Основные положения квантовой химии.

1-ая идея квантовой химии: а) вещество дискретно ; б) энергия квантуется .

2-ая идея квантовой химии: корпускулярно-волновой дуализм.

3-я идея квантовой химии: вероятностный характер законов микромира.

1. Дискретность - вещество состоит из отдельных микрочастиц. Именно эти частицы изучает квантовая химия. Идею квантования энергии, основываясь на спектрах излучения нагретых тел, выдвинул Планк.

2. Корпускулярно-волновой дуализм . Микрочастицы в микромире обладают и свойствами частицы, и свойствами волны.

Впервые корпускулярно-волновой дуализм был предположен для света (электромагнитного излучения). С одной стороны свет, это электромагнитная волна и для него характерны такие свойства, как интерференция и дифракция, а с другой стороны при наблюдении явления фотоэффекта, было выдвинуто предположение, что свет это поток частиц - фотонов. Была измерена даже масса фотона. Энергия фотона равна mc 2 .

Электрон тоже обладает двойственной природой: с одной стороны это частица, обладающая определённой массой и скоростью, с другой стороны электрон может вести себя как волна. Для потока электронов были обнаружены свойства интерференции и дифракции.

Электронография - метод изучения строения вещества, основанный на волновых свойствах потока электрона.

Уравнение, связывающее корпускулярные и волновые свойства, это уравнение де Бройля.

Е = mc 2 ; E = hn = h ; mc 2 = h ; где l - длина волны, с - скорость света, m - масса фотона.

- уравнение де Бройля для световой волны.

Для электрона уравнение де Бройля имеет вид:

Где u - скорость электрона. Когда u ® ¥, l ® 0, l = , n ® ¥.

3. Вероятностный характер законов микромира.

В 1927 г. Гейзинберг выдвинул принцип неопределённости; согласно этому принципу невозможно точно определить местоположение частицы и её импульс в данный момент времени.

Где Dp x - погрешность импульса вдоль оси Х, Dx - погрешность координаты, - квант действия - константа.

Пусть Dp x ® 0, тогда Dx ® ¥, т. к. , и наоборот, если Dx ® 0,

Примечание. Эта неопределённость не связана с неточностью приборов, она является следствием самой природы электрона.

Следствия принципа неопределённости:

1. Движение электронов в атоме - это движение без траектории, поэтому понятие “орбита”, выдвинутая Бором, в настоящее время не принимается, т.е. можно говорить только с той или иной степенью вероятности о нахождении электрона на определенном расстоянии от ядра.

2. На основании принципа неопределенности можно объяснить, почему электрон не падает на ядро.

Законы движения микрочастиц в квантовой химии выражены уравнением Шредингера, который применил волновую функцию y, для описания движения электрона в 3-х мерном пространстве.

;

, где Ñ - оператор “набла”, y - волновая функция, Е - полная энергия, Е п - потенциальая энергия, (Е - Е п) - кинетичская энергия.

y 2 dV - вероятность нахождения электрона в элементарном обьёме dV.

Решение уравнения Шреденгера в полярной системе координат даёт 3 независимые величины, которые называются квантовыми числами электрона: n, l, m e . Вводят также m s - спиновое квантовое число, которое характеризует движение электрона вокруг своей оси.

Квантовые числа - прастранственные и энергитические характеристики электрона. Электроны в атоме образуют электронную оболочку, которая состоит из электронных слоёв, а электронные слои состоят из атомных орбиталей .

Атомная орбиталь - область наиболее вероятного нахождения электрона.

1).n - главное квантовое число, оно характеризует размер электронного облака, т. е. расстояние от ядра до наиболее плотной части этого облака. Электроны, имеющие облака одинакового размера, независимо от формы, составляют электронный слой оболочки атома или энергитический уровень.

n принимает значения 1;2;3;…;¥. n соответствует номеру периода.

2). ℓ - орбитальное квантовое число , оно характеризует форму электронного облака или энергетический подуровень. ℓ принимает значения от 0 до n - 1.

Электроны, характеризующиеся значениями орбитального квантового числа 0,1, 2 и 3, называют соответственно s-электронами,р-электронами, d-электронами и f-электронами. При данном значении главного квантового числа n наименьшей энергией обладают s-электроны, затем р-, d- и f-электроны.

3). m ℓ - магнитное квантовое число , оно характеризует ориентацию электрона в поле, которое создают другие электроны.

Магнитное квантовое число принимает значения 2ℓ + 1 (- ℓ, … 0, …+ ℓ).

подуровень m ℓ
s 1 (m = 1)
p -1, 0, +1 (m = 3)
d -2, -1, 0, +1, +2 (m = 5)
f -3, -2, -1, 0, +1, +2, +3 (m = 7)

Электронное облако определённого размера (с определённым значением n), определённой формы (с определённым значением ℓ), и определённым образом ориентированное в пространстве (с определённым значением m), называется электронной орбиталью и изображается в виде квантовой ячейки.

4). m s - спиновое число.

Спиновое квантовое число отражает наличие у электрона собственного момента движения. Проекция собственного момента количества движения электрона на избранное направление и называется спином.

m s = ± ½ , т. е. электроны могут вращаться по часовой или против часовой стрелки. На одной электронной орбите могут находиться два электрона с противоположно направленными спинами.

Квантовая химия зародилась примерно в середине 20-х годов XX столетия. Ее становление шло параллельно с развитием квантовой механики, служащей фундаментом для перспективной молодой науки. Весьма любопытным является тот факт, что основные приемы и методы квантовой химии, реализуемые в алгоритмах таких современных программ, как GAMESS или Gaussian , были разработаны за очень короткий промежуток времени -- около 10 лет. Столь резкий взлет объясняется уникальным стечением следующих обстоятельств. Во-первых, нуждался в интерпретации накопленный к тому моменту огромный экспериментальный материал: почему молекула водорода состоит из двух атомов, почему молекула воды треугольной формы, а все три атома диоксида углерода лежат на одной прямой, почему одни вещества проводники, а другие изоляторы (в частности, одна из аллотропных модификаций углерода -- графит). Тогда не существовало единой теории, способной объяснить столь широкий круг химических явлений. Во-вторых, в сотрудничестве с физикой химия стала превращаться в точную науку, перенимая ее математический аппарат.

Кратко перечислим основные достижения в данной области.

Начало исследованиям положила работа Вернера Гейзенберга 1926 года. Ученый провел квантовомеханический расчет атома гелия, показав возможность его существования в двух различных состояниях и объяснив, что отличие двух систем термов для пара- и ортогелия связано с тем, что паратермы соответствуют симметричным: а ортотермы- антисимметричным решениям волнового уравнения. Таким образом, им было введено понятие «квантовомеханического резонанса».

В 1927 году Вальтер Гейтлер и Фриц Лондон приступили к разработке квантовомеханической теории химической связи. Уже первые приближенные расчеты молекулы водорода показали:

  • 1. ковалентную (парноэлектронную двухцентровую) связь образуют два электрона с антипараллельными спинами, то есть пребывание двух электронов с антипараллельными спинами в поле двух ядер энергетически выгоднее, чем нахождение электрона в поле своего ядра;
  • 2. при возникновении ковалентной связи происходит увеличение электронной плотности между взаимодействующими атомами (приблизительно на 15-20 %), что приводит к уменьшению энергии системы и ее стабилизации;
  • 3. ковалентная связь направлена в сторону максимального перекрывания электронных облаков взаимодействующих атомов (критерий наибольшего перекрывания).

В 1928 году Лайнус Карл Полинг предложил теорию резонанса, а также выдвинул идею о гибридизации атомных орбиталей. Теория резонанса была основана на принципах квантовой механики, а также на работе Джилберта Ньютона Льюиса 1916 года, который теоретически доказал, что формирование химических связей сопровождается образованием общей пары электронов между атомами в молекуле. Теория резонанса очень точно описывала молекулы, обладающие простыми химическими связями (связями, образованными одной парой электронов), но совершенно не подходила для моделирования поведения молекул с более сложной структурой. Данная теория рассматривает обобществление электронов атомами как локализированную связь, при которой каждый атом сохраняет свою основную электронную конфигурацию. Поэтому взаимное отталкивание электронов в молекулах с кратными связями невозможно описать с ее точки зрения, поскольку в данном случае обобществленные электроны занимают значительно больший объем.

Работы В. Гейзенберга (расчет атома гелия), а также В. Гейтлера и Ф. Лондона (расчет молекулы водорода) послужили основой квантовой теории многоэлектронных систем. В период с 1928 по 1931 год, опираясь на их труды, а также данные Румера, Л. К. Полинг совместно с Джоном Кларком Слейтером разработал качественную химическую теорию -- метод электронных пар (более известный как метод валентных связей). Основная идея этого метода заключается в предположении, что при образовании молекулы атомы в значительной степени сохраняют свою электронную конфигурацию (электроны внутренних оболочек), а силы связывания между атомами обусловлены обменом электронов внешних оболочек в результате спаривания спинов. Также им было введено новое количественное понятие электроотрицательности в 1932 году. Его работы были отмечены рядом наград, в том числе первым присуждением медали Джилберта Ньютона Льюиса в 1951 году и Нобелевской премией в 1954 году.

Примерно в это же время Дуглас Рэйнер Хартри, развивая теорию многоэлектронных структур, предложил метод самосогласованного поля (1927 год) и применил его для расчета атомов и атомных спектров. В названном методе состояние отдельной частицы сложной системы (кристалла, раствора, молекулы и т. п.) определяется усредненным полем, создаваемым всеми остальными частицами и зависящим от состояния каждой частицы. Тем самым состояние системы согласуется с состояниями ее частей (атомов, ионов, электронов), с чем и связано название метода. В 1930 году Владимир Александрович Фок развил метод Хартри, использовав для многоэлектронной волновой функции представление в виде слейтеровского детерминанта (в соответствии с принципом Паули учитывалась перестановочная симметрия волновых функций электронов). Выход за рамки метода самосогласованного поля обычно связывают с использованием так называемого метода конфигурационного взаимодействия.

Метод конфигурационного взаимодействия был разработан Дж. К. Слейтером в конце 20-х годов как логическое продолжение метода самосогласованного поля, который имеет существенный недостаток -- им не учитывается коррелированное движение электронов. Игнорирование этого эффекта приводит к ситуации, когда вероятность нахождения двух электронов в одной области пространства не равна нулю, что невозможно в действительности. Среднее расстояние между электронами, таким образом, занижается, а это, в свою очередь, приводит к увеличению энергии межэлектронного отталкивания.

Учет электронной корреляции в методе конфигурационного взаимодействия достигается представлением полной волновой функции в виде линейной комбинации (суперпозиции) конечного числа слейтеровских детерминантов, отвечающих различным электронным конфигурациям. Здесь под определителями Слейтера следует понимать различные способы размещения электронов по всем орбиталям. То есть, в сущности, каждый отдельно взятый детерминант передает особенности волновой функции молекулы лишь в той мере, в какой кулоновское взаимодействие всех электронов можно приближенно рассматривать как взаимодействие электрона с усредненным полем (взаимная согласованность движения электронов не описывается одним конфигурационным состоянием). В заключение следует отметить, что метод позволяет описать систему в основном и возбужденном электронных состояниях.

В этот же период был разработан один из основополагающих методов квантовой химии -- метод молекулярных орбиталей. Его творцы: Фридрих Хунд, Роберт Сэндерсон Малликен, Джон Эдвард Леннард-Джонс и Эрих Арманд Артур Йозеф Хюккель.

В опубликованных на тот момент Эрвином Шрёдингером, Максом Борном и Вернером Гейзенбергом подробных математических выкладках по квантовой химии содержались формулы, которые можно было использовать для описания поведения электронов в атомах. Тем не менее, электронная структура молекул поддавалась анализу с очень большим трудом, и в 1927 году Р. С. Малликен, работая с Ф. Хундом в Гёттингенском университете в Германии, предположил, что атомы соединяются в молекулы в процессе, называемом образованием химических связей, таким образом, что их внешние электроны ассоциируются с молекулой в целом. Следовательно, внешние электроны молекулы, которые определяют многие из ее важных свойств, находятся на молекулярных орбиталях, а не на орбиталях отдельных атомов. Р. С. Малликен доказал, что молекулярные орбитали могут быть описаны с помощью точных математических формул, благодаря чему можно до значительных деталей предсказать физические и химические свойства вещества. В 1966 году Р. С. Малликену была присуждена Нобелевская премия по химии «за фундаментальную работу по химическим связям и электронной структуре молекул, проведенную с помощью метода молекулярных орбиталей». «Метод молекулярных орбиталей означает совершенно новое понимание природы химических связей, -- сказала Инга Фишер-Джалмар в своем вступительном слове от имени Шведской королевской академии наук. -- Существовавшие ранее идеи исходили из представления, что образование химических связей зависит от полного взаимодействия между атомами. Метод молекулярных орбиталей, напротив, опираясь, на положения квантовой механики, отталкивается от взаимодействия между всеми атомными ядрами и всеми электронами молекулы. Этот метод внес чрезвычайно важный вклад в понимание нами качественного аспекта образования химических связей и электронной структуры молекул».

Помимо Нобелевской премии, Р. С. Малликен был награжден Американским химическим обществом медалью Джилберта Ньютона Льюиса (1960), медалью Теодора Уильяма Ричардса (1960), наградой Петера Дебая по физической химии (1963) и медалью Уилларда Гиббса (1965). Он был членом американской Национальной академии наук, Американской ассоциации содействия развитию науки и Американской академии наук и искусств, а также иностранным членом Лондонского королевского общества. Малликену были присуждены почетные степени Колумбийского, Маркеттского, Кембриджского и Стокгольмского университетов.

Также нельзя не упомянуть о заслугах его коллеги Ф. Хунде, который сформулировал эмпирические правила, регулирующие порядок заполнения атомных орбиталей электронами. Ввёл в 1931 году представления о pi- и sigma-электронах и о pi- и sigma-связях в молекулах. Исследовал закономерности взаимодействия угловых моментов в двухатомных структурах.

Дальнейшее развитие метода молекулярных орбиталей прослеживается в работах Дж. Э. Леннарда-Джонса, который положил начало широкому применению названного метода как линейной комбинации атомных орбиталей к расчетам органических соединений с сопряженными связями (1937 год) и к системам с sigma-связями (1949 год), а также развивал квантово-химические методы применительно к неорганическим соединениям.

Наряду с Дж. Э. Леннардом-Джонсом Э. Хюккель занимался адаптацией метода молекулярных орбиталей к непредельным в частности ароматическим соединениям: построил квантовую теорию двойных связей (1930 год), а, начиная с 1930 года, опубликовал серию работ, в которых предложил объяснение устойчивости ароматических соединений в рамках этого метода (правило Хюккеля). Согласно этому правилу, плоские моноциклические сопряжённые системы с числом pi-электронов 4n+2 будут ароматическими, тогда как такие же системы с числом электронов 4n будут неароматическими. Правило Хюккеля применимо как к заряженным, так и к нейтральным системам. Правило Хюккеля позволяет предсказать, будет моноциклическая система ароматической или нет.

Еще одной жемчужиной квантовой химии стала теория кристаллического поля, предложенная немецким ученым Хансом Альбрехтом Бете в 1929 году (его работы были посвящены спектроскопии ионов) и разрабатывавшаяся в последующие годы американским ученым Джоном Хасбруком Ван Флеком. Своё применение в химии она получила в 1950-е годы как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена. Согласно теории кристаллического поля, связь между ядром комплекса и лигандами ионная или ион-дипольная. При этом комплексообразователь рассматривается с детальным учетом его электронной структуры, а лиганды -- как бесструктурные заряженные точки, создающие электростатическое поле. Теория поля лигандов, как было сказано, являет собой продолжение теории кристаллического поля. В ней электростатическое взаимодействие дополнено идеей перекрывания орбиталей. Следует отметить, что обе теории не применимы для систем, в которых перекрывание существенно.

Но никто из перечисленных выше ученых не использовал название «квантовая химия» -- впервые оно появилось в качестве заглавия монографии великого немецкого (позднее советского) ученого Ганса Густавовича Гельмана.

Одна из наиболее существенных трудностей при рассмотрении химических объектов с точки зрения квантовой механики заключается в том, что решения уравнения Шредингера являют собой весьма замысловатую форму (точнее, форму интегральную). С учетом того, что самыми прогрессивными на тот момент вычислительными средствами были арифмометры (именно поэтому настоящий раздел носит такое название), не трудно представить какой сложной задачей было получение адекватного решения: в ходе приближенных вычислений неизбежно накапливались погрешности, соизмеримые с искомой величиной, и работа теряла всякий смысл. Ганс Гельман заметил, что некоторые измеряемые тепловые характеристики реакции имеют интегральную форму. Подобные интегралы встречаются в выражениях, характеризующих спектральные характеристики атомов и молекул. То есть для интересующих нас интегралов можно составить уравнения, в которые входят параметры, взятые из эксперимента. Таким образом, без преувеличения можно сказать, что Ганс Гельман первым разработал полуэмпирический метод решения квантово-химических задач.

Еще одной из многочисленных заслуг ученого является оценка влияния так называемого «остова» (внутренних электронов атома) на энергию системы посредством особой потенциальной функции. Гельман показал, что химические свойства атома определяются соотношением чисел внешних и внутренних электронов в нем. До него «остов» вовсе не принимали во внимание.

Также Гельман ввел понятие «валентного состояния», в которое переходят атомы при сближении, чем поставил теорию химических реакций на количественную основу.

Гельманом была раскрыта роль принципа Паули во взаимодействии атомов: именно этим запретом обусловлена сила отталкивания, возникающая при перекрывании оболочек взаимодействующих атомов.

Главным вкладом исследователя в квантовую химию (помимо монографии) нужно признать теорему, носящую его (и Фейнмана) имя.

Квантовая механика позволяет вычислить полную энергию молекул как функцию длин связей, а также валентных и диэдральных углов. Вторая производная энергии по внутренней координате дает кривизну (выпуклость или вогнутость поверхности потенциальной энергии) и силовые постоянные. Теорема Гельмана-Фейнмана позволяет вычислить эти параметры. Теорема представляет еще и философский интерес, поскольку через нее вводится понятие силы в квантовую механику, и, тем самым, восстанавливается связь между классическими и квантовыми величинами.

9.4.1. Основные представления и методы квантовой химии.

Историческое значение квантовой механики определяется еще и тем, что она радикально преобразовала систему химического знания, подняла эту систему с уровня эмпирического и полуэмпирического знания, какой она по существу была со времен Лавуазье, на теоретический уровень. Квантовая механика привела к созданию квантовой химии и таким образом выступила в качестве теоретического базиса современной химической картины мира.

Как известно, основные понятия и объекты химии – атом и молекула. Атом - наименьшая частица химического элемента, являющаяся носителем его свойств. Химический элемент, в свою очередь, можно определить как вид атомов, характеризующийся определенной совокупностью свойств и обозначаемый определенным символом. Соединения атомов с помощью химических связей образуют молекулы. Молекулы - наименьшая частица вещества, обладающая его основными химическими свойствами.

Атомов известно лишь немногим более 100 видов, т.е. столько, сколько химических элементов. А вот молекул – свыше 18 млн. Столь богатое разнообразие определяется двумя обстоятельствами. Во-первых, тем, что почти все виды атомов, взаимодействуя друг с другом, способны объединяться в молекулы. И, во-вторых, тем, что молекулы могут содержать разное число атомов. Так, молекулы благородных газов одноатомны, молекулы таких веществ, как водород, азот, – двухатомны, воды – трехатомны и т.д. Молекулы наиболее сложных веществ – высших белков и нуклеиновых кислот – построены из такого количества атомов, которое измеряется сотнями тысяч (макромолекулы). Атомы в молекуле связаны между собой в определенной последовательности и определенным образом расположены в пространстве. Важно и то, что такие последовательности и пространственные расположения при одном и том же составе атомов могут быть различными. Поэтому при сравнительно небольшом числе химических элементов число различных химических веществ очень велико.

Квантовая химия – это область современной химии, в которой принципы и понятия квантовой механики и статистической физики применяются к изучению атомов, молекул и других химических объектов и процессов. Основной метод квантовой химии состоит в применении уравнения Шрёдингера для атомов и молекул. При этом учитываются все виды энергии составляющих систему частиц (кинетическая, энергия взаимодействия атомных ядер и электронов, энергия взаимодействия с внешними полями). Решение такого уравнения определяет значения волновых функций ψ, дает знание полной энергии системы и ее состояний, их зависимость от пространственных координат, спиновых характеристик частиц и др. Все это позволяет в принципе определить количественные характеристики системы (атома, молекулы и др.). Вместе с тем математическая сторона здесь достаточно сложная, поэтому точные решения возможны лишь для простейшей системы - атома водорода. Для теоретического описания более сложных систем применяются приближенные методы и трудоемкие вычисления. Применение ЭВМ позволило получать расчеты атомных, молекулярных систем, систем активированных комплексов и др. с точностью, вполне достаточной для предсказания важнейших их характеристик - спектров, геометрического строения, физических и химических свойств. В последние десятилетия квантовые подходы в химии позволили решить еще более сложные задачи, прежде всего связанные с анализом систем, изменяющихся во времени (в ходе химических реакций, распада, поглощения и испускания света и др.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Д оклад по дисциплине КСЕ на тему:

« Квантовая химия »

Кв а нтовая х и мия - область теоретической химии, в которой вопросы строения и реакционной способности химических соединений, химические связи рассматриваются на основе представлений и методов квантовой механики . Квантовая механика в принципе позволяет рассчитывать свойства атомно-молекулярных систем, исходя только из Шрёдингера уравнения , Паули принципа и универсальных физических постоянных. Различные физические характеристики молекулы (энергия, электрические и магнитные дипольные моменты и др.) могут быть получены как собственные значения операторов соответствующих величин, если известен точный вид волновой функции. Однако для систем, содержащих 2 и более электронов, пока не удалось получить точного аналитического решения уравнения Шрёдингера. Если же использовать функции с очень большим числом переменных, то можно получить приближённое решение, по числовой точности аппроксимирующее сколь угодно точно идеальное решение, Тем не менее, несмотря на использование современных ЭВМ с быстродействием порядка сотен тысяч и даже миллионов операций в секунду, подобные «прямые» решения уравнения Шрёдингера пока что осуществлены только для систем с несколькими электронами, например молекул H 2 и LiH. Поскольку химиков интересуют системы с десятками и сотнями электронов, приходится идти на упрощения. Поэтому для описания таких систем были выдвинуты различные приближённые квантовохимические теории, более или менее удовлетворительные в зависимости от характера рассматриваемых задач: теория валентных связей, заложенная в 1927 В. Гейтлером и Ф. Лондоном в Германии, а в начале 30-х гг. развитая Дж. Слейтером и Л. Полингом в США; кристаллического поля теория, предложенная немецким учёным Х. Бете в 1929 и в последующие годы разрабатывавшаяся американским учёным Ван Флеком (своё применение в химии она получила в 1950-е гг. как теория поля лигандов благодаря исследованиям английского учёного Л. Оргела и датских учёных К. Йоргенсена и К. Бальхаузена). В конце 1920-х гг. появилась теория молекулярных орбиталей (МО), разработанная Дж. Леннардом-Джонсом (Великобритания), Р. Малликеном (США), Ф. Хундом (Германия) и развивавшаяся затем многими др. исследователями. Долгое время эти приближённые теории сосуществовали и даже дополняли друг друга. Однако теперь, когда достигнуты огромные успехи в синтезе молекул и определении их структуры, а вычислительная техника получила широкое развитие, симпатии исследователей склонились в сторону теории МО. Это объясняется тем, что только теория МО выработала универсальный язык, в принципе пригодный для описания любых молекул, строение которых отличается очень большим разнообразием и сложностью. Теория МО включает наиболее общие физические представления об электронном строении молекул и (что не менее важно) использует математический аппарат, наиболее пригодный для проведения количественных расчётов на ЭВМ.

Теория МО исходит из того, что каждый электрон молекулы находится в поле всех ее атомных ядер и остальных электронов. Теория атомных орбиталей (АО), описывающая электронное строение атомов, включается в теорию МО как частный случай, когда в системе имеется только одно атомное ядро. Далее, теория МО рассматривает все химические связи как многоцентровые (по числу атомных ядер в молекуле) и тем самым полностью делокализованные. С этой точки зрения всякого рода преимущественная локализация электронной плотности около определённой части атомных ядер есть приближение, обоснованность которого должна быть выяснена в каждом конкретном случае. Представления В. Косселя о возникновении в химических соединениях обособленных ионов (изоэлектронных атомам благородных газов) или воззрения Дж. Льюиса (США) об образовании двухцентровых двухэлектронных химических связей (выражаемых символикой валентного штриха) естественно включаются в теорию МО как некоторые частные случаи.

В основе теории МО лежит одноэлектронное приближение, при котором каждый электрон считается квазинезависимой частицей и описывается своей волновой функцией. Обычно вводится и др. приближение -- одноэлектронные МО получаются как линейные комбинации АО (приближение ЛКАО -- МО).

Если принять указанные приближения, то, используя только универсальные физические постоянные и не вводя никаких экспериментальных данных (разве только равновесные межъядерные расстояния, причём в последнее время всё чаще обходятся и без них), можно проводить чисто теоретические расчёты (расчёты ab initio, лат. «от начала») по схеме метода самосогласованного поля (ССП; метода Хартри -- Фока). Такие расчёты ССП -- ЛКАО -- МО сейчас стали возможны уже для систем, содержащих несколько десятков электронов. Здесь основные трудности заключаются в том, что приходится вычислять громадное количество интегралов. Хотя подобные расчёты являются громоздкими и дорогостоящими, получающиеся результаты не всегда удовлетворительны, во всяком случае, с количественной стороны. Это объясняется тем, что, несмотря на различные усовершенствования схемы ССП (например, введение конфигурационного взаимодействия и др. способов учёта корреляции электронов), исследователи, в конечном счете, ограничены возможностями одноэлектронного приближения ЛКАО -- МО.

В связи с этим большое развитие получили полуэмпирические квантовохимические расчёты. Эти расчёты также восходят к уравнению Шрёдингера, но вместо того чтобы вычислять огромное количество (миллионы) интегралов, большую часть из них опускают (руководствуясь порядком их малости), а остальные упрощают. Потерю точности компенсируют соответствующей калибровкой параметров, которые берутся из эксперимента. Полуэмпирические расчёты пользуются большой популярностью, ибо оптимальным образом сочетают в себе простоту и точность в решении различных проблем.

Описанные выше расчёты нельзя непосредственно сравнивать с чисто теоретическими (неэмпирическими) расчётами, так как у них разные возможности, а отсюда и разные задачи. Ввиду специфики используемых параметров при полуэмпирическом подходе нельзя надеяться получить волновую функцию, удовлетворительно описывающую различные (а тем более все) одноэлектронные свойства. В этом состоит коренное отличие полуэмпирических расчётов от расчётов неэмпирических, которые могут, хотя бы в принципе, привести к универсальной волновой функции. Поэтому сила и привлекательность полуэмпирических расчётов заключаются не в получении количественной информации как таковой, а в возможности интерпретации получаемых результатов в терминах физико-химических концепций. Только такая интерпретация и приводит к действительному пониманию, так как без неё на основании расчёта можно лишь констатировать те или иные количественные характеристики явлений (которые надёжнее определить на опыте). Именно в этой специфической особенности полуэмпирических расчётов и заключается их непреходящая ценность, позволяющая им выдерживать конкуренцию с полными неэмпирическими расчётами, которые по мере развития вычислительной техники становятся всё более легко осуществимыми.

Что касается точности полуэмпирических квантовохимических расчётов, то она (как и при любом полуэмпирическом подходе) зависит скорее от умелой калибровки параметров, нежели от теоретической обоснованности расчётной схемы. Так, если выбирать параметры из оптических спектров каких-то молекул, а затем рассчитывать оптические спектры родственных соединений, то нетрудно получить великолепное согласие с экспериментом, но такой подход не имеет общей ценности. Поэтому основная проблема в полуэмпирических расчётах заключается не в том, чтобы вообще определить параметры, а в том, чтобы одну группу параметров (например, полученных из оптических спектров) суметь использовать для расчётов др. характеристик молекулы (например, термодинамических). Только тогда появляется уверенность, что работа ведётся с физически осмысленными величинами, имеющими некое общее значение и полезными для концепционного мышления.

Кроме количественных и полуколичественных расчётов, современная квантовая химия включает ещё большую группу результатов качественного рассмотрения. Зачастую удаётся получать весьма убедительную информацию о строении и свойствах молекул без всяких громоздких расчётов, используя различные фундаментальные концепции, основанные главным образом на рассмотрении симметрии.

Соображения симметрии играют важную роль в квантовой химии, так как позволяют контролировать физический смысл результатов приближённого рассмотрения многоэлектронных систем. Например, исходя из точечной группы симметрии молекулы, можно вполне однозначно решить вопрос об орбитальном вырождении электронных уровней независимо от выбора расчётного приближения. Знание степени орбитального вырождения часто уже достаточно для суждения о многих важных свойствах молекулы, таких как потенциалы ионизации, магнетизм, конфигурационная устойчивость и ряд других. Принцип сохранения орбитальной симметрии лежит в основе современного подхода к механизмам протекания согласованных химических реакций (правила Вудворда -- Гофмана). Указанный принцип может быть, в конечном счёте, выведен из общего топологического рассмотрения областей связывания и антисвязывания в молекуле.

Следует иметь в виду, что современная химия имеет дело с миллионами соединений и её научный фундамент не является монолитным. В одних случаях успех достигается уже при использовании чисто качественных представлений квантовой химии, в других -- весь её арсенал оказывается недостаточным. Поэтому, оценивая современное состояние квантовой химии, всегда можно привести много примеров, свидетельствующих как о силе, так и о слабости современной квантовохимической теории. Ясно лишь одно: если раньше уровень квантовохимических работ ещё мог определяться технической сложностью применённого расчётного аппарата, то теперь доступность ЭВМ выдвигает на первый план физико-химическую содержательность исследований. С точки зрения внутренних интересов квантовой химии, наибольшую ценность, вероятно, представляют попытки выйти за пределы одноэлектронного приближения. В то же время для утилитарных целей в различных областях химии одноэлектронное приближение таит ещё много неиспользованных возможностей.

Подобные документы

    Роль физической химии и хронология фундаментальных открытий. Экспериментальные основы квантовой механики. Корпускулярно-волновая природа излучения. Волны материи и простейшие полуклассические модели движений. Квантование энергии частицы и формула Бора.

    реферат , добавлен 28.01.2009

    Основные достоинства и недостатки теории валентных связей. Приближенные квантовохимические способы расчета волновых функций, энергетических уровней и свойств молекул. Метод молекулярных орбиталей Хюккеля. Связывающие и разрыхляющие молекулярные орбитали.

    презентация , добавлен 31.10.2013

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.

    презентация , добавлен 22.10.2013

    Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.

    лекция , добавлен 18.10.2013

    Вещества и их взаимные превращения являются предметом изучения химии. Химия – наука о веществах и законах, которым подчиняются их превращения. Задачи современной неорганической химии – изучение строения, свойств и химических реакций веществ и соединений.

    лекция , добавлен 26.02.2009

    Фуллериды металлов и их свойства. Полуэмпирические и неэмпирические методы квантовой химии. Молекулярное моделирование фуллеридов металлов. Эмпирические методы молекулярной механики. Особенность электронной структуры эндоэдральных металлофуллеренов.

    дипломная работа , добавлен 21.01.2016

    Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.

    реферат , добавлен 27.09.2008

    Основы квантовой механики атома. Соотношение де Бройля. Уравнение Шредингера. Ионная (гетерополярная) связь. Расчет энергии ионной связи. Теория ковалентной (гомеополярной) связи. Метод валентных связей. Метод молекулярных орбиталей (МО).

    курсовая работа , добавлен 17.02.2004

    Краткий обзор концептуальных направлений развития современной химии. Исследование структуры химических соединений. Эффективные и неэффективные столкновения реагирующих частиц. Химическая промышленность и важнейшие экологические проблемы современной химии.

    реферат , добавлен 27.08.2012

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.

КВАНТОВАЯ ХИМИЯ, раздел теоретической химии, в котором строение и свойства химических соединений, их взаимодействия и превращения в химических реакциях рассматриваются на основе представлений и методов квантовой механики, а также методов, разработанных на основе этих представлений. Квантовая химия широко использует также экспериментально установленные закономерности в свойствах и поведении химических соединений, в том числе закономерности классической теории химического строения. Квантовая химия позволяет установить электронную структуру молекулярных систем (прежде всего, распределение электронной плотности и его изменение во времени), равновесные свойства, такие как геометрическое строение, энергия диссоциации, потенциалы ионизации и сродство к электрону и многие другие. На основе энергетических свойств совместно с методами статистической термодинамики квантовая химия даёт возможность рассчитать термодинамические свойства веществ в газовой фазе, учесть изменение свойств атомов и молекул при воздействии внешних полей и оценить наиболее вероятные результаты химических превращений.

Историческая справка . Начало квантовой химии положили работы ряда исследователей, выполненные в период становления квантовой механики. В. Гейзенберг (1926) провёл квантово-механический расчёт основного состояния атома гелия. В. Гайтлер и Ф. Лондон (1927) дали квантово-механическую интерпретацию ковалентной связи на примере молекулы водорода; этот подход был развит Дж. Слэтером (1931) и Л. Полингом (1931) в виде метода валентных схем (валентных связей метода). В этот же период Ф. Хунд (1927-28), Р. Малликен (1927-28), Дж. Леннард-Джонс (1929) и Э. Хюккель (1930) заложили основы молекулярных орбиталей метода. Одновременно появились основополагающие работы Д. Хартри (1927), Дж. Слэтера (1930) и В. А. Фока (1930) по использованию концепции молекулярных орбиталей для квантово-химических расчётов молекул - так называемый метод самосогласованного поля (метод Хартри - Фока), а также работы Дж. Слэтера (1929-1930) по учёту конфигурационного взаимодействия. Последующее развитие квантовой химии было связано с именами многих выдающихся учёных, в том числе лауреатов Нобелевской премии Л. Полинга, Р. Хофмана, К. Фукуи, Дж. Попла, У. Кона.

Современное состояние. Для получения количественных данных о свойствах и превращениях химических соединений используется широкий спектр методов квантовой химии, получивших мощный импульс для своего развития благодаря развитию вычислительной техники и одновременно самих способствовавших её быстрому совершенствованию.

Основное уравнение, определяющее квантовое состояние атомов, молекул и более сложных систем, - временное Шрёдингера уравнение, решением которого при заданных начальных условиях является функция состояния системы, или волновая функция; знание волновой функции даёт возможность рассчитать все характеристики таких систем в любой момент времени. Большинство задач квантовой химии и по сей день связано, однако, с рассмотрением стационарных состояний, т. е. состояний, энергия которых и другие физические и физико-химические свойства не зависят от времени. В этом случае основным уравнением становится стационарное уравнение Шрёдингера, а комбинации его решений, как правило, используются и для нахождения волновых функций состояний, явно зависящих от времени. И стационарное, и временное уравнения Шрёдингера в общем случае зависят не только от пространственных переменных, но и от спинов составляющих систему частиц.

Поскольку подавляющее большинство задач квантовой химии аналитически точно не решаются, используют различные приближённые подходы, базирующиеся на вариационном методе и различных вариантах теории возмущений. Если при этом в качестве исходной информации о молекулярной системе используют только данные о числе электронов и ядер в системе, их зарядах и массах, то имеют дело с неэмпирическими методами, если же используется и дополнительная информация, базирующаяся на сравнении результатов расчётов с экспериментальными данными, то методы приобретают характер полуэмпирических.

Для молекул и молекулярных ионов исходным, как правило, является адиабатическое приближение: предполагая, что центр масс молекулы покоится, сначала рассматривают квантовые состояния подсистемы электронов, находящихся в потенциальном поле фиксированных в пространстве ядер, а затем решают задачу о поведении ядер в поле электронов, усреднённом по всем пространственным их расположениям. Исходной предпосылкой для введения такого приближения послужило существенное различие масс ядер и электронов, когда в рамках представлений классической теории скорости движения ядер и электронов отличаются друг от друга в десятки и сотни раз. Уравнение Шрёдингера для подсистемы электронов (электронное уравнение) и его решения (электронные волновые функции и значения электронной энергии) параметрически зависят от координат ядер, тогда как в уравнении Шрёдингера для ядер в качестве потенциала фигурирует электронная энергия.

В наиболее распространённом подходе следующим шагом является введение одноэлектронного приближения, согласно которому квантовое состояние каждого электрона в электронной подсистеме определяется отдельной волновой функцией (спин-орбиталью), зависящей от пространственных переменных и спина электрона, а также параметрически - от переменных ядер. Поскольку согласно принципу Паули волновая функция для подсистемы электронов должна быть антисимметричной по отношению к перестановкам индексов электронов, электронная волновая функция в этом приближении может быть записана в виде определителя, составленного из спин-орбиталей, - так называемого нормированного определителя (или детерминанта Слэтера). Спин-орбитали находят на основе вариационного принципа, который приводит к решению системы взаимосвязанных одноэлектронных уравнений, причём состояние каждого электрона определяется усреднённым полем всех остальных электронов. Эти уравнения носят название уравнений Хартри - Фока (или уравнений самосогласованного поля). Дальнейшие упрощения сводятся подчас к замене отдельных входящих в расчёт величин численными значениями, заимствуемыми из сравнения результатов расчётов с экспериментальными данными, т. е. переходят к полуэмпирическим методам.

В то же время решения уравнений Хартри - Фока используются и для построения более точных приближений, потребность в которых связана с тем, что квантовое состояние всей системы электронов определяется каждой конкретной конфигурацией их пространственного расположения, а не состояниями электронов в усреднённом поле остальных. Кулоновское отталкивание электронов друг от друга на малых расстояниях между ними не учитывается усреднённым полем. Другими словами, в рамках одноэлектронного приближения не учитывается электронная корреляция взаимного расположения электронов в пространстве. Для учёта электронной корреляции разработан ряд методов, из которых наиболее простой - метод конфигурационного взаимодействия: в исходном определителе Слэтера последовательно проводят замену одной, двух и т. д. орбиталей на орбитали, не вошедшие в исходный определитель, но полученные при решении уравнений Хартри - Фока, и получают функции, отвечающие определённым заполнениям орбиталей или электронным конфигурациям. Далее при необходимости эти функции преобразуют в функции, собственные для операторов спина и имеющие ту или иную симметрию (так называемые конфигурационные функции состояния), после чего составляют их линейную комбинацию и на основе вариационного принципа находят наилучшие коэффициенты перед этими функциями. Более сложный вариант метода конфигурационного взаимодействия, в котором как коэффициенты линейной комбинации, так и сами орбитали находят на основе вариационного принципа, носит название многоконфигурационного метода самосогласованного поля.

Набор конфигурационных функций состояния может быть использован и в рамках различных вариантов теории возмущений. В частности, наиболее широко применимы теория возмущений Мёллера - Плессета, в которой в качестве оператора Гамильтона «невозмущённой» задачи фигурирует сумма одноэлектронных операторов уравнений Хартри - Фока, и теория связанных кластеров, в которой используется некоторая техника объединения определителей Слэтера в группы - кластеры.

Широкое распространение получили различные варианты метода функционала плотности, начальные варианты которого были основаны на теореме Хоэнберга - Кона, согласно которой для основного состояния электронная энергия является функционалом только электронной плотности. Однако точный вид этого функционала неизвестен, поэтому были предложены многочисленные приближённые выражения, которые заменяют функционалы, зависящие от функций двух электронов, в выражении для энергии многоэлектронной системы на функционалы электронной плотности и её производных по пространственным переменным, что позволило учесть и корреляционную составляющую полной электронной энергии. Получающиеся при этом уравнения достаточно просты по своей структуре, что дало возможность, с одной стороны, иметь достаточно точные результаты, а с другой - распространить возможности расчётов на многоатомные молекулы, включающие сотни и тысячи атомов.

Во всех рассмотренных выше приближениях одноэлектронные функции записываются в виде разложений по некоторым конечным наборам заранее заданных функций (базисных функций). Определению при этом подлежат коэффициенты перед базисными функциями в таких разложениях.

Электронная энергия как функция пространственных переменных ядер фигурирует в качестве потенциала в ядерном уравнении Шрёдингера, т. е. уравнении, определяющем возможные квантовые состояния ядер молекулярной системы. Геометрически эта функция может быть представлена многомерной поверхностью, называемой поверхностью потенциальной энергии (или потенциальной поверхностью). Как правило, такую поверхность или её отдельные сечения по тем или иным переменным приближённо представляют в аналитическом виде. После отделения составляющей волновой функции, отвечающей вращению системы ядер как целого, решают ядерное волновое уравнение, зависящее от относительных переменных ядер или от смещений ядер относительно друг друга. По этой причине получаемые решения обычно называют колебательными волновыми функциями и колебательными уровнями энергии.

Возможности и перспективы развития. Анализ электронного строения молекул (распределения электронной плотности, особенностей электронных волновых функций и др.) позволил объяснить различие типов химических связей, особенности этих связей и возможности существования таких, например, соединений, как ферроцен и фуллерен (предсказанный до его синтеза на основе квантово-химического подхода), существование соединений с гипервалентными атомами, в которых, например, атом углерода соединён с пятью или шестью атомами бора, и т. п. Введённые на начальных этапах развития квантовой химии понятия - гибридизация атомных орбиталей, трёх и многоцентровые связи, порядки связей, индексы реакционной способности и многие другие - стали общепринятыми понятиями химии. В 1960-е годы был сформулирован и разработан принцип сохранения орбитальной симметрии в химических реакциях (смотри Вудворда - Хофмана правила).

Развитие вычислительной квантовой химии позволило рассчитывать с высокой точностью такие важные характеристики молекул, как равновесные межъядерные расстояния и валентные углы не только в основном, но и в возбуждённых состояниях, энергетические барьеры внутреннего вращения и барьеры перехода между различными конформациями, энергии активации элементарных стадий химических реакций, вероятности квантовых переходов при различных воздействиях на систему и многие другие. Квантовая химия позволяет выяснять, в каких случаях неприменимо адиабатическое приближение (смотри, например, Яна-Теллера эффект), как связаны электрические и магнитные свойства веществ со строением их молекул (что способствовало активному внедрению магнитно-резонансных методов в химических исследованиях), как можно направленно менять каталитические свойства веществ и т. д. В связи с развитием нанохимии и нанотехнологий особую роль приобрели данные, получаемые при квантово-химических расчётах нанокластеров, нанотрубок и квантовых точек.

Квантово-химические расчёты потенциальных поверхностей создали основу для решения проблем, связанных с анализом динамики ядер при взаимодействии с внешними полями и при химических превращениях. Совместно с данными фемтосекундной спектроскопии стало возможным рассматривать на количественном уровне изменения во времени (релаксацию) квантовых состояний молекулярных систем после их возбуждения, при упругих и неупругих столкновениях с другими атомами или молекулами. Продолжает сохранять актуальность рассмотрение взаимодействия молекул с лазерным излучением и их направленные превращения под влиянием такого излучения.

Квантовая химия играет определяющую теоретическую роль при изучении взаимодействия молекул со средой, в том числе при адсорбции и каталитических превращениях, при анализе влияния дефектов структуры на свойства веществ, при изучении электрических и магнитных свойств соединений с молекулярной структурой, при анализе отклика нежёстких молекул на внешние воздействия и во многих других случаях. Важными для квантовой химии остаются проблемы установления специфики отдельных состояний молекул и особенностей превращения молекул в различных процессах, получение и накопление достоверных численных данных высокой точности по свойствам молекул, квантово-химический анализ молекулярных систем в пограничных областях перехода от молекул к конденсированному веществу, разработка новых представлений и методов квантово-химического изучения химических соединений и их превращений.

Лит.: Степанов Н. Ф. Квантовая механика и квантовая химия. М., 2001; Майер И. Избранные главы квантовой химии. Доказательства теорем и вывод формул. М., 2006; Piela L. Ideas of quantum chemistry. Amst.; Boston, 2007.