В продолжение нашего курса «Физика для чайников» начнем рассматривать основы такого важнейшего раздела как термодинамика .

Активное развитие термодинамики началось в девятнадцатом веке. Именно тогда люди начали строить первые паровые машины, а потом активно внедрять их в производство. Началась промышленная революция, и, естественно, всем хотелось увеличить коэффициент полезного действия машин, чтобы произвести больше продукции, доехать подальше и в конце-концов получить больше денег. Все это очень хорошо стимулировало развитие науки и наоборот. Но давайте ближе к сути вопроса.

Термодинамика – раздел физики, изучающий макроскопические системы, их наиболее общие свойства, способы передачи и превращения энергии в таких системах.

Что такое макроскопические системы? Это системы, состоящие из очень большого числа частиц. Например, баллон с газом или воздушный шар. Описание таких систем методами классической механики просто невозможно – ведь мы не можем измерить скорость, энергию и другие параметры каждой молекулы газа в отдельности. Тем не менее, поведение всей совокупности частиц подчиняется статистическим закономерностям. По сути любой видимый нами (невооруженным глазом) предмет может быть определен как термодинамическая система.

– реально или мысленно выделяемая макроскопическая физическая система, состоящая из большого числа частиц, не требующая для своего описания привлечения микроскопических характеристик отдельных частиц. Соответственно, для описания термодинамической системы используются макроскопические параметры, не относящиеся к каждой частице, но описывающие систему целиком. Это температура, давление, объем, масса системы и проч.

Важно отметить, что термодинамические системы могут быть замкнутыми и незамкнутыми . Замкнутая система – это такая система, которую при помощи реальной или воображаемой оболочки оградили от окружающей среды, при этом количество частиц в системе остается постоянным.

Система может находится в разных состояниях. Например, мы взяли баллон с газом и начали его нагревать. Тем самым мы изменили энергию молекул газа, они стали двигаться быстрее, и система перешла в какое-то новое состояние с более высокой температурой. Но что будет, если систему оставить в покое? Тогда система через какое-то время придет в состояние термодинамического равновесия .

Что это значит?

Термодинамическое равновесие – это состояние системы, в котором ее макроскопические параметры (температура, объем и др.) остаются неизменными с течением времени.

Термодинамика стоит на трех своих столпах. Существуют три основных постулата или три закона термодинамики. Они называются соответственно первым, вторым и третьим началами термодинамики. Рассмотрим первое начало или первый закон термодинамики.

Первое начало термодинамики

Первое начало термодинамики гласит:

В любой изолированной системе запас энергии остается постоянным.

К слову, у данного постулата есть еще несколько эквивалентных формулировок. Приведем их ниже:

Количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил.

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Запишем также математическое выражение первого начала термодинамики:

Здесь Q - количество теплоты, дельта U - изменение внутренней энергии, A - работа против внешних сил. Для различных термодинамических процессов в силу их особенностей запись первого начала будет выглядеть по-разному.

Почему невозможен вечный двигатель первого рода?

Людей издревле привлекала ее величество Халява. Философский камень, превращающий любой металл в золото, скатерть самобранка, с которой не нужно готовить, джин, исполняющий любые желания. Еще одной такой идеей была идея вечного двигателя.

Вечный двигатель невозможен, потому что так устроен мир . Об этом говорят нам законы термодинамики. Согласно первому началу термодинамики, количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил. Например, газ, помещенный в цилиндр с поршнем, получая определенное количество теплоты, увеличивает свою внутреннюю энергию, молекулы движутся быстрее, газ занимает больший объем и толкает поршень (работа против внешних сил). Иными словами, если работа совершается без внешнего притока энергии, она может совершаться лишь за счет внутренней энергии системы, которая рано иди поздно иссякнет, преобразовавшись в совершенную работу, на чем все закончится и система придет к состоянию термодинамического равновесия. Ведь энергия в мире никуда не уходит и не приходит, ее количество остается постоянным, а меняется лишь форма. Конечно, Вы обратили внимание на то, что речь идет о так называемом вечном двигателе первого рода (который может совершать работу без энергии). Спешим заверить, существование вечного двигателя второго рода также невозможно и объясняется вторым началом термодинамики, о котором мы поговорим в ближайшем будущем.

Надеемся, знакомство с термодинамикой прошло для Вас приятно и Вы полюбите ее всем сердцем. Если же этого не произойдет, Вы всегда можете поручить выполнение задач по термодинамике , пока сами занимаетесь более приятными делами.

Законы термодинамики называют также ее началами. На самом деле начало термодинамики представляет собой не что иное, как совокупность тех или иных постулатов, которые лежат в основе соответствующего раздела молекулярной физики. Данные положения устанавливали в течение научных исследований. В то же время они были доказаны экспериментальным путем. Почему же законы термодинамики принимают за постулаты? Все дело в том, что таким образом термодинамику можно строить аксиоматическим путем.

Основные законы термодинамики

Немного о структуризации. Законы термодинамики разделяются на четыре группы, каждая из которых имеет определенный смысл. Итак, что могут поведать нам начала термодинамики?

Первое и второе

Первое начало расскажет о том, как применяется закон сохранения энергии по отношению к той или иной термодинамической системе. Второе начало выдвигает некоторые ограничения, которые применяются к направлениям термодинамических процессов. Более конкретно, они запрещают самопроизвольную передачу тепла, совершаемую от менее нагретого к более нагретому телу. Есть у второго закона термодинамики и альтернативное название: закон возрастания энтропии.

Третье и четвертое

Третий закон описывает поведение энтропии вблизи абсолютного температурного нуля. Есть еще одно начало, последнее. Оно носит название “нулевой закон термодинамики”. Смысл его заключается в том, что любая замкнутая система придет к состоянию термодинамического равновесия и из него выйти уже самостоятельно не сможет. При этом ее начальное состояние может быть любым.

Зачем нужны начала термодинамики?

Законы термодинамики были изучены для того, чтобы описывать макроскопические параметры тех или иных систем. При этом конкретные предложения, имеющие связь с микроскопическим устройством, не выдвигаются. Этот вопрос изучается отдельно, но уже другим ответвлением науки - статистической физикой. Законы термодинамики независимы друг от друга. Что это может означать? Это нужно понимать так, что ни одно начало термодинамики из другого вывести невозможно.

Первое начало термодинамики

Как известно, термодинамическая система характеризуется несколькими параметрами, в числе которых есть и внутренняя энергия (обозначается буквой U). Последняя формируется из кинетической энергии, которую имеют все частицы. Это может быть энергия поступательного, а также колебательного и вращательного движения. На этом моменте вспомним о том, что энергия может быть не только кинетической, но и потенциальной. Так вот, в случае идеальных газов потенциальной энергией пренебрегают. Именно поэтому внутренняя энергия U будет складываться исключительно из кинетической энергии движения молекул и зависеть от температуры.

Эта величина - внутренняя энергия - называется иными словами функцией состояния, поскольку она определяется состоянием термодинамической системы. В нашем случае она определяется температурой газа. Следует отметить, что внутренняя энергия не зависит от того, каким был переход в состояние. Допустим, что термодинамическая система совершает круговой процесс (цикл, как его называют в молекулярной физике). Иными словами, система, выйдя из начального состояния, подвергается определенным процессам, но в результате возвращается в первичное состояние. Тогда нетрудно догадаться, что изменение внутренней энергии будет равно 0.

Как изменяется внутренняя энергия?

Изменить внутреннюю энергию идеального газа можно двумя способами. Первый вариант - совершить работу. Второй - сообщить системе то или иное количество теплоты. Логично, что второй способ подразумевает не только сообщение теплоты, но и ее отнятие.

Формулировка первого начала термодинамики

Их (формулировок) может быть несколько, так как все любят говорить по-разному. Но на самом деле суть остается той же. Она сводится к тому, что количество теплоты, которое было подведено к термодинамической системе, расходуется на совершение идеальным газом механической работы и изменение внутренней энергии. Если говорить о формуле или математической записи первого начала термодинамики, то она выглядит следующим образом: dQ = dU + dA.

Все величины, которые входят в состав формулы, могут иметь разные знаки. Ничто не запрещает им быть отрицательными. Допустим, что к системе подводится количество теплоты Q. Тогда газ будет нагреваться. Возрастает температура, а значит, увеличивается и внутренняя энергия газа. То есть и Q, и U будут иметь положительные значения. Но если внутренняя энергия газа увеличивается, он начинает вести себя активнее, расширяться. Следовательно, работа также будет положительной. Можно сказать, что работу совершает сама система, газ.

В случае если у системы забирают определенное количество теплоты, внутренняя энергия уменьшается, а газ сжимается. В таком случае можно говорить уже о том, что работу совершают над системой, а не она сама. Предположим опять, что некоторая термодинамическая система совершает цикл. В таком случае (как уже было сказано ранее) изменение внутренней энергии будет равно 0. Значит, работа, совершаемая газом или над ним, будет численно равна подведенной или отведенной к системе теплоте.

Математическую запись этого следствия называют еще одной формулировкой первого начала термодинамики. Примерно она звучит следующим образом: “В природе невозможно существование двигателя первого рода, то есть, двигателя, который совершал бы работу, превосходящую полученную извне теплоту”.

Второе начало термодинамики

Нетрудно догадаться, что термодинамическое равновесие характерно для системы, в которой макроскопические величины остаются неизменными во времени. Это, конечно же, давление, объем и температура газа. Их неизменность может быть построена на нескольких условиях: на отсутствии теплопроводности, химических реакций, диффузии и других процессов. Если под действием внешних факторов система была выведена из термодинамического равновесия, она к нему со временем вернется. Но если эти факторы будут отсутствовать. Причем произойдет это самопроизвольно.

Мы пойдем немного другим путем, отличным от того, что рекомендуют многие учебники. Для начала ознакомимся со вторым началом термодинамики, а уже потом разберемся, что за величины в него входят, и что они обозначают. Итак, в замкнутой системе при наличии любых протекающих в ней процессов энтропия не убывает. Записывается второе начало термодинамики следующим образом: dS >(=) 0. Здесь знак > будет связан с необратимым процессом, а знак = - с обратимым.

Что же называется в термодинамике обратимым процессом? А это такой процесс, при котором система возвращается (спустя череду каких-то процессов) к своему первоначальному состоянию. Причем в этом случае ни в системе, ни в окружающей среде никаких изменений не остается. Иными словами, обратимый процесс - это такой процесс, для которого возможно возвращение в начальное состояние через промежуточные состояния, идентичные прямому процессу. В молекулярной физике таких процессов очень мало. Например, переход количества теплоты от более нагретого тела к менее нагретому будет необратимым. Аналогично и в случае диффузии двух веществ, а также распространения газа на весь объем.

Энтропия

Энтропия, имеющая место во втором законе термодинамики, равна изменению количества теплоты, деленному на температуру. Формула: dS = dQ/T. Она имеет определенные свойства.



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (термодинамику равновесных процессов, она же термодинамика квазистатических процессов, она же классическая термодинамика) и неравновесную (термодинамику неравновесных процессов, она же термодинамика необратимых процессов). Равновесная термодинамика вводит в рассмотрение новые (т. е. те, которым не даётся определения в других разделах физики) переменные, такие как внутренняя энергия, температура, энтропия, химический потенциал, а также комбинации перечисленных величин. Все они носят название термодинамических параметров (величин). Предметом рассмотрения классической термодинамики служат связи термодинамических параметров друг с другом и с физическими переменными, вводимыми в рассмотрение в других разделах физики (масса, давление, поверхностное натяжение, сила тока и т. д.). Химические и фазовые реакции (фазовые переходы первого рода) также есть предмет изучения классической термодинамики, поскольку в этом случае рассматриваются связи между массами компонентов системы и их химическими потенциалами. Классическая термодинамика рассматривает термодинамические переменные как локальные в пространстве величины (на любую систему всегда действует, как минимум, одно силовое поле - поле тяготения). Время в явном виде в формулы классической термодинамики не входит. Это, однако, вовсе не означает, что классическая термодинамика рассматривает только состояния системы и не рассматривает их изменения, т. е. процессы. Просто предметом её внимания служат такие относительно медленно протекающие (квазистатические) процессы, для которых в каждый данный момент времени систему можно считать находящейся в состоянии термодинамического равновесия (равновесные процессы). Процесс можно считать квазистатическим, если время его протекания много меньше времени релаксации рассматриваемой системы.

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, т. е. в её формулы время может входить в явном виде. Любопытно, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики как полноправного раздела науки (на столетие с лишним), но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Для энергии теорема Эйлера имеет вид:

Отсюда легко следует уравнение Гиббса - Дюгема :

Это уравнение показывает, что между интенсивными переменными существует одна связь, являющаяся следствием предположения об аддитивности свойств системы. В частности, непосредственным следствием соотношений Гиббса-Дюгема является выражение для термодинамического потенциала Гиббса через химические потенциалы компонент смеси:

Термодинамика сплошных сред

Приведённые выше формулировки аксиом термодинамики и соотношения для термодинамических потенциалов имеют место для простых моделей (сред) - для идеальных газов. Для более сложных моделей сред - упругих твердых сред, вязкоупругих сред, пластических сред, вязких жидкостей, сред с электромагнитными свойствами и других, законы термодинамики имеют более сложную формулировку, а термодинамические потенциалы формулируются в обобщенном виде с использованием тензоров . В физике сплошных сред (физике континуума) термодинамика рассматривается как её составная часть, вводящая в рассмотрение переменные, характеризующие тепловые (термические) и химические свойства среды, и их связь с другими физическими величинами, а аксиомы термодинамики включаются в общую систему аксиом.

Аксиоматика термодинамики

С аксиоматической точки зрения нулевое начало термодинамики, постулирующее существование абсолютной температуры, не является необходимым.

Первое начало вводит в рассмотрение новую физическую величину - внутреннюю энергию, и описывает (постулирует) свойства этой переменной, основное из которых состоит в том, что она необходима для соблюдения закона сохранения энергии; постулируется также экстенсивность внутренней энергии. Отсюда ясно, что корректно разбить изменение внутренней энергии в некотором процессе на теплоту и работу (тем более на теплоту, работу и работу переноса массы) невозможно без носящих достаточно произвольный характер дополнительных соглашений. К ним, в частности, принадлежат правила знаков для работы и теплоты. Другое соглашение состоит в том, что по формальным основаниям изменение внутренней энергии в химических реакциях (называемое в обиходе тепловым эффектом) мы вынуждены относить к работе (придуман даже специальный не используемый на практике термин «химическая работа»; в неравновесной термодинамике по формальной же причине теплоту трения причисляют к работе).

Подчеркнём, что математический аппарат термодинамики (да и любого другого раздела физики) зависит не только от законов природы, но и от разного рода соглашений (иногда формулируемых явно, иногда подразумеваемых), имеющих исторические корни и допускающих замену на другие соглашения, менее (а иногда и более) нам привычные. Степень произвола при формулировке соглашений обычно ограничена объективными либо субъективными факторами. Проиллюстрируем сказанное на примере замены реперных точек для температуры. Напрашивающийся вариант - переход к используемой в обыденной жизни температурной шкале Цельсия. Такая замена ведёт пусть к небольшому, но всё же усложнению привычных нам формул, да и выглядят они после этого менее изящно, хотя совершенно ясно, что расчёты как по новым, так и по старым формулам дают одинаковые результаты.

Изложенные соображения кажутся простыми и достаточно очевидными, если не банальными, но на практике о них частенько забывают. Применительно к первому началу игнорирование этих кажущихся избитыми истин привело к ситуации, которую Мёллер назвал «странным случаем в истории физики». А именно, модификация правила разбивки изменения внутренней энергии на теплоту и работу привела к изменению математического аппарата и послужила основанием для разгоревшегося во второй половине XX века спора о том, какая из двух логически безупречных версий СТО-релятивистской термодинамики с различными формулами преобразования для температуры - Планка (1907) или Отта (1963) - более правильна. Дискуссия теоретиков продолжалась несколько лет, пока де Бройль не показал, что расхождение между выводами Планка и Отта связано с произволом в определении теплоты, и их результаты не противоречат друг другу - просто авторы разговаривают на разных языках. В современных же вариантах релятивистской термодинамики вообще предпочитают иметь дело с лоренц-инвариантной абсолютной температурой (ван Кампен, Ландсберг, Шмутцер и др.). Почему же до публикации статьи Отта произвол в определениях понятий «работа» и «теплота» не бросался в глаза и никого не волновал? Да потому, что на практике, говоря о теплоте или работе некоего процесса, всегда имели в виду изменение в этом процессе одного из термодинамических потенциалов, обходя тем самым неопределённости в трактовке понятий «теплота» и «работа». То обстоятельство, что, например, совершаемую в химической реакции работу по традиции именовали «тепловым эффектом реакции», никого не смущало и не приводило ни к каким бросающимся в глаза парадоксальным или нежелательным последствиям.

Суть второго начала термодинамики с точки зрения аксиоматического подхода состоит в следующем. Для описания термических явлений переменной «внутренняя энергия» недостаточно, и для равновесных систем требуется ещё одна новая физическая величина в качестве независимой переменной. Таковой было бы логично выбрать температуру, но путь развития науки извилист, и второе начало в современной формулировке представляет собой набор постулатов о существовании энтропии и её свойствах; постулируется, например, экстенсивность энтропии. Один из важнейших постулатов гласит, что называемая термодинамической температурой функция внутренней энергии и энтропии имеет свойства абсолютной температуры. Такой подход позволяет обойти поминавшийся выше произвол в определениях понятий «работа» и «теплота», сводящий на нет кажущееся изящество классических формулировок второго начала. Отметим, что аксиоматику термодинамики можно строить, полагая независимой переменной не энтропию, а температуру. За это приходится приносить в жертву либо привычный нам математический аппарат термодинамики, к чему мы пока не готовы, либо стройность базовой системы аксиом.

Третье начало дополняет дополняет систему аксиом второго начала.

Аксиом (начал, постулатов), на которых базируется термодинамика, не три и даже не четыре (если считать нулевое начало), поэтому их уже не нумеруют. Наконец, помимо аксиом, соглашений и теорем в термодинамике есть еще и «принципы» (например, принцип термодинамической допустимости Путилова в равновесной термодинамике или принцип Кюри в неравновесной термодинамике), т. е. утверждения, не являющиеся соглашениями или теоремами, но и не претендующие на роль законов природы. Их не следует путать с аксиомами или теоремами термодинамики, в названиях которых по традиции используют слово «принцип» (принцип Нернста, принцип Ле-Шателье - Брауна).

Примечания

Парадоксы

См. также

Литература

  • Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
  • Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003. 120 с.
  • Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
  • Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
  • Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы) . - М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
  • Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
  • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
  • Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). - М.: Изд-во ЛКИ, 2007. - 312 с.
  • Квасников И. А.

Что такое термодинамика

Определение

Термодинамика -- важнейшая часть физики. Ее выводы используются в гиро- и аэродинамике, оптике, физической химии многих других науках и прикладных разработках.

Возникла термодинамика в начале XIX века. В то время начала свое развитие теплотехника. Термодинамика стала ее теоретической основой. Ее целью в то время было изучение закономерностей, которые определяют процессы превращения тепла в механическую работу с помощью тепловых двигателей и поиск условий, при которых максимальна эффективность таких превращений. Основы термодинамики заложил в своих работах Саади Карно, французский инженер и физик, который и исследовал тепловые двигатели. Тогда еще теплота рассматривалась как некоторое вещество -- теплород, которое не имеет массы и не может быть создано или уничтожено. Впоследствии термодинамика вышла за границы узкой технической задачи. Основным содержанием современной термодинамики стало изучение законов тепловой формы движения материи и связанных с этим явлений.

Какие процессы изучает термодинамика

Термодинамика изучает макроскопические процессы, которые происходят в телах, системах тел. Эта наука не использует специальных гипотез и представлений о строении вещества. Не задает вопросы о природе теплоты. Выводы термодинамики основаны на общих принципах (началах), которые получены обобщением эмпирических данных.

Термодинамика изучает только термодинамически равновесные состояния систем или очень медленные процессы, которые могут быть представлены совокупностью равновесных. Эта наука также изучает законы перехода от одного равновесного состояния к другому.

Выводы термодинамики весьма общие, так как получают их без использования упрощенных моделей. Термодинамика многие уравнения берет из опыта, или молекулярно -- кинетической теории. Но здесь необходимо отметить, что практика показала, что аксиомы термодинамики имеют границы применимости. Так классическая термодинамика плохо применима в системах с малыми размерами, так как не рассматривает флуктуации состояния, которые в микромире имеют существенное значение.

Итак, основную идею термодинамики определим так:

Основная идея термодинамики

Макроскопические системы состоят из большого количества частиц. Состояния системы характеризуются вполне конкретными параметрами. Каждая система подчиняется закону сохранения энергии.

В термодинамике закон сохранения энергии формулируется как начала термодинамики. Поведение макросистемы описывается исходя из начал термодинамики. В термодинамике сформулированы три начала. Первое начало -- следствие закона сохранения энергии:

Первое начало термодинамики

\[\delta Q=dU+\delta A\ \left(1\right),\]

где $\delta Q$- элемент тепла (или бесконечно малое количество) подводимое к термодинамической системе. Изучение движение и превращений этой формы энергии является предметом термодинамики, $dU$- изменение внутренней энергии системы, $\delta A$ -- элементарная работа. Бесконечно малые величины здесь обозначены разными символами (d и $\delta $), это сделано намерено. С целью подчеркнуть, что свойства этих малых величин различны. Первое начало термодинамики не дает понятия о направлении прохождения процесса. Поэтому необходимо второе начало. Именно оно характеризует направление процессов в термодинамике. Существую несколько формулировок второго начала термодинамики. По форме они отличаются, но по смыслу он эквивалентны. Приведем одну из формулировок, ее дал Томпсон (лорд Кельвин):

Второе начало термодинамики

«Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара».

Третье накладывает ограничение на процессы. Его сформулируем:

Третье начало термодинамики

«Абсолютный нуль недостижим посредством конечного числа операций».

Математическим аппаратом термодинамики является теория дифференциальных форм и уравнения в частных производных.

Задание: Идеальный одноатомный газ совершает циклический процесс (рис.1).

Определите КПД цикла, если известны $V_1,\ V_2,$ $p_1,\ p_2$.

Кпд ($\eta $) цикла в данном случае удобно определить как:

\[\eta =\frac{A}{Q^+}\left(1.1\right),\]

где A -- работа газа в круговом процессе, $Q^+$- количество теплоты, подведенное газу от нагревателя.

Круговой процесс (цикл), который изображен на рис.1, состоит из четырех последовательных процессов. Определим, в каких процессах тепло подводится. Очевидно, что это процессы AB и BC.

Процесс AB -- изобарный. Запишем первое начало термодинамики и найдем количество теплоты, пущенное газом в этом процессе.

\[\triangle Q=\triangle U+A\ \left(1.2\right).\]

Работа в изобарном процессе может быть найдена как:

Следовательно, для процесса AB мы получим:

Изменение внутренней энергии газа в процессе AB, имеет формулу:

\[\triangle U_{AB}=\frac{i}{2}\nu R\left(T_2-T_1\right)\left(1.5\right).\]

Для того, чтобы найти $\left(T_2-T_1\right)$, используем уравнение Менделеева - Клайперона для идеального газа. Запишем его для двух состояний (точек A и B):

\ \

Найдем разность (1.7) и (1.6), получим:

Подставим (1.8) в (1.5), получим:

\[\triangle U_{AB}=\frac{i}{2}p_1\left(V_2-V_1\right)\left(1.9\right).\]

Следовательно, количество теплоты, полученное газом в процессе AB равно:

\[\triangle Q_{AB}=p_1\left(V_2-V_1\right)+\frac{i}{2}p_1\left(V_2-V_1\right)\ (1.10).\]

Теперь рассмотрим изохорный процесс ВС. Для него количество теплоты, переданное газу равно:

\[\triangle Q_{BC}=\triangle U_{BC\ }\left(1.11\right).\]

так как работа в изохорном процессе равна нулю. Найдем изменений внутренней энергии данного процесса, используя уравнение состояния идеального газа для точек диаграммы B и C:

\ \

Вычтем (1.6) из (1.7), получим:

Подставим (1.14) в (1.11) найдем $\triangle Q_{BC}$:

\[\triangle Q_{BC}=\frac{i}{2}{(p}_2-\ p_1)V_2(1.15).\]

Получим выражение для $Q^+:$

Найдем работу, которую совершает газ в круговом процессе. Она равна из геометрического смысла интегралов площади прямоугольника ABCD, соответственно запишем:

\[\eta =\frac{{(p}_2-\ p_1)\left(V_2-V_1\right)}{{\frac{i}{2}(p}_2V_2-p_1V_1)+p_1{(V}_2-V_1)}\ \left(1.18\right).\]

Ответ: КПД цикла заданного процесса выражается формулой: $\eta =\frac{{(p}_2-\ p_1)\left(V_2-V_1\right)}{{\frac{i}{2}(p}_2V_2-p_1V_1)+p_1{(V}_2-V_1)}$.

Задание: На рис. 2 изображены изотермы AB и CD. Сравните количества теплоты, получаемые газом, в процессах I и II.

Если AB и СВ -- изотермы, изменения внутренней энергии газа процессах I и II одинаковы: \[\triangle U_I=\triangle U_{II}\left(2.1\right).\]

Работа в процессе I равна нулю, так как процесс изохорный, следовательно количество теплоты получаемое газом в процессе I:

\[\triangle Q_I=\triangle U_I\ \left(2.2\right).\]

В процессе II работа газом совершается и она больше 0 ($A_I>0).\ $

\[\triangle Q_{II}=\triangle U_{II}+A=\triangle U_I+A\ \to \triangle Q_{II}>\triangle Q_I\left(2.3\right).\]

Ответ: Количества теплоты получаемое газом в процессе II больше, чем количество теплоты, получаемое газом в процессе I.