе смежные области – и – стали достаточно точными для предсказания, как будет меняться природа и различные оболочки Земли в зависимости от человеческого влияния. Более того, ученые уже могут способы решения проблем, связанных с отрицательным воздействием техногенной деятельности на природу. Поэтому геоэкология в новом тысячелетии стала развиваться быстрыми темпами, сфера ее деятельности расширилась.

Геоэкология

Несмотря на то что эта становится все более востребованной, с научной точки зрения она описана недостаточно. Исследователи более или менее сходятся во мнении по поводу задач геоэкологии, но четкого предмета исследования этой науки они не дают. Одно из наиболее распространенных предположений о предмете звучит так: это процессы, происходящие в среде и в различных оболочках Земли – гидросфере, атмосфере и других, которые возникают в результате антропогенного вмешательства и влекут за собой определенные последствия.

В изучении геоэкологии есть очень важный фактор – необходимо учитывать как пространственные, так и временные отношения в исследованиях. Иными словами, для геоэкологов имеет значение как влияние человека на природу в различных географических условиях, так и изменения этих последствий во времени.

Геоэкологи исследуют источники, которые воздействуют на биосферу, изучают их интенсивность и выявляют пространственное и временное распределение их действия. Они создают специальные информационные системы, с помощью которых можно обеспечить постоянный контроль над природной средой. Наряду с экологами они рассматривают уровни загрязнения в различных областях: в Мировом океане, в литосфере, во внутренних водах. Они стараются обнаружить влияние человека на формирование экосистем и их функционирование.

Геоэкология занимается не только существующей сейчас ситуацией, но и прогнозирует, и моделирует возможные последствия происходящих процессов. Это позволяет предупредить нежелательные изменения, а не бороться с их последствиями.

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 51 times, 1 visits today)

Геология - это , которая изучает , ее вещественный состав, структуру коры, процессы и историю. Геология объединяет большое количество наук, включая: минералогию, геологию полезных ископаемых, геофизику, геохимию, петрографию, геодинамику, палеонтологию, вулканологию, тектонику, стратиграфию и многое другое. Эта наука также включает изучение организмов, населявших нашу планету. Важной частью геологии является исследование того, как с течением времени изменялись структура, процессы, организмы и элементы Земли. Люди, изучающие геологию называются геологами.

Что делают геологи?

Геологи работают, чтобы лучше понять историю нашей планеты. Чем лучше мы знаем историю Земли, тем более точно сможем определить, как события и процессы из прошлого способны повлиять на будущее. Вот некоторые примеры:

  • Геологи изучают земные процессы, такие как оползни, землетрясения, наводнения, извержения вулканов и т.п., которые могут быть опасны для людей.
  • Геологи изучают Земли, многие из которых используются человечеством ежедневно.
  • Геологи изучают историю Земли. Сегодня нас беспокоит и многие геологи работают над тем, чтобы узнать о прошлых климатических условиях Земли и о том, как они менялись со временем. Эта историческая информация позволяет понять, как меняется наш нынешний климат и каковы могут быть последствия для человечества от этих изменений.

Что изучает геология?

Основным объектом изучения геологии является земная кора, а также геологические процессы и история Земли:

Минералы

Минерал представляет собой природное химическое соединение, обычно кристаллическое и абиогенное (неорганическое) по происхождению. Минерал имеет один конкретный химический состав, тогда как камень может представлять собой совокупность различных минералов или минералоидов. Наука о минералах называется минералогией.

Существует более 5300 известных видов минералов. Силикатные минералы составляют более 90% земной коры. Кремний и кислород образовывают примерно 75% земной коры, что напрямую связано с преобладанием силикатных минералов.

Минералы отличаются химическими и физическими свойствами. Различия в химическом составе и кристаллической структуре позволяют распознавать виды, которые определялись геологической средой минерала при их формировании. Колебания в температуре, давлении или объемном составе горной массы вызывают изменения минералов.

Минералы можно описать по различным физическим свойствам, которые связаны с их химической структурой и составом. Общие отличительные признаки включают кристаллическую структуру, твердость, блеск, цвет, полосы, прочность, расщепление, переломы, вес, магнетизм, вкус, запах, радиоактивность, реакция на кислоту и т.д.

Минералы исключительной красоты и долговечности называются драгоценными камнями.

Горные породы

Горные породы представляют собой твердые смеси по меньшей мере одного минерала. В то время как минералы имеют кристаллы и химические формулы, породы характеризуются текстурой и минеральным составом. Исходя из этого, горные породы делятся на три группы: магматические горные породы (формируются при постепенном охлаждении магмы), метаморфические горные породы (образование происходит при изменении магматических и осадочных пород) и осадочные горные породы (образовываются при низких температурах и давлении, когда преобразовываются морские и континентальные осадки). Эти три основных типа пород участвуют в процессе, называемом круговоротом горных пород, который описывает трудоемкие переходы, как на поверхности, так и под землей, от одного типа породы к другому на протяжении длительных периодов геологического времени.

Горные породы являются экономически важными полезными ископаемыми. Уголь - это камень, который служит источником энергии. Другие типы пород используются в строительстве, включая камень, щебень и т.д. Третьи необходимы для изготовления инструментов, от каменных ножей наших предков до мела, используемого сегодня художниками.

Окаменелости

Окаменелости являются признаками живых существ, которые существовали очень давно. Они могут представлять отпечатки тел или даже продуктов жизнедеятельности организмов. Ископаемые также включают следы, норы, гнезда и другие косвенные признаки. Окаменелости являются ярким свидетельствованием ранней жизни на Земле. Геологи составили отчет о древней жизни, простирающейся на сотни миллионов лет.

Имеют практическое значение, потому что они изменяются на протяжении всего геологического времени. Совокупность окаменелостей служит для идентификации горных пород. Геологическая шкала времени основана почти исключительно на ископаемых останках и дополнена другими методами датирования. С ее помощью мы можем уверенно сравнивать осадочные породы со всего мира. Ископаемые окаменелости также являются ценными музейными экспонатами и предметами коллекционирования.

Формы рельефа, геологические структуры и карты

Формы во всем их разнообразии являются следствием круговорота горных пород. Они были сформированы эрозией и другими процессами. Формы рельефа дают информацию о том, как образовывалась и изменялась земная кора в геологическом прошлом, например, в ледниковом периоде.

Структура является важной частью изучения обнажения горных пород. Большинство частей земной коры деформированы, согнуты и искажены в некоторой степени. Геологические признаки этого - сочленения, разломы, текстуры пород и несоответствия помогают в оценке геологических структур, а также измерении склонов и ориентаций горных пород. Геологическая структура в недрах важна для водоснабжения.

Геологические карты представляют собой эффективную базу данных геологической информации о породах, рельефах и структуре.

Геологические процессы и угрозы

Геологические процессы приводят к круговороту горных пород, созданию структур и форм рельефа, а также окаменелостей. Они включают эрозию, осаждение, окаменелость, разломы, поднятие, метаморфизм и вулканизм.

Геологические опасные явления - мощные выражения геологических процессов. Оползни, извержения вулканов, землетрясения, цунами, изменение климата, наводнения и космические воздействия являются основными примерами угроз. Понимание основных геологических процессов может помочь человечеству уменьшить ущерб от геологических катастроф.

Тектоника и история Земли

Движение плит в Сан-Андреас

Тектоника - геологическая деятельность в самом крупном масштабе. Поскольку геологи отображали горные породы и изучали геологические особенности, и процессы, они начали поднимать и отвечать на вопросы о тектонике - жизненном цикле горных хребтов и вулканических цепей, движении континентов, о росте и снижении уровня , и о том, какие процессы происходят в ядре и . Тектоника плит объясняет как движутся литосферные плиты и позволила изучать нашу планету как единую структуру.

Геологическая история Земли - это история, которую рассказывают минералы, скалы, окаменелости, рельеф и тектоника. Исследования окаменелостей в сочетании с различными методами дают последовательную эволюционную историю жизни на Земле. (возраст окаменелостей) последних 542 миллионов лет хорошо отображен как время изобилия и и акцентирован . Предыдущие четыре миллиарда лет, были временем огромных изменений в атмосфере, океанах и континентах.

Роль геологии

Существует много причин, по которым геология важна для жизни и цивилизации. Подумайте о землетрясениях, оползнях, наводнениях, засухе, вулканической активности, океанских течениях, типах почвы, минералах (золото, серебро, уран) и т.д. - геологи изучают все эти понятия. Таким образом, изучение геологии играет важную роль в современной жизни и цивилизации.

Геология определяется как «научное исследование происхождения, истории и структуры Земли». Почти все, что мы используем в нашей жизни, имеет какое-то отношение к Земле. Дома, улицы, компьютеры, игрушки, инструменты и т.д. сделаны из природных ресурсов. Хотя Солнце является конечным источником энергии Земли, мы нуждаемся в дополнительной энергии, которая вырабатывается при сжигании природного газа, древесины и т.д. Геологическая наука имеет первостепенное значение для определения местоположения этих источников энергии Земли, а также объясняет как более эффективно извлечь их из недр планеты, с минимальными экономическими затратами и с наименьшим воздействием на окружающую среду. являются чрезвычайно важными для человечества, однако во многих частях мира существует недостаток пресной воды. Изучение геологии помогает находить водные источники, чтобы уменьшить влияние нехватки воды на людей.

Последствия катастрофического землетрясения в Сан-Франциско, США, в 1906 году

Изучение геологии также охватывает процессы Земли, которые могут повлиять на цивилизацию. Землетрясение способно уничтожить тысячи жизней за несколько минут. Кроме того, цунами, наводнения, оползни, засухи и вулканическая деятельность способны оказать огромное влияние на цивилизацию. Геологи изучают эти процессы, и в случае необходимости рекомендуют проводить определенные мероприятия по минимизации ущерба, если возникают такие события. Например, изучая закономерности наводнения рек, геологи могут рекомендовать избегать определенных областей при строительстве новых городов, чтобы предотвратить потенциальный ущерб. Сейсмология - раздел геологии - хотя и очень сложная область изучения, может помочь сохранить многие жизни, оценив, где есть наибольшая вероятность землетрясения (как правило, в линиях геологических разломов), и рекомендовать тип технологий, которые будут использоваться при строительстве зданий в этих уязвимых районах.

Многие предприятия для своей деятельности полагаются на информацию, полученную от геологов. Золото, алмазы, серебро, нефть, железо, алюминий и уголь являются природными ресурсами, которые широко используются в промышленности. Геологи и наука геология помогают в поиске этих и других ресурсов. Даже простой строительный материал, такой как песок, необходимо найти и добыть, а затем уже использовать при строительстве домов, предприятий, школ и т.д.

На самом деле геология еще не имеет широкого признания в современном мире, как, к примеру, генетика, химия и медицина. Тем не менее все жители нашей планеты зависят от природных ресурсов, найденных благодаря геологам и науке геологии. Таким образом, геология чрезвычайно важна и требует дальнейшего развития, и популяризации в обществе.

Содержание статьи

ГЕОЛОГИЯ, наука о строении и истории развития Земли. Основные объекты исследований – горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего – медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании – опускается и затапливается.

Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны.

Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, – по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

Геологические дисциплины.

Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.

ПРИРОДА ЗЕМЛИ

Кора, мантия и ядро.

Бóльшая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами.

В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13–90 км от поверхности под материками и 4–13 км – под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра (рис. 1).

Температуры.

Гравитационное поле Земли.

Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы бóльшая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием «пустот», которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы.

В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны – высокой (при одинаковой общей массе тех и других).

Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях.

Изостазия.

Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр – существенный ее избыток.

Вулканизм.

Происхождение лавы.

В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.

Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.

Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других – только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора поддвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.

Источники тепла.

Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км 3 ; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.

Геохимия и состав Земли.

Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и бóльшая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.

Земля как гигантский метеорит.

Химический состав океанов.

Предполагают, что первоначально на Земле вода отсутствовала. По всей вероятности, современные воды на поверхности Земли имеют вторичное происхождение, т.е. высвободились в виде пара из минералов земной коры и мантии в результате вулканической деятельности, а не были образованы путем соединения свободных молекул кислорода и водорода. Если бы морская вода постепенно накапливалась, то объем Мирового океана должен был бы непрерывно увеличиваться, однако прямые геологические доказательства этого обстоятельства отсутствуют; это означает, что океаны существовали на протяжении всей геологической истории Земли. Изменение химического состава океанических вод происходило постепенно.

Сиаль и сима.

Существует разница между породами коры, которые подстилают континенты, и породами, залегающими под дном океанов. Состав континентальной коры соответствует гранодиориту, т.е. породе, состоящей из калиевого и натриевого полевого шпата, кварца и небольших количеств железо-магнезиальных минералов. Океаническая кора соответствует базальтам, состоящим из кальциевого полевого шпата, оливина и пироксена. Породы континентальной коры характеризуются светлой окраской, низкой плотностью и обычно кислым составом, часто их называют сиаль (по преобладанию Si и Al). Породы океанической коры отличаются темной окраской, высокой плотностью и основным составом, их называют сима (по преобладанию Si и Mg). Считается, что породы мантии имеют ультраосновной состав и состоят из оливина и пироксена. В современной российской научной литературе термины «сиаль» и «сима» не используются, т.к. считаются устаревшими.

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Геологические процессы подразделяются на экзогенные (разрушительные и аккумулятивные) и эндогенные (тектонические).

РАЗРУШИТЕЛЬНЫЕ ПРОЦЕССЫ

Денудация.

Действие водотоков, ветра, ледников, морских волн, морозного выветривания и химического растворения приводят к разрушению и снижению поверхности материков (рис. 2). Продукты разрушения под действием гравитационных сил сносятся в океанические впадины, где происходит их накопление. Таким образом происходит усреднение состава и плотности пород, слагающих материки и котловины океанов, и уменьшение амплитуды рельефа Земли.

Ежегодно 32,5 млрд. т обломочного материала и 4,85 млрд. т растворенных солей выносится с материков и отлагается в морях и океанах, в результате чего вытесняется примерно 13,5 км 3 морской воды. Если бы такие темпы денудации сохранились и в будущем, материки (объем надводной части которых 126,6 млн. км 3) через 9 млн. лет превратились бы в почти плоские равнины – пенеплены. Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению.

Континентальные отложения перераспределяются в результате совместного действия выветривания (разрушения пород), денудации (механического сноса пород под воздействием текучих вод, ледников, ветра и волновых процессов) и аккумуляции (отложения рыхлого материала и образования новых пород). Все эти процессы действуют лишь до определенного уровня (обычно уровня моря), который рассматривается как базис эрозии.

При транспортировке рыхлые осадки сортируются по размеру, форме и плотности. В результате кварц, содержание которого в исходной породе может составлять всего несколько процентов, образует однородную толщу кварцевых песков. Аналогичным образом частицы золота и некоторых других тяжелых минералов, содержащих, например, олово и титан, концентрируются в руслах водотоков или на отмелях и образуют россыпные месторождения, а тонкозернистый материал отлагается в виде илов и затем превращается в глинистые сланцы. Такие компоненты, как, например, магний , натрий , кальций и калий , растворяются и выносятся поверхностными и грунтовыми водами, а затем осаждаются в пещерах и других полостях или поступают в морские воды.

Стадии развития эрозионного рельефа.

Рельеф служит показателем стадии выравнивания (или пенепленизации) материков. В горах и районах, испытавших интенсивное поднятие, эрозионные процессы протекают наиболее активно. Такие районы характеризуются быстрым врезанием речных долин и увеличением их длины в верхнем течении, а ландшафт соответствует молодой, или юной, стадии эрозии. В других районах, где амплитуда высот невелика и в основном прекратилась эрозия, крупные реки преимущественно переносят влекомые и взвешенные наносы. Такой рельеф присущ зрелой стадии эрозии. На участках с незначительными амплитудами высот, где поверхность суши ненамного превышает уровень моря, преобладают аккумулятивные процессы. Там река обычно течет несколько выше общего уровня низкой равнины в естественном возвышении, сложенном осадочным материалом, и образует в приустьевой зоне дельту. Это самый древний эрозионный рельеф. Однако не все районы находятся на одной и той же стадии развития эрозии и имеют одинаковый облик. Формы рельефа весьма различаются в зависимости от климатических и погодных условий, состава и строения местных пород и характера эрозионного процесса (рис. 3, 4).

Перерывы эрозионных циклов.

Отмеченная последовательность эрозионных процессов справедлива в отношении материков и океанических бассейнов, находящихся в статических условиях, однако на самом деле они подвержены многим динамическим процессам. Эрозионный цикл может быть прерван под влиянием изменений уровня моря (например, в связи с таянием ледниковых покровов) и высоты материков (например, в результате горообразования, разломной тектоники и вулканической деятельности). В Иллинойсе (США) морены перекрыли зрелый доледниковый рельеф, придав ему типичный молодой облик. В Большом каньоне Колорадо перерыв эрозионного цикла был обусловлен поднятием суши до отметки 2400 м. По мере поднятия территории р.Колорадо постепенно врезалась в свою пойму и оказалась ограниченной бортами долины. В результате этого перерыва образовались наложенные меандры, свойственные древним долинам рек, существующих в условиях молодого рельефа (рис. 5). В пределах плато Колорадо меандры врезаны на глубину 1200 м. Глубокие меандры р.Саскуэханна, которые прорезают горы Аппалачи, также свидетельствуют о том, что этот район некогда представлял собой низменность, которую пересекала «дряхлая» река.

Современные геосинклинали

– это впадины вдоль островов Ява и Суматра, желобов Тонга – Кермадек, Пуэрто-Рико и др. Возможно, их дальнейшее прогибание тоже приведет к образованию гор. По мнению многих геологов, побережье Мексиканского залива в пределах США тоже представляет собой современную геосинклиналь, хотя, судя по данным бурения, признаки горообразования там не выражены. Активные проявления современной тектоники и горообразования наиболее четко наблюдаются в молодых горных странах – Альпах, Андах, Гималаях и Скалистых горах.

Тектонические поднятия.

На заключительных стадиях развития геосинклиналей, когда горообразование завершается, происходит интенсивное общее поднятие материков; в пределах горных стран на этой стадии рельефообразования происходят дизъюнктивные дислокации (смещение отдельных блоков горных пород по линиям разломов).

ГЕОЛОГИЧЕСКОЕ ВРЕМЯ

Стратиграфическая шкала.

Стандартная шкала геологического времени (или геологическая колонка) – результат систематического изучения осадочных пород в разных районах земного шара. Поскольку большинство ранних работ проводилось в Европе, стратиграфическая последовательность отложений этого региона была принята в качестве эталона и для других районов. Однако в силу различных причин эта шкала имеет недостатки и пробелы, поэтому она постоянно уточняется. Шкала очень подробна для более молодых геологических периодов, но ее детальность существенно снижается для более древних. Это неизбежно, поскольку геологическая летопись наиболее полна для событий недавнего прошлого и становится более фрагментарной с увеличением возраста отложений. Стратиграфическая шкала основана на учете ископаемых организмов, которые служат единственным надежным критерием для межрегиональных корреляций (особенно дальних). Установлено, что некоторые ископаемые соответствуют строго определенному времени и поэтому считаются руководящими. Породы, содержащие эти руководящие формы и их комплексы, занимают строго определенное стратиграфическое положение.

Значительно труднее проводить корреляции для палеонтологически немых пород, не содержащих ископаемых организмов. Поскольку хорошо сохранившиеся раковины встречаются только начиная с кембрийского периода (примерно 570 млн. лет назад), докембрийское время, охватывающее ок. 85% геологической истории, нельзя изучить и подразделить столь же детально, как более молодые эпохи. Для межрегиональных корреляций палеонтологически немых пород используются геохимические методы датирования.

В случае необходимости в стандартную стратиграфическую шкалу вводились изменения, отражающие региональную специфику. Например, в Европе выделяется каменноугольный период, а в США ему соответствуют два – миссисипский и пенсильванский. Повсеместно возникают трудности при корреляции местных стратиграфических схем с международной геохронологической шкалой. Международная комиссия по стратиграфии помогает решать эти проблемы и устанавливает нормативы для стратиграфической номенклатуры. Она настоятельно рекомендует использовать при геологической съемке местные стратиграфические подразделения, а для сравнения сопоставлять их с международной геохронологической шкалой. Некоторые ископаемые имеют очень широкое, почти глобальное распространение, а другие – узко региональное.

Эры – самые крупные подразделения истории Земли. Каждая из них объединяет несколько периодов, характеризующихся развитием определенных классов древних организмов. Массовое вымирание различных групп организмов происходило в конце каждой эры. Например, трилобиты исчезли в конце палеозоя, а динозавры – в конце мезозоя. Причины этих катастроф еще не выяснены. Это могли быть критические стадии генетической эволюции, пики космического излучения, выбросы вулканических газов и пепла, а также очень резкие изменения климата. Имеются доводы в поддержку каждой из этих гипотез. Однако постепенное исчезновение большого числа семейств и классов животных и растений к концу каждой эры и появление новых с началом следующей эры все еще остается одной из загадок геологии. Не увенчались успехом попытки связать массовую гибель животных на завершающих этапах палеозоя и мезозоя с глобальными циклами горообразования.

Геохронология и шкала абсолютного возраста.

Стратиграфическая шкала отражает лишь последовательность напластования пород и потому может использоваться только для обозначения относительного возраста различных слоев (рис. 9). Возможность установления абсолютного возраста пород появилась после открытия радиоактивности. До этого абсолютный возраст пытались оценить другими методами, например, путем анализа содержания солей в морской воде. При допущении, что оно соответствует твердому стоку рек земного шара, может быть измерен минимальный возраст морей. На основании предположения, что изначально океаническая вода не содержала примесей солей, и учета темпов их поступления возраст морей оценивался в широких пределах – от 20 млн. до 200 млн. лет. Кельвин оценил возраст слагающих Землю пород в 100 млн. лет, поскольку, по его мнению, столько времени понадобилось на то, чтобы изначально расплавленная Земля остыла до нынешней температуры ее поверхности.

Если не считать этих попыток, первые геологи довольствовались определением относительного возраста пород и геологических событий. Без всяких объяснений допускалось, что прошло довольно много времени с момента возникновения Земли до формирования различных типов отложений в результате процессов, которые действуют и поныне. И лишь когда ученые стали измерять скорости радиоактивного распада, у геологов появились «часы» для определения абсолютного и относительного возраста пород, содержащих радиоактивные элементы.

Темпы радиоактивного распада некоторых элементов незначительны. Это позволяет определять возраст древних событий путем измерения содержания таких элементов и продуктов их распада в конкретном образце. Поскольку скорость радиоактивного распада не зависит от параметров окружающей среды, можно определять возраст пород, находящихся в любых геологических условиях. Наиболее часто применяются уран-свинцовый и калий-аргоновый методы. Уран-свинцовый метод позволяет произвести точное датирование на основе замеров концентрации радиоизотопов тория (232 Th) и урана (235 U и 238 U). При радиоактивном распаде образуются изотопы свинца (208 Pb, 207 Pb и 206 Pb). Однако породы, содержащие эти элементы в достаточных количествах, встречаются довольно редко. Калий-аргоновый метод базируется на весьма медленном радиоактивном превращении изотопа 40 K в 40 Ar, что позволяет датировать события, имеющие возраст в несколько миллиардов лет, по соотношению в породах этих изотопов. Значительное преимущество калий-аргонового метода заключается в том, что калий, весьма распространенный элемент, присутствует в минералах, образованных во всех геологических обстановках – вулканической, метаморфической и осадочной. Однако возникающий в результате радиоактивного распада инертный газ аргон химически не связан и происходит его утечка. Следовательно, для датирования могут быть надежно использованы только те минералы, в которых он хорошо удерживается. Несмотря на этот недостаток, калий-аргоновый метод используется весьма широко. Абсолютный возраст самых древних пород на планете составляет 3,5 млрд. лет. В земной коре всех материков представлены очень древние породы, поэтому вопрос, какой из них самый древний, даже не возникает.

Возраст метеоритов, упавших на Землю, по определениям калий-аргоновым и уран-свинцовым методами, составляет примерно 4,5 млрд. лет. По оценкам геофизиков, основывающимся на данных уран-свинцового метода, Земля тоже имеет возраст ок. 4,5 млрд. лет. Если эти оценки верны, то в геологической летописи имеется пробел в 1 млрд. лет, соответствующий важному раннему этапу эволюции Земли. Возможно, самые ранние свидетельства были уничтожены или стерты каким-либо образом, когда Земля находилась в расплавленном состоянии. Вполне вероятно также, что древнейшие породы Земли были денудированы или перекристаллизовались за многие миллионы лет.

Геология это наука, изучающая состав, строение и закономерности развития Земли. Ее суть состоит в рассмотрении состава и структуры литосферы, геологических процессов различными методами с использованием способов и данных прочих дисциплин.

История науки

Существуют различные мнения о времени появления геологии как науки.

В любом случае первые наблюдения, которые можно отнести к динамической геологии , велись еще в античные времена такими учеными, как Аристотель, Пифагор, Страбон, Плиний Старший. В их работах содержится информация о катастрофических геологических процессах (землетрясениях и извержениях вулканов), а также явлениях выветривания (размывание гор) и геоморфологических процессах (изменение береговых линий).

Первые минералогические наблюдения, а именно описания минералов и классификации геологических тел содержатся в работах Аль-Бируни и Ибн-Сины X - XI веков.

Существует мнение, что современная геология появилась в средние века в исламском мире.

В эпоху возрождения основные открытия в данной сфере были совершены в Европе. В эти времена геологическими исследованиями занимались Джироламо Фракасторо и Леонардо да Винчи. Ими были сделаны предположения о большем возрасте Земли, чем данный в христианских источниках, и о том, что ископаемые раковины являются останками организмов. Нильс Стенсен сформулировал три основных принципа стратиграфии, Георгием Агриколой были заложены основы минералогии.

В конце XVII века, благодаря предложению Мартина Листера, появились первые геологические карты и геологическая съемка.

На рубеже XVII и XVIII веков была сформулирована общая теория Земли (дилювианизм), предполагающая формирование осадочных пород и окаменелостей в результате всемирного потопа.

Во второй половине XVIII века значительно возросли потребности в ресурсах. Это способствовало усиленному изучению недр, в результате чего были накоплены данные о условиях залегания горных пород и их описания, а также разработаны новые методы изучения. Одним из наиболее известных ученых тех времен является Джеймс Хаттон, создавший «Теорию Земли». Он предположил, что возраст планеты значительно больше, чем думали ранее. Его же считают первым современным геологом. Появились две теории формирования горных пород: плутоническая (вулканическое) и неплутоническая (осадочная). В тот же период в России геологическими исследованиями занимался Ломоносов.

В XVIII - XIX вв. в России появились первые геологические карты.

Основным вопросом геологии XIX века являлся возраст Земли. В 1881 г. на 2-м Международном геологическом конгрессе была принята современная стратиграфическая шкала .

В XX в. для установления возраста планеты стали использовать радиометрическое датирование.

В СССР потребность в развитии геологических знаний возникла сразу же после образования государства, так как была начата индустриализация, что требовало минерально-сырьевую базу. Поэтому начали изучать месторождения угля и углеводородов, а в 20 гг. были открыты месторождения калийных солей, апатитов и нефелинов, меди. В те же времена создали первую геологическую карту СССР.

В 1930 г. было создано Главное геологическое управление. Геологический комитет, осуществлявший руководство всеми работами, преобразовали в Центральный научно-исследовательский геологоразведочный институт, а затем во Всесоюзный геологический институт.

В результате проведенных работ к 1940 г. более 65% территории было геологически картографировано, Урал стал промышленно-сырьевой базой, в Башкирии и Поволжье открыли углеводородные месторождения, значительно изменились Сибирь, Кавказ, Дальний Восток, Средняя Азия, Украина и прочие районы.

В военные годы наиболее интенсивно велось геологическое изучение Казахстана под руководством К.И. Сатпаева: были открыты месторождения марганца и хрома, получила развитие редкометалльная промышленность.

В 1946 г. основали Министерство геологии СССР. Кроме того, появились новые методы исследования земной коры: аэрофотосъемка, геофизические, бурение опорных скважин. С их применением открыли месторождения цветных и редких металлов, бокситов, угля, железных руд и углеводородов в Казахстане, коксующихся углей, алмазов и железных руд в Якутии, бокситов и углеводородов в Сибири и др.

К 1967 г. вся территория СССР была геологически картографирована, разведали более 15 тыс. месторождений.

Современная геология

Из данного выше определения геологии легко понять объекты изучения данной науки. Во-первых, это строение и состав природных тел и Земли, во-вторых, процессы в глубинах и на поверхности планеты, в-третьих, история ее развития, полезные ископаемые.

Изучение производится в соответствии с системой уровней организации минерального вещества: минерал, горная порода, геологическая формация, геосфера, планета.

Задачи геологии можно подразделить на фундаментальные и прикладные.

Первые следуют из определения науки. То есть это изучение строения, состава и закономерностей развития планеты. Прикладные задачи данной науки следующие: поиск различных полезных ископаемых и разработка методов их добычи, изучение геологических условий для возведения сооружений, охрана недр и рациональное их использование.

Геология характеризуется тесной связью эмпирических и теоретических методов. Основной из них — геологическая съемка. Состоит в изучении обнажений горных пород и картографировании. Многие методы заимствованы из смежных наук.

Работа геолога

Учебный план по данной специальности включает много инженерных дисциплин, а также математики и географии. Естественно основу составляет геология и смежные науки, такие как минералогия, геотектоника, петрография и т. д. Среди многих прочих специальностей геология обычно отличается полевой практикой в отдаленных районах.

Профессия геолога весьма востребована в России, учитывая ее ресурсный потенциал. Данные специалисты работают в основном в добывающей сфере. Полевая работа считается весьма сложной, учитывая что многие ресурсы разрабатываются на крайнем севере, где рабочие присутствуют вахтовым методом. Хотя существуют варианты лабораторных и камеральных работ: инженерно-геологические изыскания, 3D-моделирование, документальная работа и т. д.

Геологические науки

В настоящее время под геологией понимают не только конкретную науку, но и также раздел знаний, объединяющий множество наук о Земле. Их можно классифицировать по объекту исследования.

О земной коре:

  • минералогия (изучает минералы),
  • кристаллография (близкий к физическим дисциплинам раздел минералогии, рассматривающий кристаллы),
  • петрография (предмет — горные породы),
  • литология (изучает лишь осадочные горные породы),
  • структурная геология (рассматривает формы залегания геологических тел),
  • региональная геология (изучает геологическое строение отдельных участков земной коры),
  • петрофизика (исследует физические особенности горных пород, взаимные связи их с физическими полями планеты и между собой),
  • микроструктурная геология (рассматривает микроскопические деформации пород), геокриология (изучает многолетнемерзлые породы),
  • гидрогеология (изучает подземные воды).