Чтобы произошло сжижение газа, силы притяжения между молекулами должны стать достаточными для их связывания в жидкость. Силы притяжения становятся значительными только при малых расстояниях между молекулами. Этому условию благоприятствует высокое давление. Действию сил притяжения препятствует движение молекул, происходящее тем быстрее (с большей кинетической энергией), чем выше температура. Поэтому сжижению газов благоприятствует понижение температуры.

Сжижение газа осуществляется тем труднее, чем выше его температура , так как при более высокой температуре требуется и более высокое давление, чтобы сжижить газ (табл. 3.4). Выше определенной температуры газ вообще не поддается сжижению. Эта температура называется критической и обозначается Тс. Минимальное давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением и обозначается рс. Объем, занимаемый одним молем газа при его критических температуре и давлении, называется критическим объемом и обозначается Vc. Значения Тс, рс и Vc для каждого газа называются его критическими постоянными. В табл. 3.5 приведены значения критических постоянных для некоторых газов.

Таблица 3.4. Давления, необходимые для сжижения CO2 при разных температурах

В 1863 г., изучая соотношение между давлением и объемом определенной массы диоксида углерода при различных температурах, Томас Эндрюс получил ряд изотерм (графиков зависимости между давлением и объемом при постоянной температуре), названных изотермами Эндрюса (рис. 3.11). Изотерма для CO2 при 321 К показывает, что этот газ при такой температуре не сжижается ни при каком давлении или объеме. Дело в том, что температура 321 К выше критической температуры для CO2, равной 304 К. Изотерма, соответствующая критической температуре, называется критической изотермой. Точка P на этой изотерме соответствует газу при его критических значениях температуры, давления и объема. В условиях, соответствующих этой точке, газ находится в своем критическом состоянии. На рис. 3.11 показаны две изотермы CO2 при температурах ниже критической. Рассмотрим ту из них, которая отвечает температуре 286 К.


Рис. 3.11. Изотермы Эндрюса для CO2.

Перемещение вдоль этой изотермы от точки А к точке В соответствует сжатию газа при возрастании давления. Между точками В и С происходит большое изменение объема, которое не сопровождается изменением давления. Этот процесс соответствует сжижению газа при указанной температуре. Между точками С и D возрастание давления приводит к небольшому изменению объема. Сжимаемость жидкостей очень мала по сравнению со сжимаемостью газов.

Когда было установлено, что газ можно перевести в жидкое состояние, если его температура ниже критической, то, применяя все более низкие температуры, постепенно получили все газы в жидком состоянии. Последним в 1908 г. был получен жидкий гелий.

В машинах для сжижения газов используется охлаждение газа в процессе его адиабатического расширения. Предварительно газ сильно сжимается компрессором. Выделяющееся при этом тепло отводится водяным охлаждением. Когда затем газ в процессе адиабатического расширения сам выполняет работу (за счет своей внутренней энергии), его температура сильно понижается. Та часть машины, в которой газ расширяется, выполняя внешнюю работу (например, перемещая поршень), называется детандером .

Большой вклад в разработку методов сжижения газов внес советский физик П. Л. Капица. В одной из его машин с турбодетандером струя сжатого газа направляется на лопасти турбины; приводя ее во вращение, газ совершает работу и охлаждается.

Заметим, что, в отличие от идеального газа, при расширении сильно сжатого реального газа его температура понижается, если даже он и не совершает внешней работы, а просто вытекает через узкое сопло. Объясняется это следующим. У сильно сжатого газа множество молекул находится в пределах сфер взаимодействия с другими молекулами. При расширении газа расстояния между молекулами увеличиваются, и при этом совершается «внутренняя» работа против сил взаимодействия между молекулами за счет их кинетической энергии. В результате этого и падает температура. Этот метод охлаждения также используется при сжижении газов.

Когда температура газа падает ниже критической, он переходит в жидкое состояние. Сжиженный газ сливают и хранят в специальных сосудах Дьюара с двойными стенками, между которыми имеется высокий вакуум для уменьшения теплопроводности (рис. 8.11). Чтобы уменьшить нагревание жидкости лучеиспусканием, стенки сосуда Дьюара покрывают ртутной амальгамой (как у зеркал). (Подумайте, почему сосуд с сжиженным газом нельзя плотно закрывать).

Сжижение воздуха широко используется для разделения составляющих его газов. При кипении жидкого воздуха в первую очередь из него улетучиваются газы с более низкой температурой кипения (табл. 8.4). Азот выкипает раньше кислорода, поэтому через некоторое время в сосуде Дьюара остается почти чистый жидкий кислород. Его используют в металлургии, для взрывных работ, для сжигания топлива в ракетах и т. д.

В воздухе имеется небольшое количество аргона, гелия и других инертных газов. Поскольку температуры их кипения различны, то с помощью специального аппарата - ректификационной колонки - их можно раздельно выделить из жидкого воздуха.

Жидкие газы широко используются в промышленности и при научных исследованиях для глубокого охлаждения различных веществ. Многие свойства вещества при низких температурах сильно изменяются, например, свинец становится упругим, а резина - хрупкой. Для получения очень низких температур применяют жидкий водород или гелий, кипящий при пониженном давлении. В последнем случае можно поддерживать температуру около 1 К. Изучение свойств вещества при сверхнизких температурах привело к открытию сверхпроводимости.

Более 30 лет в СССР, затем в России сжиженные и сжатые газы применяются в народном хозяйстве. За это время пройден достаточно трудный путь по организации учета сжиженных газов, разработке технологий по их перекачке, измерению, хранению, транспортировке.

От сжигания до признания

Исторически сложилось, что потенциал газа как источника энергии был недооценен в нашей стране. Не видя экономически обоснованных сфер применения, нефтепромышленники старались избавиться от легких фракций углеводородов, сжигали их без пользы. В 1946 году выделение газовой промышленности в самостоятельную отрасль революционно изменило ситуацию. Объём добычи этого типа углеводородов резко увеличился, как и соотношение в топливном балансе России.

Когда ученые и инженеры научились сжижать газы, стало возможным строить газосжижающие предприятия и доставлять голубое топливо в отдаленные районы, не оборудованные газопроводом, и использовать в каждом доме, в качестве автомобильного топлива, на производстве, а также экспортировать его за твердую валюту.

Что такое сжиженные углеводородные газы

Они делятся на две группы:

  1. Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, то есть смесь углеводородов различной молекулярной массы и различного строения.
  2. Широкие фракции легких углеводородов (ШФЛУ) - включают большей частью смеси легких углеводородов гексановой (С6) и этановой (С2) фракций. Их типичный состав: этан 2-5 %, сжиженный газ фракций С4-С5 40-85%, гексановая фракция С6 15-30%, на пентановую фракцию приходится остаток.

Сжиженный газ: пропан, бутан

В газовом хозяйстве именно СУГ применяются в промышленном масштабе. Их основными компонентами являются пропан и бутан. Также в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

Технологии сжижения

Сжижать газы научились в начале XX века: в 1913 году за сжижение гелия вручена Нобелевская премия голландцу К. О. Хейке. Некоторые газы доводятся до жидкого состояния простым охлаждением без дополнительных условий. Однако большинство углеводородных «промышленных» газов (углекислый, этан, аммиак, бутан, пропан) сжижаются под давлением.

Производство сжиженного газа осуществляется на газосжижающих заводах, расположенных либо около месторождений углеводородов, либо на пути магистральных газопроводов около крупных транспортных узлов. Сжиженный (или сжатый) природный газ можно легко доставить автомобильным, железнодорожным или водным транспортом к конечному потребителю, где его можно хранить, после чего снова преобразовать в газообразное состояние и подавать в сеть газоснабжения.

Специальное оборудование

Для того чтобы сжижать газы, используются специальные установки. Они значительно уменьшают объём голубого топлива и повышают плотность энергии. С их помощью можно осуществлять различные способы переработки углеводородов в зависимости от последующего применения, свойств исходного сырья и условий окружающей среды.

Установки по сжижению и сжатию предназначены для обработки газа и имеют блочное (модульное) исполнение либо полностью контейнеризированы. Благодаря регазификационным станциям становится возможным обеспечение дешёвым природным топливом даже самых отдалённых регионов. Система регазификации также позволяет хранить природный газ и подавать его необходимое количество в зависимости от потребности (например, в периоды пикового потребления).

Большинство различных газов в сжиженном состоянии находят практическое применение:

  • Жидкий хлор используют для дезинфекции и отбеливания тканей, применяется как химическое оружие.
  • Кислород - в лечебных учреждениях для пациентов с проблемами дыхания.
  • Азот - в криохирургии, для замораживания органических тканей.
  • Водород - как реактивное топливо. В последнее время появились автомобили на водородных двигателях.
  • Аргон - в промышленности для резки металлов и плазменной сварки.

Также можно сжижать газы углеводородного класса, наиболее востребованные из которых - пропан и бутан (н-бутан, изобутан):

  • Пропан (C3H8) является веществом органического происхождения класса алканов. Получают из природного газа и при крекинге нефтепродуктов. Бесцветный газ без запаха, малорастворим в воде. Применяют как топливо, для синтеза полипропилена, производства растворителей, в пищевой промышленности (добавка E944).
  • Бутан (C4H10), класс алканов. Бесцветный горючий газ без запаха, легко сжижаемый. Получают из газового конденсата, нефтяного газа (до 12%), при крекинге нефтепродуктов. Используют как топливо, в химической промышленности, в холодильниках как хладоген, в пищевой промышленности (добавка E943).

Характеристики СУГ

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным из них, поддающимся непосредственному измерению и влияющим на режимы течения, относятся: давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных метаморфоз. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Свойства

При хранении сжиженных газов и транспортировании их агрегатное состояние меняется: часть вещества испаряется, трансформируясь в газообразное состояние, часть конденсируется - переходит в жидкое. Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.


Введение

Газы- агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, заполняя весь предоставленный им объём. Газы обладают рядом характерных свойств. В отличие от твёрдых тел и жидкостей, объём газа существенно зависит от давления и температуры.

Любой газ можно превратить в жидкость простым сжатием, если температура газа ниже критической.Те вещества, которые мы привыкли считать газами, просто имеют очень низкие критические температуры, то есть температуры, после достижения которых, газ приобретает свойства жидкости, и поэтому при температуре, близкой к комнатной, не могут находиться в жидком состоянии. Наоборот, у веществ, причисляемых нами к жидкостям, критические температуры велики.

Меня заинтересовал вопрос о том, какие свойства имеет сжиженный газ, в каких сферах он применяется ? Тема работы актуальна на сегодняшний день, так как сжиженные газы востребованы во многих областях медицины, науки и техники. В связи с этим я и поставил перед собой следующие цели и задачи:

Цель: -рассмотрение природы явления и свойств сжиженных газов

Задачи :

* Изучить материал об сжиженных газах

* Определить свойства сжиженных газов

ñ История

Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporationе» («О холоде вследствие испарения»).

Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида - Монж и Клуэ, хлора - Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.).

Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777-1859) и Майкл Фарадей (1791-1867).

Что такое сжиженный газ и его свойства

Сжижение газов - это обращение газов в жидкое состояние. Может быть произведено сжатием газа (повышением давления) и одновременным его охлаждением.

Всякий газ может быть переведён в жидкое состояние, но необходимым условием для этого является предварительное охлаждение газа до температуры ниже «критической». Углекислый газ, например, можно сжижать при комнатной температуре, поскольку его критическая температура равна 31,1 0 С. То же, можно сказать и о таких газах, как аммиак и хлор.

Но есть и такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние. К таким газам относятся воздух, водород и гелий, у которых критические температуры значительно ниже комнатной. Для сжижения таких газов их необходимо предварительно охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведён в жидкое состояние.

Использование сжиженных газов

Сжиженные газы находят широкое применение в технике. Азот идёт для получения аммиака и азотных солей, употребляемых в сельском хозяйстве для удобрения почвы. Аргон, неон и другие инертные газы используются для наполнения электрических ламп накаливания, а также газосветных ламп. Наибольшее применение имеет кислород. В смеси с ацетиленом или водородом он даёт пламя очень высокой температуры, применяемое для резки и сварки металлов. Вдувание кислорода (кислородное дутьё) ускоряет металлургические процессы. Доставляемый из аптек в подушках кислород действует как обезболивающее. Особенно важным является применение жидкого кислорода в качестве окислителя для двигателей космических ракет.

Жидкий водород используется как топливо в космических ракетах. Например, для заправки американской ракеты «Сатурн – 5» требуется 90т жидкого водорода.

Жидкий аммиак нашёл широкое применение в холодильниках – огромных складах, где хранятся скоропортящиеся продукты. Охлаждение, возникающее при испарении сжиженных газов, используют в рефрижераторах при перевозке скоропортящихся продуктов.

Газы, применяемые в промышленности, медицине и т. п., легче перевозить, когда они находятся в сжиженном состоянии, так как при этом в том же объёме заключается большее количество вещества.

Трубка Фарадея

Английский физик - экспериментатор , химик .

Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя . Среди других его открытий- первый трансформатор , химическое действие тока, законы электролиза , действие магнитного поля на свет . Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод , анод , электролит , диэлектрик, диамагнетизм, парамагнетизм др.

Фарадей - основоположник учения об электромагнитном поле, которое затем математически оформил и развил Максвелл .

В то время, Фарадей был только скромным лаборантом у Гемфри Дэви.

Гемфри Дэви - английский химик, физик и геолог, один из основателей электрохимии . Известен открытием многих химических элементов, а также покровительством Фарадею на начальном этапе его научной деятельности.

По его поручению он изучал хлоргидрат, кристаллическое соединение, образующееся при взаимодействии при низких температурах воды и хлора. Чтобы проверить, как ведет себя это соединение при нагреве, Фарадей поместил несколько кристаллов гидрата хлора в закрытое колено изогнутой V -образной трубки, после чего другое колено запаял. Далее он нагрел кристаллы, при этом свободное колено оставалось холодным. Кристаллы расплавились и дали зеленовато-желтые пары, пары сконденсировались в холодном колене с образованием маслянистой жидкости, которая оказалась жидким хлором.

1) изогнутая и запаянная трубка

2) вещество или смесь, которые выделяет при нагревании необходимый газ

3) охлаждаемое колено, где собирается сжиженный газ

4) вода или охлаждающая смесь

Фарадей открыл новый метод сжижения газов: не обязательно было получать газы в одном сосуде и закачивать их в другой сосуд, где будет производиться сжижение. Газы удобно переводить в жидкое состояние в том же сосуде, где они образуются. Таким способом на протяжении 1823 года Фарадею удалось перевести в жидкое состояние сероводород, сернистый газ, углекислый газ, закись азота.

Выводы
Любой газ можно превратить в жидкость простым сжатием
Сжижение газов- сложный процесс, который включает в себя множество сжатий
Сжижение может быть произведено сжатием газа и одновременным его охлаждением
Сжиженные газы находят широкое применение
Сжиженные газы применяются не только в технике, медицине и сельском хозяйстве, но и в науке.

Список используемой литературы

h ttp://ru.wikipedia.org/wiki/Сжижение_газов

Сжижением природного газа называется перевод его в жидкое состояние под действием температур, которые являются меньшими по сравнению с критической. Данный процесс даёт возможность его резервирования и сбережения для последующего использования, а также для организации перевозки любым видом транспорта. Вещество зачастую применяется в виде в моторах автотранспортных средств, при обработке металлов, в мобильных электростанциях и так далее. Помимо всего прочего, во многих частных домах можно встретить котел на сжиженном газе. Затраты на создание установок для его производства зависят от места расположения разработок, а также типа и состава добываемого сырья. Сейчас наиболее перспективными из них считаются плавучие, поскольку транспортировка путем сооружения подводных газопроводов зачастую является нереальной.

Подготовка и начало сжижения

Тех установок, которые используются для сжижения, одна от другой отличаются, в первую очередь, холодильным циклом. На его выбор прежде всего влияет состав и давление газа, который сюда поступает. Эти параметры, в свою очередь, находятся под влиянием нескольких факторов, среди которых: время года, место добычи и даже термин его разработки. Перед тем как начать сжижать газы и направлять в установку, необходимо очистить их от кислых примесей и осушить. На стартовой фазе процесса из сырья массово выделяются углеводороды, среди которых высококипящие нафтеновые, ароматические и парафиновые. В противном случае может произойти закупоривание арматуры и аппаратуры установок. Чтоб эффективно и качественно сжижать газы, необходимо помнить, что большое количество тяжёлых углеводородов в их составе ведет к высокой температуре сжижения и низким затратам энергии. Если же в их составе присутствует азот, то это приводит к повышению испаряемости и энергозатрат.

Каскадный метод и холодильные циклы

В основе промышленных способов сжижения лежит принцип испарения жидкости, газового расширения, а также эффект Джоуля-Томсона. Сжиженный образуется за счёт использования нескольких холодильных установок (следовательно и сред). В данном случае среда, что характеризуется меньшей конденсируется под давлением за счёт испарения более высоко кипящей соседней. Этот способ является наиболее распространённым и известен как каскадное сжижение. В большинстве случаев холодильным агентом на первом этапе выступает пропан (иногда аммиак), а на втором — этилен. Таким образом, сжижение природного газа осуществляется в данном случае под влиянием испаряемого этилена. Что касается холодильных циклов, что построены на упомянутом выше эффекте Джоуля-Томсона, то среди них различают как с однократным, так и с двойным дросселированием, а также с предварительным охлаждением за счёт специального потока и постороннего агента.

Сжижение крупными установками

Сжижать газы можно также путём использования однопоточного каскадного цикла. Здесь выступает многокомпонентная смесь, в состав которой входит азот с углеводородами. Данный метод вместе с его модификациями применяют чаще всего в крупных установках, производительность которых составляет от двух до пяти миллионов кубических метров готового продукта в сутки. Сжижать газы таким способом выгодно в плане относительно низких затрат энергии. С другой стороны, однопоточный каскадный цикл нуждается в большом количестве металлоёмкого оборудования.