По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.

ЛЕКЦИЯ 4

Определение и назначение математического моделирования

Под моделью (от латинского modulus - мера, образец, норма) будем понимать такой материально или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты. Процесс построения и использования модели называется моделированием.

Суть математического моделирования (ММ ) заключается в замене изучаемого объекта (процесса) адекватной математической моделью и последующем исследовании свойств этой модели с помощью либо аналитических методов, либо вычислительных экспериментов.

Иногда полезнее вместо того, чтобы давать строгие определения, описывать то или инее понятие на конкретном примере. Поэтому проиллюстри-руем приведенные выше определения ММ на примере задачи расчета удельного импульса. В начале 60-х годов перед учеными ставилась задача разработки ракетного топлива с наибольшим удельным импульсом. Принцип движения ракеты состоит в следующем: жидкое топливо и окислитель из баков ракеты подаются в двигатель, где происходит их сгорание, а продукты сгорания вылетают в атмосферу. Из закона сохранения импульса следует, что в этом ракета будет двигаться со скоростью.

Удельный импульс топлива – это полученный импульс, деленный на массу топлива. Проведение экспериментов было очень дорогостоящим и приводило к систематической порче оборудования. Оказалось, что легче и дешевле рассчитать термодинамические функции идеальных газов, вычислить с их помощью состав вылетающих газов и температуру плазмы, а затем и удельный импульс. То есть провести ММ процесса горения топлива.

Понятие математического моделирования (ММ) сегодня одно из самых распространенных в научной литературе . Подавляющее большинство современных дипломных и диссертационных работ связано с разработкой и использованием соответствующих математических моделей. Компьютерное ММ сегодня является составной частью многих областей человеческой деятельности (наука, техника, экономика, социология и т. д.). Это одна из причин сегодняшнего дефицита специалистов в области информационных технологий .

Бурный рост математического моделирования обусловлен стремительным совершенствованием вычислительной техники. Если еще 20 лет назад проведением численных расчетов занималось лишь небольшое число программистов, то теперь объем памяти и быстродействие современных компьютеров, позволяющих решать задачи математического моделирования доступных всем специалистам, включая студентов ВУЗов.

В любой дисциплине вначале дается качественное описание явлений. А затем уже – количественное, сформулированное в виде законов, устанавливающих связи между различными величинами (напряженность поля, интенсивность рассеяния, заряд электрона, …) в форме математических уравнений. Поэтому можно сказать, что в каждой дисциплине столько науки, сколько в ней есть математики, и этот факт позволяет успешно решать многие задачи методами математического моделирования.

Данный курс предназначен для студентов, специализирующихся в области прикладной математики, которые выполняют дипломные работы под руководством ведущих ученых, работающих в различных областях. Поэтому данный курс необходим не только как учебный материал, но и как подготовка к дипломной работе. Для изучения данного курса нам будут необходимы следующие разделы математики:

1. Уравнения математической физики (кантовая механика, газо - и гидродинамика)

2. Линейная алгебра (теория упругости)

3. Скалярные и векторные поля (теория поля)

4. Теория вероятностей (квантовая механика, статистическая физика, физическая кинетика)

5. Специальные функции.

6. Тензорный анализ (теория упругости)

7. Математический анализ

ММ в естествознании, технике, и экономике

Рассмотрим вначале различные разделы естествознания, техники, экономики, в которых используются математические модели.

Естествознание

Физика, устанавливающая основные законы естествознания, давно разделилась на теоретическую и экспериментальную. Выводом уравнений, описывающих физические явления, занимается теоретическая физика. Таким образом, теоретическая физика также может считаться одним из направлений математического моделирования. (Вспомним, что название первой книги по физике – «Математические начала натуральной философии» И. Ньютона можно перевести на современный язык как «Математические модели естествознания».) На основании полученных законов проводятся инженерные расчеты, которые проводятся в различных институтах, фирмах, КБ. Эти организации разрабатывают технологии изготовления современной продукции, которые являются наукоемкими.Таким образом, понятие наукоемкие технологии включает в себя расчеты с помощью соответствующих математических моделей.

Один из наиболее обширных разделов физики – классическая механика (иногда этот раздел называется теоретической или аналитической механикой). Данный раздел теоретической физики изучает движение и взаимодействие тел. Расчеты с помощью формул теоретической механики необходимы при изучении вращения тел (расчет моментов инерции, гиростатов – устройств сохраняющих в неподвижности оси вращения), анализе движения тела в безвоздушном пространстве, и др. Один из разделов теоретической механики называется теорией устойчивости и лежит в основе многих математических моделей, описывающих движение самолетов, кораблей, ракет. Разделы практической механики – курсы «Теория машин и механизмов», «Детали машин», изучается студентами почти всех технических вузов (включая МГИУ).

Теория упругости – часть раздела механики сплошных сред , предполагающая, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Приложение теории упругости – курс «сопротивление материалов», изучается студентами всех технических вузов (включая МГИУ). Данный раздел необходим для всех расчетов прочности. Здесь и расчет прочности корпусов кораблей, самолетов, ракет, расчет прочности стальных и железобетонных конструкций зданий и многое другое.

Газо- и гидродинамика , как и теория упругости – часть раздела механики сплошных сред , рассматривает законы движения жидкости и газа. Уравнения газо - и гидродинамики необходимы при анализе движения тел в жидкой и газообразной среде (спутники, подводные лодки, ракеты, снаряды, автомобили), при расчетах истечения газа из сопел двигателей ракет, самолетов. Практическое приложение гидродинамики – гидравлика (тормоз, руль,…)

Предыдущие разделы механики рассматривали движении тел в макромире, и физические законы макромира неприменимы в микромире, в котором движутся частицы вещества - протоны, нейтроны, электроны. Здесь действуют совершенно другие принципы, и для описания микромира необходима квантовая механика . Основное уравнение, описывающее поведение микрочастиц - уравнение Шредингера: . Здесь - оператор Гамильтона (гамильтониан). Для одномерного уравнения движения частицы https://pandia.ru/text/78/009/images/image005_136.gif" width="35" height="21 src=">-потенциальная энергия. Решение этого уравнения – набор собственных значений энергии и собственных функций..gif" width="55" height="24 src=">– плотность вероятности. Квантовомеханические расчеты нужны для разработки новых материалов (микросхемы), создания лазеров, разработки методов спектрального анализа, и др.

Большое количество задач решает кинетика , описывающая движение и взаимодействие частиц. Здесь и диффузия , теплообмен, теория плазмы – четвертого состояния вещества.

Статистическая физика рассматривает ансамбли частиц, позволяет сказать о параметрах ансамбля, исходя из свойств отдельных частиц. Если ансамбль состоит из молекул газа, то выведенные методами статистической физики свойства ансамбля представляют собой хорошо известные со средней школы уравнения газового состояния: https://pandia.ru/text/78/009/images/image009_85.gif" width="16" height="17 src=">.gif" width="16" height="17">-молекулярный вес газа. К – постоянная Ридберга. Статистическими методами рассчитываются также свойства растворов, кристаллов, электронов в металлах. ММ статистической физики – теоретическая основа термодинамики, которая лежит в основе расчета двигателей, тепловых сетей и станций.

Теория поля описывает методами ММ одну из основных форм материи – поле. При этом основной интерес представляют электромагнитные поля. Уравнения электромагнитного поля (электродинамики) были выведены Максвеллом: , , , . Здесь и https://pandia.ru/text/78/009/images/image018_44.gif" width="16" height="17"> - плотность заряда, -плотность тока. Уравнения электродинамики лежат в основе расчетов распространения электромагнитных волн, необходимых для описания распространения радиоволн (радио, телевидение, сотовая связь), объяснения работы радиолокационных станций.

Химию можно представить в двух аспектах, выделяя описательную химию – открытие химических факторов и их описание – и теоретическую химию – разработку теорий, позволяющих обобщить установленные факторы и представить их в виде определенной системы (Л. Полинг). Теоретическая химия называется также физической химией и является, в сущности, разделом физики, изучающей вещества и их взаимодействия. Поэтому все, что было сказано относительно физики, в полной мере относится и к химии. Разделами физической химии будут термохимия, изучающая тепловые эффекты реакций, химическая кинетика (скорости реакций), квантовая химия (строение молекул). При этом задачи химии бывают чрезвычайно сложными. Так, например, для решения задач квантовой химии – науки о строении атомов и молекул, используются программы, сравнимые по объему с программами ПВО страны. Например, для того, чтобы описать молекулу UCl4, состоящую из 5 ядер атомов и +17*4) электронов, нужно записать уравнение движения – уравнения в частных производных.

Биология

В биологию математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Популяцией называется сообщество особей одного вида, занимающих некоторую область пространства на Земле. Эта область математической биологии, изучающая изменение численности популяции в различных условиях (наличие конкурирующих видов, хищников, болезней и т. п.) и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.
Самая первая известная модель, сформулированная в биологической постановке, ‑ знаменитый ряд Фибоначчи (каждое последующее число является суммой двух предыдущих), который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, …

1,

2 ,

3,

5,

8, 13, …

Другим примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной мембране. Здесь для того, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки, необходимо создать модельную систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

Классическим примером ММ также является популяция дрозофилы. Еще более удобной моделью являются вирусы , которые можно размножать в пробирке. Методами моделирования в биологии служат методы динамической теории систем, а средствами - дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, имитационное моделирование.
Цели моделирования в биологии:
3. Выяснение механизмов взаимодействия элементов системы
4. Идентификация и верификация параметров модели по экспериментальным данным.
5. Оценка устойчивости системы (модели).

6. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
7. Оптимальное управление системой в соответствии с выбранным критерием оптимальности .

Техника

Совершенствованием техники занимается большое количество специалистов, которые в своей работе опираются на результаты научных исследований. Поэтому ММ в технике те же самые, что и ММ естествознания, о которых говорилось выше.

Экономика и социальные процессы

Принято считать, что математическое моделирование как метод анализа макроэкономических процессов было впервые применено лейб-медиком короля Людовика XV доктором Франсуа Кенэ , который в 1758 г. опубликовал работу «Экономическая таблица». В этой работе была сделана первая попытка количественно описать национальную экономику. А в 1838 г. в книге О. Курно «Исследование математических принципов теории богатства» количественные методы были впервые использованы для анализа конкуренции на рынке товара при различных рыночных ситуациях.

Широко известна также теория Мальтуса о народонаселении, в которой он предложил идею: рост населения далеко не всегда желателен, и рост этот идет быстрее, чем растут возможности обеспечения населения продовольствием. Математическая модель такого процесса достаточно проста: Пусть - прирост численности населения за время https://pandia.ru/text/78/009/images/image027_26.gif" width="15" height="24"> численность была равна . и - коэффициенты, учитывающие рождаемость и смертность (чел/год). Тогда

https://pandia.ru/text/78/009/images/image032_23.gif" width="151" height="41 src=">Инструментальные и математические методы " href="/text/category/instrumentalmznie_i_matematicheskie_metodi/" rel="bookmark">математические методы анализа (например, в последние десятилетия в гуманитарных науках появились математические теории развития культуры, построены и исследованы математические модели мобилизации, циклического развития социокультурных процессов, модель взаимодействия народа и правительства, модель гонки вооружений и др.).

В самых общих чертах процесс ММ социально-экономических процессов условно можно подразделить на четыре этапа:

    формулировка системы гипотез и разработка концептуальной модели; разработка математической модели; анализ результатов модельных расчетов, который включает сравнение их с практикой; формулировка новых гипотез и уточнение модели в случае несоответствия результатов расчетов и практических данных.

Отметим, что, как правило, процесс математического моделирования носит циклический характер, поскольку даже при исследовании сравнительно простых процессов редко удается с первого шага построить адекватную математическую модель и подобрать точные ее параметры.

В настоящее время экономика рассматривается как сложная развивающаяся система, для количественного описания которой применяются динамические математические модели различной степени сложности. Одно из направлений исследования макроэкономической динамики связано с построением и анализом относительно простых нелинейных имитационных моделей, отражающих взаимодействие различных подсистем – рынка труда, рынка товаров, финансовой системы , природной среды и др.

Успешно развивается теория катастроф. Эта теория рассматривает вопрос об условиях, при которых изменение параметров нелинейной системы вызывает перемещение точки в фазовом пространстве, характеризующей состояние системы, из области притяжения к начальному положению равновесия в область притяжения к другому положению равновесия. Последнее очень важно не только для анализа технических систем, но и для понимания устойчивости социально-экономических процессов. В этой связи представляют интерес выводы о значении исследования нелинейных моделей для управления. В книге «Теория катастроф», опубликованной в 1990 г., он, в частности, пишет: «…нынешняя перестройка во многом объясняется тем, что начали действовать хотя бы некоторые механизмы обратной связи (боязнь личного уничтожения)».

(параметры модели)

При построении моделей реальных объектов и явлений часто приходится сталкиваться с недостатком информации. Для исследуемого объекта распределение свойств, параметры воздействия и начальное состояние известны с той или иной степенью неопределенности. При построении модели возможны следующие варианты описания неопределенных параметров:

Классификация математических моделей

(методы реализации)

Методы реализации ММ можно классифицировать в соответствии с таблицей, приведенной ниже.

Методы реализации ММ

Очень часто аналитическое решение для модели представляется в виде функций. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора), и значение функции при каждом значении аргумента определяется приближенно. Модели, использующие такой прием, называются приближенными .

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т. е. переходом от функций непрерывного аргумента к функциям дискретного аргумента (сеточные методы).

Найденное после расчетов на компьютере решение принимается за приближен-ное решение исходной задачи.

Большинство существующих систем является очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие системы следует изучать с помощью имитационного моделирования . Один из основных приемов имитационного моделирования связан с применением датчика случайных чисел.

Так как огромное количество задач решается методами ММ, то способы реализации ММ изучаются не в одном учебном курсе. Здесь и уравнения в частных производных, численные методы решения этих уравнений, вычислительная математика, компьютерное моделирование и т. п.

ПОЛИНГ, ЛАЙНУС КАРЛ (Pauling, Linus Carl) (), американский химик и физик, удостоенный в 1954 Нобелевской премии по химии за исследования природы химической связи и определение структуры белков. Родился 28 февраля 1901 в Портленде (шт. Орегон). В разработал квантовомеханический метод изучения строения молекул (наряду с американским физиком Дж. Слейером) - метод валентных связей, а также теорию резонанса, позволяющую объяснить строение углеродосодержащих соединений, прежде всего соединений ароматического ряда. В период культа личности СССР ученые, занимавшиеся квантовой химией подвергались гонениям и обвинялись в «полингизме».

МАЛЬТУС, ТОМАС РОБЕРТ (Malthus, Thomas Robert) (), английский экономист. Родился в Рукери близ Доркинга в Суррее 15 или 17 февраля 1766. В 1798 анонимно опубликовал труд Опыт о законе народонаселения. В 1819 Мальтус был избран членом Королевского общества.

Понятие модели и моделирования.

Модель в широком смысле - это любой образ, аналог мысленный или установленный изображение, описание, схема, чертеж, карта и т. п. какого либо объема, процесса или явления, используемый в качестве его заменителя или представителя. Сам объект, процесс или явление называется оригиналом данной модели.

Моделирование - это исследование какого либо объекта или системы объектов путем построения и изучения их моделей. Это использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

На идее моделирования базируется любой метод научного исследования, при этом, в теоретических методах используются различного рода знаковые, абстрактные модели, в экспериментальных - предметные модели.

При исследовании сложное реальное явление заменяется некоторой упрощенной копией или схемой, иногда такая копия служит лишь только для того чтобы запомнить и при следующей встрече узнать нужное явление. Иногда построенная схема отражает какие - то существенные черты, позволяет разобраться в механизме явления, дает возможность предсказать его изменение. Одному и тому же явлению могут соответствовать разные модели.

Задача исследователя - предсказывать характер явления и ход процесса.

Иногда, бывает, что объект доступен, но эксперименты с ним дорогостоящи или привести к серьезным экологическим последствиям. Знания о таких процессах получают с помощью моделей.

Важный момент - сам характер науки предполагает изучение не одного конкретного явления, а широкого класса родственных явлений. Предполагает необходимость формулировки каких - то общих категорических утверждений, которые называются законами. Естественно, что при такой формулировке многими подробностями пренебрегают. Чтобы более четко выявить закономерность сознательно идут на огрубление, идеализацию, схематичность, то есть изучают не само явление, а более или менее точную ее копию или модель. Все законы- это законы о моделях, а поэтому нет ничего удивительного в том, что с течением времени некоторые научные теории признаются непригодными. Это не приводит к краху науки, поскольку одна модель заменилась другой более современной .

Особую роль в науке играют математические модели, строительный материал и инструменты этих моделей - математические понятия. Они накапливались и совершенствовались в течении тысячелетий. Современная математика дает исключительно мощные и универсальные средства исследования. Практически каждое понятие в математике, каждый математический объект, начиная от понятия числа, является математической моделью. При построении математической модели, изучаемого объекта или явления выделяют те его особенности, черты и детали, которые с одной стороны содержат более или менее полную информацию об объекте, а с другой допускают математическую формализацию. Математическая формализация означает, что особенностям и деталям объекта можно поставить в соответствие подходящие адекватные математические понятия: числа, функции, матрицы и так далее. Тогда связи и отношения, обнаруженные и предполагаемые в изучаемом объекте между отдельными его деталями и составными частями можно записать с помощью математических отношений: равенств, неравенств, уравнений. В результате получается математическое описание изучаемого процесса или явление, то есть его математическая модель.

Изучение математической модели всегда связанно с некоторыми правилами действия над изучаемыми объектами. Эти правила отражают связи между причинами и следствиями.

Построение математической модели - это центральный этап исследования или проектирования любой системы. От качества модели зависит весь последующий анализ объекта. Построение модели - это процедура не формальная. Сильно зависит от исследователя, его опыта и вкуса, всегда опирается на определенный опытный материал. Модель должна быть достаточно точной, адекватной и должна быть удобна для использования.

Математическое моделирование.

Классификация математических моделей.

Математические модели могут быть детерменированными и стохастическими .

Детерменированные модели- это модели, в которых установлено взаимно-однозначное соответствие между переменными описывающими объект или явления.

Такой подход основан на знании механизма функционирования объектов. Часто моделируемый объект сложен и расшифровка его механизма может оказаться очень трудоемкой и длинной во времени. В этом случае поступают следующим образом: на оригинале проводят эксперименты, обрабатывают полученные результаты и, не вникая в механизм и теорию моделируемого объекта с помощью методов математической статистики и теории вероятности, устанавливают связи между переменными, описывающими объект. В этом случае получают стахостическую модель. В стахостической модели связь между переменными носит случайный характер, иногда это бывает принципиально. Воздействие огромного количества факторов, их сочетание приводит к случайному набору переменных описывающих объект или явление. По характеру режимов модель бывают статистическими и динамическими .

Статистическая модель включает описание связей между основными переменными моделируемого объекта в установившемся режиме без учета изменения параметров во времени.

В динамической модели описываются связи между основными переменными моделируемого объекта при переходе от одного режима к другому.

Модели бывают дискретными и непрерывными , а также смешанного типа. В непрерывных переменные принимают значения из некоторого промежутка, в дискретных переменные принимают изолированные значения.

Линейные модели - все функции и отношения, описывающие модель линейно зависят от переменных и не линейные в противном случае.

Математическое моделирование.

Требования,п редъявляемые к моделям.

1. Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта.

    1. Адекватность - способность отражать нужные свойства объекта с погрешностью не выше заданной.
    2. Точность - оценивается степенью совпадения значений характеристик реального объекта и значения этих характеристик полученных с помощью моделей.
    3. Экономичность - определяется затратами ресурсов ЭВМ памяти и времени на ее реализацию и эксплуатацию.

Математическое моделирование.

Основные этапы моделирования.

1. Постановка задачи.

Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.

На этом этапе подбирается или разрабатывается подходящая теория. Если ее нет, устанавливаются причинно - следственные связи между переменными описывающими объект. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация.

Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта. Значения некоторых параметров на этом этапе еще могут быть не конкретизированы.

4. Выбор метода решения.

На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой - либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели.

Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации.

Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.

Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Процесс моделирования является итеративным. В случае неудовлетворительных результатов этапов 6. или 7. осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Этот этап и все последующие уточняются и такое уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1.1.2 2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

1.1.3 3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ВСЕОБЩАЯ КОМПЬЮТЕРИЗАЦИЯ ИЛИ ИМИТАЦИОННЫЕ МОДЕЛИ

Сейчас, когда в стране происходит чуть ли не всеобщая компьютеризация, от специалистов различных профессий приходится слышать высказывания: "Вот внедрим у себя ЭВМ, тогда все задачи сразу же будут решены". Эта точка зрения совершенно не верна, сами по себе ЭВМ без математических моделей тех или иных процессов ничего сделать не смогут и о всеобщей компьютеризации можно лишь мечтать.

В подтверждение вышесказанного попытаемся обосновать необходимость моделирования, в том числе математического, раскроем его преимущества в познании и преобразовании человеком внешнего мира, выявим существующие недостатки и пойдем… к имитационному моделированию, т.е. моделированию с использованием ЭВМ. Но все по порядку.

Прежде всего, ответим на вопрос: что такое модель?

Модель – это материальный или мысленно представленный объект, который в процессе познания (изучения) замещает оригинал, сохраняя некоторые важные для данного исследования типичные свойства.

Хорошо построенная модель доступнее для исследования – нежели реальный объект. Например, недопустимы эксперименты с экономикой страны в познавательных целях, здесь без модели не обойтись.

Резюмируя сказанное можно ответить на вопрос: для чего нужны модели? Для того, чтобы

  • понять, как устроен объект (его структура, свойства, законы развития, взаимодействия с окружающим миром).
  • научиться управлять объектом (процессом) и определять наилучшие стратегии
  • прогнозировать последствия воздействия на объект.

Что положительного в любой модели? Она позволяет получить новые знания об объекте, но, к сожалению, в той или иной степени не полна.

Модель сформулированная на языке математики с использованием математических методов называется математической моделью.

Исходным пунктом ее построения обычно является некоторая задача, например экономическая. Широко распространены, как дескриптивные, так и оптимизационные математические, характеризующие различные экономические процессы и явления, например:

  • распределение ресурсов
  • рациональный раскрой
  • транспортные перевозки
  • укрупнение предприятий
  • сетевое планирование.

Каким образом происходит построение математической модели?

  • Во–первых , формулируется цель и предмет исследования.
  • Во–вторых , выделяются наиболее важные характеристики, соответствующие данной цели.
  • В–третьих, словесно описываются взаимосвязи между элементами модели.
  • Далее взаимосвязь формализуется.
  • И производится расчет по математической модели и анализ полученного решения.

Используя данный алгоритм можно решить любую оптимизационную задачу, в том числе и многокритериальную, т.е. ту в которой преследуется не одна, а несколько целей, в том числе противоречивых.

Приведем пример. Теория массового обслуживания – проблема образования очередей. Нужно уравновесить два фактора – затраты на содержание обслуживающих устройств и затраты на пребывание в очереди. Построив формальное описание модели производят расчеты, используя аналитические и вычислительные методы. Если модель хороша, то ответы найденные с ее помощью адекватны моделирующей системе, если плоха, то подлежит улучшению и замене. Критерием адекватности служит практика.

Оптимизационные модели, в том числе многокритериальные, имеют общее свойство– из вестна цель(или несколько целей) для достижения которой часто приходится иметь дело со сложными системами, где речь идет не столько о решении оптимизационных задач, сколько об исследовании и прогнозировании состояний в зависимости от избираемых стратегий управления. И здесь мы сталкиваемся с трудностями реализации прежнего плана. Они состоят в следующем:

  • сложная система содержит много связей между элементами
  • реальная система подвергается влиянию случайных факторов, учет их аналитическим путем невозможен
  • возможность сопоставления оригинала с моделью существует лишь в начале и после применения математического аппарата, т.к. промежуточные результаты могут не иметь аналогов в реальной системе.

В связи с перечисленными трудностями, возникающими при изучении сложных систем, практика потребовала более гибкий метод, и он появился – имитационное моделирование "Simujation modeling ".

Обычно под имитационной моделью понимается комплекс программ для ЭВМ, описывающий функционирование отдельных блоков систем и правил взаимодействия между ними. Использование случайных величин делает необходимым многократное проведение экспериментов с имитационной системой (на ЭВМ) и последующий статистический анализ полученных результатов. Весьма распространенным примером использования имитационных моделей является решение задачи массового обслуживания методом МОНТЕ–КАРЛО.

Таким образом, работа с имитационной системой представляет собой эксперимент, осуществляемый на ЭВМ. В чем же заключаются преимущества?

–Большая близость к реальной системе, чем у математических моделей;

–Блочный принцип дает возможность верифицировать каждый блок до его включения в общую систему;

–Использование зависимостей более сложного характера, не описываемых простыми математическими соотношениями.

Перечисленные достоинства определяют недостатки

–построить имитационную модель дольше, труднее и дороже;

–для работы с имитационной системой необходимо наличие подходящей по классу ЭВМ;

–взаимодействие пользователя и имитационной модели (интерфейс) должно быть не слишком сложным, удобным и хорошо известным;

–построение имитационной модели требует более глубокого изучения реального процесса, нежели математическое моделирование.

Встает вопрос: может ли имитационное моделирование заменить методы оптимизации? Нет, но удобно дополняет их. Имитационная модель – это программа, реализующая некоторый алгоритм, для оптимизации управления которым прежде решается оптимизационная задача.

Итак, ни ЭВМ, ни математическая модель, ни алгоритм для ее исследования порознь не могут решить достаточно сложную задачу. Но вместе они представляют ту силу, которая позволяет познавать окружающий мир, управлять им в интересах человека.

1.2 Классификация моделей

1.2.1
Классификация с учетом фактора времени и области использования (Макарова Н.А.)

Статическая модель - это как бы одномоментный срез информации по объекту (результат одного обследования)
Динамическая модель-позволяет увидеть изменения объекта во времени(Карточка в поликлинике)
Можно классифицировать модели и по тому, к какой области знаний они принадлежат (биологические,исторические , экологические и т.п.)
Возврат в начало

1.2.2 Классификация по области использования (Макарова Н.А.)

Учебные- наглядные пособия, тренажеры,о бучающие программы
Опытные модели-уменьшенные копии (автомобиль в аэродинамической трубе)
Научно-технические- синхрофазотрон , стенд для проверки электронной аппаратуры
Игровые- экономические , спортивные, деловые игры
Имитационные- не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называется методом проб и ошибок
Возврат в начало

1.2.3 Классификация по способу представления Макарова Н.А.)

Материальные модели-иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение
Информационные модели-нельзя потрогать или увидеть. Они строятся только на информации.И нформационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Вербальная модель - информационная модель в мысленной или разговорной форме.
Знаковая модель-информационная модель выраженная знаками,т .е . средствами любого формального языка.
Компьютерная модель -м одель, реализованная средствами программной среды.

1.2.4 Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.))

"...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах , то потребуется один срок, другой-если ехать на автомобиле, третий - если лететь самолетом. А самое главное - для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем - можно воспользоваться расписанием самолетных рейсов.
Отличаются эти три модели - мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель) , во втором- как бы фотографией с натуры (натурная модель) , в третьем - таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно- в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна"
На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход - определения понятий четко выделены и несколько статичны.

1.2.5 Классификация моделей приведенная в пособии А.И.Бочкина

Способов классификации необычно много.П риведем лишь некоторые, наиболее известные основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно-знаковые модели, масштабные и немасштабные...
Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования.
Дискретность и непрерывностьДискретность - характерный признак именно компьютерных моделей.В едь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа.
Случайность и детерминированность . Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний).
Матричность - скалярность . Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной . Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, - матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны.
Статичность динамичность . Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом к динамической , либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель.
Аналитические модели . Описание процессов аналитически , формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов.
Имитационные модели . Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти.
Информационные модели . Информационные модели принято противополагать математическим , точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель, иначе - математичеескую .
Предметные модели . Это прежде всего детская модель - игрушка.
Образно-знаковые модели . Это прежде всего модель в уме человека: образная , если преобладают графические образы, и знаковая , если больше слов или (и) чисел. Образно-знаковые модели строятся на компьютере.
Масштабные модели . К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта).



ВВЕДЕНИЕ

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» - математической моделью - и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.

Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово «алгоритм» происходит от имени средневекового арабского ученого Аль-Хорезми. Второе «рождение» этой методологии пришлось на конец 40-х-начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно «осуществлены» в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).

Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными «ресурсами» нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного «сырья» в готовый «продукт», т. е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества.

Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в «единственном экземпляре». Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.

Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных «специальностей» - исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное «моделирование», расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов и т. д. Если же говорить о моделировании систем с участием «человеческого фактора», т. е. трудно формализуемых объектов, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейских терминов (звучащих одинаково, но имеющих разный смысл), осторожное применение уже готового математического аппарата к изучению явлений и процессов (предпочтителен путь «от задачи к методу», а не наоборот) и ряд других.

Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Выбранная мною тема является актуальной в современной математике и ее приложениях. В современном научном подходе в исследовании естественных, технических и социально-экономических объектов возрастает значение математического моделирования происходящих в них процессов. Натурное изучение поведения объектов и систем в таких режимах и условиях невозможно либо затруднительно, что вынуждает применять методы математического моделирования.

Цель данной курсовой работы это - научиться использовать методы математического моделирования для исследования различных природных социальных процессов.

Задачи поставленные для достижения цели:

n Изучить теоретические вопросы математического моделирования, классификация моделей.

ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно – объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Модель - материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, карта, блок-схема алгоритма, ноты и т.п.), которые упрощенно отображают самые существенные свойства объекта исследования.

Любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

В основе термина «модель» лежит латинское слово modulus - мера, образец. Модель – это заместитель реального объекта исследования. Модель всегда проще исследуемого объекта. При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства.

Но все элементы и связи в создаваемой модели и не следует учитывать. Нужно лишь выделить наиболее характерные, доминирующие составляющие, которые в подавляющей степени определяют основные свойства объекта исследования. В результате объект исследования заменяется некоторым упрощенным подобием, но обладающим характерными, главными свойствами, аналогичными свойствам объекта исследования. Появившийся вследствие проведенной подмены новый объект (или абстракция) принято называть моделью объекта исследования.

Для составления математических моделей можно использовать любые математические средства - дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в математическом моделировании математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

О большом значении математики для всех других наук (в том числе и моделирования) говорит следующий факт. Великий английский физик И.Ньютон (1643-1727 г.г.) в середине 17-го века познакомился с работами Рене Декарта и Пьера Гассенди. В этих работах утверждалось, что все строение мира может быть описано математическими формулами. Под влиянием этих трудов И.Ньютон стал усиленно изучать математику. Сделанный им вклад в физику и математику широко известен.

Математическое моделирование - метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом.

Для математического моделирования характерно то, что процессы функционирования объекта записывают в виде математических соотношений (алгебраические, интегральные), записывают в виде логических условий.

Дифференциальные уравнения являются одним из основных средств составления математических моделей, наиболее широко применяемых при решении математических задач. При исследовании физических процессов, решении различных прикладных задач, как правило, не удается непосредственно найти законы, которые связывают величины, характеризующие исследуемые явления. Обычно легче устанавливаются зависимости между теми же величинами и их производными или дифференциалами. Соотношения такого рода и называются дифференциальными уравнениями. Возможности и правила составления дифференциальных уравнений определяются знаниями законов той области науки, с которой связана природа изучаемой задачи. Так, например, в механике могут использоваться законы Ньютона, в теории скоростей химических реакций – закон действия масс и т.д. Однако на практике часто встречаются случаи, когда законы, которые могли бы позволить составить дифференциальное уравнение, неизвестны. Тогда прибегают к различным упрощающим предположениям, касающимся протекания процесса при малых изменениях параметров-переменных. К дифференциальным уравнениям в таком случае приводит предельный переход. Вопрос соответствия математической модели и реального явления решается на основе анализа результатов, опытов и сравнения их с поведением решения полученного дифференциального уравнения

Лекция № 1

Введение. Понятие математических моделей и методов

Раздел 1. Введение

2. Методы построения математических моделей. Понятие о системном подходе. 1

3. Основные понятия математического моделирования экономических систем.. 4

4. Методы аналитического, имитационного и натурного моделирования. 5

Контрольные вопросы.. 6

1. Содержание, цели и задачи дисциплины «Методы моделирования»

Настоящая дисциплина посвящена изучению методов моделирования и практическому применению полученных знаний. Целью дисциплины является обучение студентов общим вопросам теории моделирования, методам построения математических моделей и формального описания процессов и объектов, применению математических моделей для проведения вычислительных экспериментов и решения оптимизационных задач, с использованием современных вычислительных средств.

В задачи дисциплины входит:

Ознакомить студентов с основными понятиями теории математического моделирования, теории систем, теории подобия, теории планирования эксперимента и обработки экспериментальных данных, используемых для построения математических моделей,

Дать студентам навыки в области постановки задачи моделирования, математического описания объектов /процессов/, численных методов реализации математических моделей на ЭВМ и решения оптимизационных задач.

В результате изучения дисциплины студент должен освоить методы математического моделирования процессов и объектов от постановки задачи до реализации математических моделей на ЭВМ и оформления результатов исследования моделей.

Курс дисциплины рассчитан на 12 лекций и 12 практических работ. В результате изучения дисциплины студент должен освоить методы математического моделирования от постановки задачи до реализации математических моделей на ЭВМ

2. Методы построения математических моделей. Понятие о системном подходе

5. Решение задачи.

Последовательное использование методов исследования операций и их реализация на современной информационно-вычислительной технике позволяет преодолеть субъективизм, исключить так называемые волевые решения, основанные не на строгом и точном учете объективных обстоятельств, а на случайных эмоциях и личной заинтересованности руководителей различных уровней, которые к тому же не могут согласовать эти свои волевые решения.

Системный анализ позволяет учесть и использовать в управлении всю имеющуюся информацию об управляемом объекте, согласовать принимаемые решения с точки зрения объективного, а не субъективного, критерия эффективности. Экономить на вычислениях при управлении то же самое, что экономить на прицеливании при выстрелах. Однако ЭВМ не только позволяет учесть всю информацию, но и избавляет управленца от ненужной ему информации, а всю нужную пускает в обход человека, представляя ему только самую обобщенную информацию, квинтэссенцию. Системный подход в экономике эффективен и сам по себе, без использования ЭВМ, как метод исследования, при этом он не изменяет ранее открытых экономических законов, а только учит, как их лучше использовать.

4. Методы аналитического, имитационного и натурного моделирования

Моделирование представляет собой мощный метод научного познания, при использовании которого исследуемый объект заменяется более простым объектом, называемым моделью. Основными разновидностями процесса моделирования можно считать два его вида - математическое и физическое моделирование. При физическом (натурном) моделировании исследуемая система заменяется соответствующей ей другой материальной системой, которая воспроизводит свойства изучаемой системы с сохранением их физической природы. Примером этого вида моделирования может служить пилотная сеть, с помощью которой изучается принципиальная возможность построения сети на основе тех или иных компьютеров, коммуникационных устройств, операционных систем и приложений.

Возможности физического моделирования довольно ограничены. Оно позволяет решать отдельные задачи при задании небольшого количества сочетаний исследуемых параметров системы. Действительно, при натурном моделировании вычислительной сети практически невозможно проверить ее работу для вариантов с использованием различных типов коммуникационных устройств - маршрутизаторов, коммутаторов и т. п. Проверка на практике около десятка разных типов маршрутизатров связана не только с большими усилиями и временными затратами, но и с немалыми материальными затратами.

Но даже и в тех случаях, когда при оптимизации сети изменяются не типы устройств и операционных систем, а только их параметры, проведение экспериментов в реальном масштабе времени для огромного количества всевозможных сочетаний этих параметров практичеки невозможно за обозримое время. Даже простое изменение максимального размера пакета в каком-либо протоколе требует переконфигурирования операционной системы в сотнях компьютеров сети, что требует от администратора сети проведения очень большой работы.

Поэтому, при оптимизации сетей во многих случаях предпочтительным оказывается использование математического моделирования. Математическая модель представляет собой совокупность соотношений (формул, уравнений, неравенств, логических условий), определяющих процесс изменения состояния системы в зависимости от ее параметров, входных сигналов, начальных условий и времени.

Особым классом математических моделей являются имитационные модели. Такие модели представляют собой компьютерную программу, которая шаг за шагом воспроизводит события, происходящие в реальной системе. Применительно к вычислительным сетям их имитационные модели воспроизводят процессы генерации сообщений приложениями, разбиение сообщений на пакеты и кадры определенных протоколов, задержки, связанные с обработкой сообщений, пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т. д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования.

Преимуществом имитационных моделей является возможность подмены процесса смены событий в исследуемой системе в реальном масштабе времени на ускоренный процесс смены событий в темпе работы программы. В результате за несколько минут можно воспроизвести работу сети в течение нескольких дней, что дает возможность оценить работу сети в широком диапазоне варьируемых параметров.

Результатом работы имитационной модели являются собранные в ходе наблюдения за протекающими событиями статистические данные о наиболее важных характеристиках сети: временах реакции, коэффициентах использования каналов и узлов, вероятности потерь пакетов и т. п.

Существуют специальные языки имитационного моделирования, которые облегчают процесс создания программной модели по сравнению с использованием универсальных языков программирования. Примерами языков имитационного моделирования могут служить такие языки, как SIMULA, GPSS, SIMDIS.

Существуют также системы имитационного моделирования, которые ориентируются на узкий класс изучаемых систем и позволяют строить модели без программирования.

Контрольные вопросы

Сформулируйте определение процесса моделирования. Что такое модель? Свойства моделирования. Сформулируйте основные этапы построения модели классическим методом. Сформулируйте основные этапы построения модели при системном подходе. Назовите функции моделей. Каковы этапы процесса решения экономических задач? Основные разновидности процесса моделирования.