Я уже писала про такую красивую штуку, как гиперболоид вращения. Давно хотела сделать мастер-класс по ним для детей, чтобы показать вживую, как они устроены, что состоят из прямых элементов, а выглядят вогнутыми.
Можно делать окружности, размечать, хорошим клеем приклеивать на какой то жесткий стержень. Можно, но требует старательности и аккуратности.
(В Икее всякие оформительские ленты продаются в картонных больших катушках – можно для демонстации использовать их, но у меня в доме не оказалось такой нужной вещи, поэтому пришлось придумывать)

А тут мне в голову пришла идея как это сделать быстро и довольно легко.
Нужно для основы взять тонкую бобину скотча. Обычного, строительного.
Точнее – две.


Берем два бобины строительного скотча и размечаем их на одинаковое количество частей. Любое. 12 размечать просто и меньше делать нет смысла. Но можно сделать и 16 и 20 делений, будет только симпатичнее. Количество делений на двух бобинах должно быть одинаковым (бобины по размерам могут быть разные).

Теперь нужно соединить их в жесткую систему. Для этого используем палочки (можно шашлычные, у меня тут спицы – в спицах плюс оба заточенных конца, но это тоже не проблема, просто облегчение процесса).
Вставляем в две спицы друг на против друга и соединяем на них бобины. Поворачиваем на четверть оборота. Вставляем вторую пару спиц так, чтобы они были наклонены в другую сторону и тоже в четверть оборота. Словами трудно объяснить, и в принципе можно ставить их как угодно. И сдвиг может быть не на четверть оборота а больше (меньше хуже – почти не будет заметен изгиб). Но для простоты и крепости наверняка – вот так:

Теперь берем большую иголку и прочную нитку и начинаем добавлять отсутствующие палочки. Скотч легко протыкается иголкой близко от края. Не стоит пытаться проткнуть толщу скотча. Если хочется сделать не одинаковый с двух сторон гиперболоид – то нужно изначально брать разные катушки или одну взять использованную до 3-4 мм скотча. Тут главное соблюдать соединяемые точки, чтобы они наклонялись одинаково (у меня – на четверть поворота)
Сначала в одну сторону

Потом в другую

Бусинки для того чтобы нитка не проскальзывала вниз. Но можно закрепить аккуратнее и без выступов. Бусинки проще будут детям. Главное чтобы они все в одной стороны оказались и гиперболоид мог стоять.
Сбоку отлично видна изгибающаяся как талия поверхность.

Можно сделать гиперболоид из прочных палок. Это будет ближе к реальности. Но на нем плохо получается повернуть конструкцию – и плохо виден этот изгиб.

Я использовала шпажки – и одну бобину протыкала насквозь, чтобы не втыкать тупым концом.

Далее поворачиваем (скручиваем) эту конструкцию насколько получится. Скотч держит крепко, скручивается увы мало. Возможно нужны более тонкие палочки или более тонкий скотч, чтобы так хорошо не держал – для большей похожести на настоящий гиперболоид

И снова сложный период – вставить палочки в другом направлении. Проследить, чтобы смещение было одинаковым. При вставке держать крепко обе бобины, чтобы изгибалась палочка, а не вся конструкция (а то распадется). Проще сначала вставлять несколько палочек, потом их закреплять.

На таком гиперболоиде (из палочек) хоть и не видно изгиба – зато можно увидеть что эта конструкци очень прочная. Она может выдерживать вес на порядок больше своего собственного. И это еще был не предел по весу, можно было еще книжек навалить:)

Практического применения такой штуке, кроме демонстрации конструкции и эпатажного хранения книжек, я пока не придумала. давайте идеи!

вокруг той оси, которая ее пересекает (вокруг действительной оси).

Для того, чтобы перейти от уравнения линии (43) к уравнению поверхности вращения, заменимх на
, получим уравнение двуполостного гиперболоида вращения

.

В результате сжатия этой поверхности получается поверхность, задаваемая уравнением

. (44)

Поверхность, которая в некоторой декартовой прямоугольной системе координат имеет уравнение вида (44), называется двуполостным гиперболоидом. Двум ветвям гиперболы здесь соответствуют две несвязанные между собой части («полости») поверхности, в то время как при построении однополостного гиперболоида вращения каждая ветвь гиперболы описывает всю поверхность (рис. 60).

Асимптотический конус для двуполостного гиперболоида определяется так же, как и для однополостного (рис. 61).

Рассмотрим теперь пересечения двуполостного гиперболоида (44) с плоскостями, параллельными координатным.

Плоскость z = h при |h | < c пересекает поверхность (44) по мнимым эллипсам, при |h | > c по вещественным. Если а = b , то эти эллипсы являются окружностями, а гиперболоид – есть гиперболоид вращения. При |h | = c получаем

,

т. е. пару сопряженных прямых с одной вещественной точкой (0; 0; с ) (или (0; 0; –с ) соответственно).

Плоскости x = α и y = β пересекают гиперболоид (44) по гиперболам

и
.

8. эллиптический параболоид

При вращении параболы x 2 = 2pz вокруг ее оси симметрии получим поверхность с уравнением

x 2 + y 2 = 2pz ,

называемуюпараболоидом вращения . Сжатие к плоскости у = 0 переводит параболоид вращения в поверхность с уравнением

. (45)

Поверхность, которая имеет такое уравнение в некоторой декартовой прямоугольной системе координат, называется эллиптическим параболоидом.

Внешний вид эллиптического параболоида ясен из способа его построения. Он весь расположен по одну сторону от плоскости z = 0, в полупространстве z > 0 (рис. 62). Сечения плоскостями z = h , h > 0 имеют уравнение:

и являются эллипсами.

Сечения эллиптического параболоида (45) плоскостями у = 0 и х = 0 являются параболами

x 2 = 2a 2 z , y = 0; (46)

y 2 = 2b 2 z , x = 0. (47)

Эти параболы называют главными параболами эллиптического параболоида, при этом параболу (46) условно назовем неподвижной , а параболу (47) – подвижной .

Можно дать следующее очень наглядное построение эллиптического параболоида посредством скольжения одной параболы вдоль другой (система координат предполагается прямоугольной).

Возьмем сечение параболоида (45) плоскостью x = α, получим в этой плоскости, содержащей систему координат O 0 e 2 e 3 , где O 0 = (α, 0, 0), кривую, уравнение которой будет

, x = α

y 2 = 2b 2 (z – γ), x = α, (48)

где
.

Перейдем в плоскости x = α от системы координат O e 2 e 3 к системе координат O e 2 e 3 , где O ′ = (α, 0, γ) есть точка пересечения плоскости x = α с неподвижной параболой x 2 = 2a 2 z , y = 0.

Перенеся начало координат системы O 0 e 2 e 3 в точку O ′, произвели следующее преобразование координат:

y = y ′, z = z ′ + γ.

В результате этого преобразования уравнение (48) получает вид:

y ′ 2 = 2pz ′, x = α.

Кривая (48) – это та же «подвижная» парабола, но перенесенная параллельно себе в плоскость x = α. Этот перенос можно осуществить следующим образом. Вершина подвижной параболы скользит по неподвижной параболе из точки О в точку O ′, а сама парабола при этом перемещается, как твердое тело, оставаясь все время в плоскости, параллельной плоскости yOz .

Этот результат можно сформулировать в виде следующего утверждения.

Эллиптический параболоид есть поверхность, описываемая при движении одной («подвижной») параболы (47) вдоль другой, неподвижной (46), так, что вершина подвижной параболы скользит по неподвижной, а плоскость и ось подвижной параболы остаются все время параллельными самим себе, причем предполагается, что обе параболы (подвижная и неподвижная) обращены вогнутостью в одну и ту же сторону (а именно в положительную сторону оси Oz ).

Заметим, что эллиптический параболоид прямолинейных образующих не имеет. Действительно, прямая, параллельная плоскости xOy , может пересекать лишь сечение параболоида некоторой плоскостью z = h , а это сечение, как уже было отмечено, представляет собой эллипс. И значит, у прямой не более двух общих точек с параболоидом.

Если же прямая не параллельна плоскости xOy , то ее полупрямая лежит в полупространстве z < 0, где нет ни одной точки параболоида. Таким образом, нет прямой, которая всеми своими точками лежала бы на эллиптическом параболоиде.

9. гиперболический параболоид

По аналогии с уравнением (45) можем записать уравнение

. (49)

Поверхность, которая имеет в некоторой системе координат уравнение вида (49) назовем гиперболическим параболоидом .

Исследуем внешний вид гиперболического параболоида с помощью сечений (рис. 63). Сечение плоскостью z = h представляет собой гиперболу, которая в этой плоскости имеет уравнение:

или
.

Для больших значений h полуоси гиперболы
и
велики и уменьшаются с уменьшениемh . При этом ось гиперболы, которая ее пересекает, параллельна вектору e 1 .

При h = 0 гипербола вырождается в пару пересекающихся прямых

=>

,
.

Если h < 0, то ось гиперболы, которая ее пересекает, параллельна вектору e 2 . Полуоси растут с увеличением |h |. Отношение полуосей для всех гипербол при одном знаке h одно и то же. Поэтому, если мы нарисуем все сечения гиперболического параболоида на одной и той же плоскости, то получим семейство всех гипербол, имеющих в качестве асимптот пару пересекающихся прямых с уравнениями

,
.

Сечения гиперболического параболоида с плоскостями у = 0 и х = 0 являются двумя «главными параболами»:

x 2 = 2a 2 z , y = 0 (50)

– неподвижная парабола, и

y 2 = –2b 2 z , x = 0 (51)

– подвижная парабола.

Эти параболы обращены вогнутостью в противоположные стороны: неподвижная – «вверх» (т.е. в положительном направлении оси Oz ), а подвижная – «вниз» (т.е. в отрицательном направлении оси Oz ). Сечение в плоскости x = α имеет в системе координат O 0 e 2 e 3 , где O 0 = (α, 0, 0), уравнение

, x = α

y 2 = –2b 2 (z z 0), x = α, (52)

где
.

После перенесения начала координат в точку O ′ = (α, 0, z 0), уравнение (51) примет вид:

y ′ 2 = –2b 2 z ′, x = α,

где y = y ′, z = z ′ + z 0 . Последнее уравнение показывает, что кривая (52) – это та же подвижная парабола (51), только сдвинутая параллельно себе при скольжении ее вершины вдоль неподвижной параболы из точки О в O ′.

Отсюда вытекает следующее утверждение. Гиперболический параболоид, заданный (в прямоугольной системе координат) уравнением (49) есть поверхность, описываемая параболой y 2 = –2b 2 z , х = 0 при ее движении вдоль неподвижной параболы (50) так, что вершина подвижной параболы скользит по неподвижной параболе, а плоскость и ось подвижной параболы остаются все время параллельными себе самим, при этом обе параболы вогнутостью все время обращены в противоположные стороны: неподвижная – вогнутостью «вверх», т. е. в положительном направлении оси Oz , а подвижная – «вниз».

Из этого построения видно, что гиперболический параболоид имеет вид седла.

Гиперболический параболоид, как и однополостной гиперболоид, имеет два семейства прямолинейных образующих (рис. 64). Через каждую точку гиперболического параболоида проходят две прямые, которые всеми точками лежат на этой плоскости.

Найдем уравнения прямолинейных образующих. Перепишем уравнение (49) в виде

.

Рассмотрим прямую, заданную как пересечение двух плоскостей

(53)

Очевидно, что любая точка, удовлетворяющая уравнениям (53), удовлетворяет и уравнению (49), которое является произведением уравнений (53)

.

А это значит, что каждая точка прямой (53) принадлежит гиперболическому параболоиду (49).

Аналогично рассматривается прямая

Прямая (54) также всеми своими точками лежит на гиперболическом параболоиде.

однополосный гиперболоид x 2 /a 2 + y 2 /b 2 - z 2 /c 2 =1 a>0,b>0,c>0; Пересек. координатные осиплоскостями x=0,y=0,z=0 по гиперболам y 2 /b 2 – z 2 /c 2 = 1 x 2 /a 2 – z 2 /c 2 =1 и эллипсоид x 2 /a 2 + y 2 /b 2 =1 соответственно. В сечениях однополосного гиперболоида плоскостями z=h всегда получаются эллипсы x 2 /a 2 + y 2 /b 2 = 1 + h 2 /c 2 с полуосями и .

Каноническое уравнение:

a = b - однополостный гиперболоид вращения вокруг оси Oz .

Горловой эллипс:

Асимптотический конус:

Сечения однополостного гиперболоида плоскостями - либо эллипс, либо парабола, либо гипербола, либо пара прямых (прямолинейных образующих).

Прямолинейные образующие

Через произвольную точку проходят две прямолинейные образующие с направляющими векторами и где:

В частности, если точку выбирать на горловом эллипсе то уравнениями прямолинейных образующих будут:

Двуполостный гиперболоид, его каноническое уравнение.

двуполостный гиперболоид x 2 /a 2 - y 2 /b 2 - z 2 /c 2 =1 a>0,b>0,c>0; x=h получается эллипс x 2 /a 2 + z 2 /b 2 = -1 + h 2 /c 2 с полуосями b*Корень(h 2 /a 2 -1) и с*Корень(h 2 /a 2 -1). При h=a получим в сечении точки (±а,0,0) – вершины двуполостного. В сечениях координ пл. z=0 и y=0 получим гиперболы x 2 /a 2 – y 2 /b 2 =1 и x 2 /a 2 – z 2 /c 2 =1 соответсвенно.

Каноническое уравнение:

a = b - двуполостный гиперболоид вращения вокруг оси Oz .

Асимптотический конус:

Сечения двуполостного гиперболоида плоскостями: либо эллипс, либо гипербола, либо парабола, либо точка, либо .

Эллиптический параболоид, его каноническое уравнение.

эллиптический параболоид x 2 /a 2 + y 2 /b 2 =2pz a>0,b>0;

Каноническое уравнение:

p = q - параболоид вращения вокруг оси Oz .

Сечения эллиптического параболоида плоскостями - либо эллипс, либо парабола, либо точка, либо .

Гиперболический параболоид, его каноническое уравнение. Семейства прямолинейных образующих гиперболического параболоида.

гиперболический параболоид x 2 /a 2 - y 2 /b 2 =2pz a>0,b>0;

Каноническое уравнение:

Сечения гиперболического параболоида плоскостями - либо гипербола, либо парабола, либо пара прямых (прямолинейных образующих).
Прямолинейные образующие

Через каждую точку проходят две прямолинейные образующие:


Поверхности вращения.

Поверхностью вращения называется поверхность, образованная вращением какой-либо плоской линии вокруг прямой, лежащей в плоскости этой линии.

Для вывода уравнения поверхности вращения необходимо выбрать систему координат. Чтобы уравнение поверхности вращения выглядело проще, ось вращения принимают за одну из координатных осей.

Пусть в координатной плоскости Oyz задана кривая L уравнением F(Y, Z)=0 (рис. 24). Вращаем кривую L вокруг оси Oy. Получим некоторую поверхность. Пусть M(x, y, z) - произвольная точка получившейся поверхности. Тогда
, но т.к. если взять точку M 1 с отрицательной аппликатой, то

Следовательно, имеем Y = y, и координаты точки M(x, y, z) удовлетворяют уравнению

Уравнение (62) и есть искомое уравнение поверхности вращения.

Т. о., чтобы получить уравнение поверхности, образованной вращением линии L, лежащей в плоскости Oyz, вокруг оси Oy, нужно в уравнении этой линии заменить z на

Аналогичные правила будут иметь место и по отношению к уравнениям поверхностей, полученных вращением плоских линий вокруг других координатных осей.

Цилиндры.

цилиндры второго порядка: эллиптический цилиндр x 2 /a 2 + y 2 /b 2 = 1 a>0, b>0; гиперболический цилиндр x 2 /a 2 - y 2 /b 2 = 1 a>0, b>0; параболический цилиндр y 2 =2px; пара пересекающихся плоскостей a2x2-b2y2=0 a>0 b>0 пара параллельных или совпадающих плоскостей x-a=0 a>=0; прямая x 2 +y 2 =0

Конусы.

конус второго порядка x 2 /a 2 - y 2 /b 2 - z 2 /c 2 =0 a>0,b>0,c>0; Пересекая пл. z=h -> x 2 /a 2 + y 2 /b 2 =1. В сечении плоскостями x=0 y=0 имеем пары пересек прямых y 2 /b 2 - z 2 /c 2 =0; x 2 /a 2 - z 2 /c 2 =0 соотв.

Линейные пространства


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

Определение. Однополостным гиперболоидом называется поверхность второго порядка, которая в некоторой прямоугольной системе координат определяется уравнением

Уравнение (3.32) называется каноническим уравнением однополостного гиперболоида.

Из (3.32) следует, что координатные плоскости являются осями симметрии, а начало координат  центром симметрии однополостного гиперболоида.

Установим вид поверхности, задаваемой уравнением (3.32). Рассмотрим линии пересечения однополостного гиперболоида плоскостями
. Уравнение проекции такой линии на плоскость
получается из уравнения (3.32), если положить в нем
. Имеем:

. (3.33)

Так как всегда
, то можно ввести обозначения

,
, (3.34)

с учетом которых соотношение (3.33) принимает вид

, (3.35)

т. е. проекция линии пересечения представляет собой эллипс с полуосями и. Наименьший из рассматриваемых эллипсов с полуосями
и
получается при сечении однополостного гиперболоида плоскостью
, т. е. координатной плоскостью
. Этот эллипс называетсягорловым .

С увеличением размеры эллипса неограниченно увеличиваются. Таким образом, однополостный гиперболоид представляет собой поверхность, состоящую из одной полости и подобную трубке, неограниченно расширяющейся в положительном и отрицательном направлениях по оси аппликат.

Рассмотрим сечения однополостного гиперболоида плоскостями
и
, параллельными координатным плоскостям
и
. Проекции этих сечений на соответствующие координатные плоскости являются линиями, задаваемыми уравнениями:

и
. (3.36)

Более подробно остановимся на сечении однополостного гиперболоида плоскостью, параллельной координатной плоскости
.

Если
, то в проекции на плоскость
получается пара вещественных пересекающихся прямых, определяемых уравнениями
и проходящих через начало координат.

Если
, то в проекции имеем гиперболу с фокусами на оси
(
) или
(
), причем полуоси этих гипербол увеличивается с удалением от начала координат.

Аналогичная картина получается и при сечении плоскостями, параллельными плоскости
. В сечении однополостного гиперболоида координатными плоскостями
и
получаем гиперболы

и
. (3.37)

Величины ,,называются полуосями однополостного гиперболоида.

3.12. Двуполостный гиперболоид

Определение. Двуполостным гиперболоидом называется поверхность второго порядка, которая в некоторой прямоугольной системе координат задается уравнением

. (3.38)

Уравнение (3.38) называется каноническим уравнением двуполостного гиперболоида.

Из этого уравнения следует, что координатные плоскости являются его осями симметрии, а начало координат  его центром симметрии.

Рассмотрим сечение двуполостного гиперболоида, определяемого уравнением (3.38), плоскостями
. Уравнение проекции линии пересечения на плоскость
получается из (3.38), если в нем положить
. Уравнение этой проекции имеет вид

. (3.39)

Если
, то (3.39) является уравнением мнимого эллипса и точек пересечения двуполостного гиперболоида с плоскостью
нет, т. е. в слое между плоскостями
и
не содержится точек рассматриваемой поверхности. Если
, то линия (3.39) вырождается в точки, т. е. плоскости
касаются двуполостного гиперболоида в точках
и
. Если
, то
и можно ввести обозначения

,
. (3.40)

Тогда уравнение (3.39) принимает вид

, (3.41)

т. е. проекция на плоскость
линии пересечения двуполостного гиперболоида и плоскости
представляет собой эллипс с полуосями, которые определяются равенствами (3.40), поэтому и сама линия пересечения является эллипсом. При удалении от начала координат вдоль оси
происходит увеличение полуосей эллипса.

В силу симметрии относительно плоскости
рассматриваемая поверхность содержит две полости.

При сечении плоскостями
, параллельными
, получаются кривые, которые при проектировании на эту плоскость определяются уравнениями

. (3.42)

Кривые, задаваемые уравнениями (3.42), являются гиперболами, фокусы которых расположены на оси
, причем с увеличением абсолютной величиныувеличивается вещественная полуось гиперболы.

Аналогичные результаты получаются при сечении двуполостного гиперболоида плоскостями, параллельными координатной плоскости
.

Рассмотренные сечения позволяют изобразить двуполостный гиперболоид как поверхность, состоящую из двух отдельных «полостей», каждая из которых имеет вид выпуклой чаши.

Величины ,,называются полуосями двуполостного гиперболоида.

Образуется вращением гиперболы вокруг её оси.

Различают однополостный и двуполостный гиперболоиды вращения.

Однополостный (рис. 2-89) образуется при вращении гиперболы вокруг мнимой оси (рис-2.90). Поверхность однополостного гиперболоида может быть образована и вращением прямой линии вокруг скрещивающейся с ней оси (рис. 2-91).

Определитель однополостного гиперболоида S (l , i ^ П 1)

Определитель однополостного гиперболоида (образующая - прямая линия). Образующая и ось скрещивающееся прямые. Эту поверхность относят и к линейчатым поверхностям

S (l, i ^ П 1 , l ° i) (рис. 2-91).

Двуполостный гиперболоид вращения образуется при вращении гиперболы вокруг ее действительной оси.

Один из способов (рис. 2-92) построения однополостного гиперболоида: т.к. горизонтальные проекции всех образующих должны касаться проекции горловой окружности, то каждое последующее положение прямолинейной образующей можно создавать проведением касательных к проекции окружности горла.

Выдающийся русский инженер В.Г. Шухов (1921г) предложил использовать однополостный гиперболоид для строительства прочных и технологичных конструкций (радиомачт, водонапорных башен, маяков).

Алгоритм построения, если поверхность задана параллелями и расстоянием (l ) от экватора до горла (рис. 2-92):

1. Разбить горловую (А,В,С ...) и нижнюю (1,2,3 ,..) параллели на 12 равных частей;

2. Из точки 4 1 провести образующие так, чтобы они были касательными к горловой параллели (т.е. через В 1 и Е 1 ), на горизонтальной проекции верхней параллели получим точку Р 1 , которая определит положение верхней параллели на фронтальной проекции. Эти образующие и на П 2 пройдут через те же точки (4 2 , В 2 , Е 2 ).

3. Для остальных точек построение повторить.

Только три поверхности вращения второго порядка имеют в качестве образующей прямую линию. В зависимости от расположения этой прямой относительно оси, можно получить три вида линейчатых поверхностей вращения второго порядка:

1. цилиндр, если образующая параллельна оси вращения x 2 + y 2 = R 2 ;

2. конус, если образующая пересекает ось вращения k 2 (x 2 + y 2) – z 2 = 0;

3. однополостный гиперболоид вращения, если ось и образующая скрещиваются

(x 2 + y 2) / a 2 – z 2 / d 2 = 0