Квантовая механика настолько неинтуитивна, что было придумано несколько «интерпретаций» в терминах более доступных нашему мозгу для визуализации. Классической является «Копенгагенская интерпретация», переданная нам отцами-основателями: Вернер Гейзенберг, Вольфганг Паули, Пол Дирак, Нильс Бор и др.

Основные идеи Копенгагенской интерпретации довольно просты, но в то же время абстрактны:

  1. Волновая функция () следует унитарной эволюции во времени, описываемой .
  2. Физическим смыслом волновой функции является амплитуда вероятности, квадрат которой есть вероятность обнаружить систему при измерении в определенном состоянии. При измерении функция «коллапсирует», то есть сосредотачивается в точке, соответствующей результату измерения. Вся остальная информация об исходной функции теряется.

На счет первого пункта споров не идет. Унитарная эволюция является самым незыблемым фундаментальным физическим принципом на данный момент от которого в ближайшее время отказываться не собираются. Но вот по поводу второго пункта разногласия до сих пор не утихают. Отчасти потому что пункт 2 противоречит пункту 1. Коллапс волновой функции не является унитарной операцией! Он не подчиняется уравнению Шредингера. Казалось бы парадокс и несогласованность самой квантовой теории налицо.

Тут есть один тонкий момент. Как нам показали отцы-основатели, роль наблюдателя в квантовой механике чрезвычайно важна. Квантовая механика субъективна. Все свои предсказания она выдает относительно наблюдателя — того субъекта кто ее использует. Экспериментатора. Тебя и меня. Поясним на примере. Представьте, что вы подкинули монетку и сейчас собираетесь посмотреть результат.

До того как вы подняли руку, результат можно оценить только с помощью распределения вероятностей. Если монета честная, то с вероятностью 50% выпадет орел и с 50% решка. Это все, что вы можете в данный момент сказать о системе. Но как только вы подняли руку и увидели результат — распределение вероятностей «коллапсирует» в одну точку — в тот результат который действительно выпал. То есть сейчас вы со 100% вероятностью можете сказать, что выпал орел.

Данный «коллапс» справедлив и для более сложных распределений вероятностей. Например, если подбрасывать два игральных кубика и смотреть вероятность выпадения того или иного числа (суммы выпавшего на первом и втором кубике — от 2 до 12), получим Гауссово распределение (выпадение семерки наиболее вероятно). Но когда мы реально смотрим на то что выпало в конкретном случае — это распределение коллапсирует в фактический результат (скажем в сумме выпало число шесть).

Квантовую механику можно рассматривать как обобщение теории вероятностей по аналогии с тем как комплексные числа являются обобщением действительных. Волновая функция условно является неким «квадратным корнем» из функции распределения вероятности. Для того чтобы найти вероятность — волновую функцию необходимо возвести в квадрат. Кроме того она комплекснозначная. Амплитуда вероятности в общем случае является комплексным числом. В остальном идея «коллапса» как получение новых знаний о системе и неактуальности предыдущей информации остается такой же.

Возьмем кубит, находящийся в :

\(\displaystyle |\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\)

При измерении происходит коллапс вектора состояния и мы получаем только одно из двух слагаемых. Либо при измерении мы получили ноль и вектор состояния коллапсирует в \(\displaystyle |\psi\rangle\rightarrow |0\rangle\), либо единицу и вектор переходит в \(\displaystyle |\psi\rangle\rightarrow |1\rangle\).

Отличие от классической теории вероятностей заключается еще и в том, что с монеткой мы подсознательно знаем, что она уже лежит или орлом или решкой до того как мы подняли руку чтобы посмотреть на результат. В случае квантовых объектов . Система приобретает классические свойства (характеристики) именно в момент субъективного измерения. Нельзя предполагать, что кубит до измерения был в состоянии \(\displaystyle |0\rangle\) или \(\displaystyle |1\rangle\). Он был именно в суперпозиции. Но эта суперпозиция ненаблюдаема . Поэтому слово был можно применять лишь условно. Вектор состояния не является объективной реальностью, как не является ею функция распределения вероятностей в классическом случае.

В этом и состоит разрешение парадокса и других так называемых «парадоксов» в рамках Копенгагенской интерпретации — кот не является живым плюс мертвым. Это все равно что сказать: орел плюс решка, интерпретируя приведенную выше функцию распределения.


Кот или жив или мертв. Мы ничего более не обнаружим при измерении. Просто квантовыя механика запрещает нам неявно делать какие-либо выводы до фактического измерения и описывает систему суперпозицией. То что нельзя измерить — не существует. То что можно измерить, но еще не измерено тоже не существует объективно.

Запутанные состояния, так волновавшие Эйнштейна, также интерпретируются с вероятностных позиций как квантовые корреляции. Пусть система из двух спинов находится в :

\(\displaystyle |S\rangle=\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)\)

При измерении мы всегда обнаружим корреляции: если одной частицы направлен вверх относительно какой-либо оси, то спин второй частицы обязательно окажется направленным вниз относительно той же оси. И наоборот. Можно опять провести аналогию с классической теорией вероятностей. Возьмем красную и синюю таблетки. Перемешаем их у себя за спиной и зажмем в каждый кулак по штуке. Не разжимая руки мы не можем сказать где находится синяя, а где красная. Можно построить график распределения вероятности аналогичный приведенному для монетки.

Но как только мы откроем один кулак и увидим, что там, например, синяя — мы мгновенно узнаем, что в другом кулаке красная. И наоборот. Это получение информации коллапсирует приведенный выше вектор состояния в одно из слагаемых. Таблетки могут быть разнесены на разные концы Вселенной и все равно статистические корреляции сохранятся. Очевидно, что тут не идет речь о сверхсветовой скорости передачи информации, простые корреляции.

Единственно новой вещью в квантовомеханическом случае является невозможность предположить, что в правой руке была синяя, а в левой красная до измерения . или наиболее наглядно это разъясняют. Именно измерение данным наблюдателем какого-либо свойства (цвета в нашем случае) делает его реальным (объективным) для этого наблюдателя.

Квантовая механика субъективна. Она дает предсказания только для того кто ей пользуется. Только для него происходит субъективный коллапс вектора состояния, связанный с получением новой информации. Объективный мир существует только в его голове. Для всех других он такая же часть физического мира и подчиняется тем же самым квантовомеханическим законам с суперпозициями, комплексными числами и тому подобными вещами. является наглядной демонстрацией данного принципа.

Волновая функция (вектор состояния) ненаблюдаема. Это не классическое поле типа температуры или напряженности электрического поля. Эта функция скорее ближе к функции распределения вероятности, точнее ее можно рассматривать как некое ее обобщение. Саму квантовую механику можно рассматривать как обобщение теории информации + теории верояностей.

Физики из Австрии и США опубликовали результаты опроса своих коллег по поводу того, как они понимают квантовую механику. Результаты оказались противоречивы - несмотря на то, что классическая копенгагенская интерпретация все еще чувствует себя довольно бодро, к ней постепенно подбирается теория квантовой информации. Гипотеза же многих миров сдает свои позиции.

Корни проблемы

История квантовой механики начинается в конце XIX века, когда статистическая физика столкнулась с парадоксом, получившим название ультрафиолетовой катастрофы. Столкновение это было тем более неожиданным, что речь шла про, казалось бы, простую физическую задачу: описание излучения, связанного с нагревом тела, - будь то металл, камень или уголь в камине. Скажем, хорошо известно, что свечение нагретого металла с ростом температуры меняется от красного к светло-голубому. Почему это так?

Оказалось, что решение этой задачи сводится к изучению излучения так называемого абсолютно черного тела, абстракции, представляющей собой тело, которое поглощает все упавшее на него излучение. Название, как оказалось, было выбрано довольно неудачно - например, с достаточной степенью точности абсолютно черным телом можно считать Солнце.

И в этот момент физики столкнулись вот с чем: модель излучения, которая была у них на руках (так называемый закон Рэлея-Джинса) неплохо описывала излучение для длинных волн, но для коротких не работала совершенно. Более того, она давала невозможный результат: энергия, излучаемая телом, равна бесконечности. Этот парадокс и получил имя ультрафиолетовой катастрофы.

В 1900 году Макс Планк предложил совершенно неочевидное объяснение тому, что результаты экспериментов с короткими волнами противоречат теории - правда, сам термин «ультрафиолетовая катастрофа» появился только в 1911 году, а бесконечность энергии была обнаружена Рэлеем и Джинсом уже после появления планковского объяснения. Планк заявил, что излучение испускается не непрерывно, как считалось ранее, а порциями (квантами). Энергия каждого кванта оказывается связана с частотой излучения простым линейным законом. На основе этих предположений он вывел свой закон излучения, который показал отличное согласование с экспериментальными данными и принес Планку нобелевскую премию по физике в 1918 году.

Обнаруженный закон невозможно было объяснить с точки зрения физики того времени, строго разделявшей две основные сущности - поля и частицы. Возник нетривиальный и, скорее, философский вопрос: если физика описывает нашу обычную действительность, то какую действительность описывают новые уравнения? Так вместе с квантовой механикой (именно с момента публикации работы Планка многие отсчитывают историю новой физической теории) появилась и проблема интерпретации квантовой механики.

Сначала, конечно, странность уравнений Планка не вызывала у физиков особого волнения - им казалось, что здание физики незыблемо, поэтому странные уравнения найдут объяснения в рамках классической теории (сами физики, конечно, свою физику классической еще не считали - тем же уравнениям Максвелла не было тогда и 20 лет). Более того, с порционностью физикам уже приходилось сталкиваться: идея существования мельчайшей неделимой порции электрического заряда, равной заряду электрона, на тот момент была общепризнанной.

Ситуация с квантами усугубилась в 1905 году. Дело в том, что в 90-х годах XIX века физики активно изучали фотоэффект - явление испускания электронов веществом под воздействием света. На основании экспериментов им удалось установить несколько эмпирических законов. В 1905 году Альберт Эйнштейн предложил объяснение всем этим законам, распространив теорию порционного излучения Планка на свет. Получившаяся теория вновь давала прекрасное согласование с экспериментальными данными и вновь не помещалась в классическую картину мира.

Копенгагенская интерпретация

Спустя буквально 20 лет научный мир находился в состоянии непримиримого противостояния. Суть разногласий сводилась к вопросу о том, насколько хорошо квантовая теория описывает реальность (сами уравнения и тот факт, что они прекрасно работают, ни у кого возражений не вызывали). Противники молодой физики утверждали, что все эти корпускулярно-волновые дуализмы (свойства материи быть частицей и волной одновременно) и прочие противоречащие тогдашнему здравому физическому смыслу объекты являются просто следствием несовершенства математического аппарата. На стороне классиков сражались Эйнштейн, Планк, Шредингер. Последний, кстати, придумал своего кота как раз для того, чтобы продемонстрировать абсурдность новой теории.

В 1935 году Альберт Эйнштейн, Борис Подольский и Натан Розен опубликовали статью, в которой описали мысленный эксперимент, получивший название парадокса Эйнштейна-Подольского-Розена. Суть парадокса сводилась к тому, что в квантовом мире существует явление запутанности. Из-за этого в некотором случае измерение состояния одного объекта позволяет определить состояние другого, удаленного от первого на произвольное расстояние. При этом кажется, что нарушается причинно-следственная связь. Этот парадокс был предложен как доказательство неполноты квантовомеханического описания мира. Парадокс разрешается благодаря тому факту, что для передачи известной информации о втором объекте требуется канал связи, который не нарушает причинно-следственную связь. Позже явление запутанности неоднократно наблюдалось на практике.

Адепты же квантовой механики отстаивали реальность всех этих загадочных явлений (хотя позже стало понятно, что и среди этих ученых имеются серьезные разногласия). В период с 1924 по 1927 год Нильс Бор и Вернер Гейзенберг, одни из главных защитников «новой физики», сформулировали основные положения «реальности» в смысле квантовой механики. Эти положения были представлены широкой научной общественности в 1927 году, когда Гейзенберг прочитал серию лекций в Чикагском университете о том, что из себя представляет квантовая механика. Так на свет появилась копенгагенская интерпретация квантовой механики (и Бор, и Гейзенберг в ту пору работали в университете Копенгагена) - самая, пожалуй, распространенная и популярная интерпретация.

Главным отличием микромира от привычного нам макромира провозглашалась вероятностная природа происходящих там процессов. Материя демонстрирует корпускулярно-волновой дуализм. Основным объектом описания системы становилась волновая функция, которая характеризует амплитуду вероятности обнаружить систему в том или ином состоянии в данной конкретной точке. Со временем волновая функция эволюционирует, и эта эволюция описывается так называемым уравнением Шредингера. По сути состояния системы оказываются «размазаны» по времени и пространству. Традиционно это интерпретируется как нахождение квантовой системы в нескольких состояниях одновременно.

В случае измерения происходит коллапс волновой функции к одному из классических состояний. Это связано с тем, что все измерительные приборы и все измерения в физике считаются классическими. По этой причине, помимо прочего, невозможно получить всю возможную информацию о системе. Иллюстрацией последнего положения является знаменитый принцип неопределенности Гейзенберга, утверждающий, что произведение неопределенностей при измерении импульса и координаты какой-нибудь механической системы всегда больше некоторого ненулевого значения. Наконец, последнее требование - для достаточно больших систем квантовое описание приближается к классическому.

Копенгагенская интерпретация позволила физике смириться с многими парадоксальными результатами наблюдений. Для примера можно рассмотреть так называемый двухщелевой опыт. Представим экран, который отгорожен от источника света светонепроницаемой поверхностью, в которой прорезаны две щели. Когда свет проходит через щели, на экране возникает последовательность светлых и темных полос - типичная интерференционная картина. Это связано с тем, что свет - волна и, проходя через щели, разделяется на пару волн, взаимодействующих между собой. При этом такая картина наблюдается и в случае пролета единичных фотонов.

Если у обеих щелей поставить детекторы, которые будут регистрировать проходящие через них фотоны, то срабатывать будет всегда только один из детекторов. Это и есть демонстрация корпускулярно-волнового дуализма. Более того, если один из детекторов убрать и не фиксировать прохождение фотона, интерференционная картина на экране все равно исчезает. С точки зрения копенгагенской интерпретации это является прямой демонстрацией того, что при измерении (пусть даже с отрицательным результатом) происходит коллапс волновой функции.

Новые реальности

В середине XX века копенгагенская интерпретация считалась стандартным объяснением квантовой механики. Ситуация изменилась к концу века - в физике стали возникать вопросы, которые даже не приходили в голову классикам. Вот, например, волновая функция - это что? Удобный инструмент для описания или же некий реально существующий объект? Или, скажем, как быть с квантовой запутанностью?

В настоящее время вопрос интерпретации считается скорее философским, нежели физическим. Известный физик Ашер Перес - автор одноименного парадокса - считает, что интерпретации суть не более чем набор правил для оперирования экспериментальными данными, поэтому единственное требование, которое можно предъявить к интерпретациями - чтобы эти наборы правил были эквивалентны друг другу (среди прочего, это связано с тем фактом, что, как уже говорилось выше, математический аппарат у всех интерпретаций совершенно одинаковый).

В настоящее время помимо копенгагенской интерпретации существует несколько ранее считавшихся немного безумными или даже научно-фантастическими альтернатив, которые со временем уверенно подвинули классику. И это не считая типично инструменталистской интерпретации Дэвида Мермина, выраженной в знаменитом афоризме «Заткнись и считай».

Самой популярной из альтернатив является так называемая многомировая интерпретация, принадлежащая Хью Эверетту. Примечательно, что Эверетт оставил физику после нескольких работ, в том числе и из-за той критики, которой научное сообщество подвергло его взгляды. В основе многомировой интерпретации - отрицание реальности коллапса волновой функции, то есть разделения взаимодействий на классические и квантовые.

Для этого Эверетт ввел понятие квантовой декогеренции, суть которой, достаточно условно (пытаясь пояснить формулы словами, всегда сталкиваешься с некоторыми неизбежными упрощениями), заключается в том, что исследуемая система и наблюдатель - измерительный прибор - оказываются объединены в одну огромную (по меркам микромира) систему. Факт этого включения и приводит к кажущемуся ощущению «классичности» - ведь тезис о том, что большие системы должны быть похожи на классические, этой интерпретацией не отрицается. При этом каждый из возможных вариантов включения системы оказывается реализован. С точки зрения двухщелевого опыта, если за одной из щелей стоит детектор, то при подлете фотона к поверхности с прорезями Вселенная раздваивается. В результате в одной из реальностей наблюдатель регистрирует фотон, а в другой - нет. При этом все бесчисленные Вселенные оказываются частью некоего глобального квантового мира, который никогда не теряет своей когеренции.

Помимо многомировой интерпретации, есть еще и информационная интерпретация - точнее, даже несколько интерпретаций такого рода. В их основе лежит идея о том, что при измерении наблюдатель извлекает из системы некоторую информацию. Эта информация, с одной стороны, воспринимается как результат наблюдения, с другой - меняет саму измеряемую квантовую систему, поскольку та информацию теряет. Эти идеи носят идеалистический характер, поскольку помещают в основу реальности информацию, а не материю.

Наконец, последней интерпретацией, которую стоит упомянуть (на самом деле их много больше), это интерпретация Пенроуза. В ней коллапс волновой функции признается объективной реальностью, то есть физическим процессом. Согласно этой теории, коллапс происходит случайно, а сам наблюдатель никакой роли в этом процессе не играет.

Разброд и шатание

В 1997 году известный физик и космолог Макс Тегмарк опросил 48 участников конференции «Фундаментальные проблемы в квантовой теории», чтобы выяснить, какая интерпретация этой самой теории кажется им предпочтительной. Несмотря на то, что опрос носил в целом неформальный характер, Тегмарк обнаружил, что многомировая интерпретация квантовой механики уступила копенгагенской, но не слишком (13 голосов против восьми). Это довольно неожиданный результат, если учесть, что в свое время, как говорилось выше, автор теории многомировой интерпретации Эверетт был вынужден уйти из науки.

Теперь сразу три физика из Австрии и США повторили опрос Тегмарка. Местом его проведения была выбрана конференция «Квантовая механика и природа реальности», проходившая в июле 2011 года в Австрии. Каждому участнику съезда предлагалось выбрать из предложенных ответы к 16 вопросам. Сами исследователи признают, что, как и опрос Тегмарка, их исследование носило не слишком формальный характер. Ученым, например, разрешалось давать на один вопрос несколько ответов. Кроме этого в исследовании приняли участие 33 человека - то есть на 15 меньше, чем в предыдущем опросе.

Оказалось, что 64 процента опрошенных уверены: случайность - это фундаментальное свойство природы. При этом 48 процентов заявили, что до измерения свойства объекта не определены. Это основные положения именно копенгагенской интерпретации. Что касается проблемы измерения - видимого и необратимого коллапса волновой функции - то тут мнения очень сильно разделились. Оказалось, что 27 процентов опрошенных считают ее псевдопроблемой (то есть математическим артефактом), еще 15 процентов полагают, что понятие декогеренции снимает вопрос об измерениях, 39 процентов думают, что эта проблема решена, и 24 процента - что эта проблема представляет серьезную трудность в квантовой картине мира. В сумме получается больше 100 процентов, но это именно потому, что можно было давать больше одного варианта ответа, а проценты считались как отношение количества ответов к количеству участников, помноженное на 100.

Наиболее интересными были ответы на вопросы о квантовой информации - оказалось, что 76 процентов опрошенных считают идею квантовой информации «глотком свежего воздуха» для основ квантовой механики. Довольно необычный сдвиг для физиков, известных своим прожженным материализмом. Еще у физиков спрашивали, когда появится квантовый компьютер, и 42 процента опрошенных заявили, что это произойдет через 10-25 лет.

Что касается самого главного вопроса: «какой интерпретации придерживаетесь вы?» - то тут результаты были следующими. Оказалось, что 42 процента поддерживают копенгагенскую интерпретацию, 24 процента - теорию квантовой информации и только 18 - многомировую интепретацию квантовой механики. Еще 9 процентов придерживаются интерпретации Пенроуза об объективности коллапса волновой функции.

Вместо заключения

Здесь, конечно, следовало бы сделать вывод о неожиданном укреплении позиций классики, которое, судя по всему, вызвано постепенным спадом интереса к многомировой интерпретации. Также можно было бы отметить популярность квантовой информации, которая, разумеется в ближайшее время будет только расти - ведь многие называют этот подход перспективным.

Делать эти выводы, однако, бессмысленно. Похоже, такого же мнения придерживаются и сами ученые - на вопрос «будут ли через 50 лет проводиться конференции по основам квантовой механики?» 48 процентов опрошенных ответили «да» и еще 24 - «кто знает». Действительно, кто ж его знает?

Концептуальное содержание квантовой механики является далеко не тривиальным. Неудивительно поэтому, что оно интерпретируется по-разному. Нам предстоит сначала в полной мере окунуться в мир квантово-механического плюрализма, а затем, освоив его, сделать решающие выводы.

Копенгагенская интерпретация

Термин "копенгагенская интерпретация" использовал В. Гейзенберг, явно подчеркивая им приоритет Н. Бора, жителя датской столицы Копенгагена . Самого Гейзенберга считают копенгагенцем № 2. Ни Гейзенберг, ни кто-либо другой никогда не давал четкого определения содержания копенгагенской интерпретации. Вместе с тем было известно, что воззрения Бора и Гейзенберга не совпадали. Таким образом, "копенгагенская интерпретация" является термином для обозначения спектра воззрений. Яркими "копенгагенцами" являлись Дж. фон Нейман, П. Дирак, В. А. Фок, Л. Д. Ландау.

  • 1) волновая функция относится к отдельному квантовому объекту;
  • 2) поведение квантовых объектов невозможно отделить от результатов измерений;
  • 3) измерение вызывает коллапс волновой функции;
  • 4) скрытые параметры невозможны;
  • 5) квантовая механика дает полное, исчерпывающее описание поведения квантовых объектов.

Ученые спорят

Плюрализм воззрений копенгагенцев состоял в том, что Дж. фон Нейман не придерживался убеждения Бора, согласно которому результаты измерений описываются классическим образом, равно как и его приверженности принципу дополнительности. Сам Бор не склонен был абсолютизировать процесс измерения столь же решительно, как это делал В. Гейзенберг. Фон Нейман к тому же придерживался позиции, что результаты измерений относятся к отдельному объекту лишь в случае, если они являются собственными значениями соответствующих им операторов.

Еще одна особенность "копенгагенцев" состоит в том, что они избегали пространственно-временного изображения квантово-механических процессов. Как показал Р. Фейнман, такое изображение вполне возможно.

Ансамблевая, или статистическая, интерпретация

Ее создателем чаще всего считают А. Эйнштейна. Крупнейшими представителями этой интерпретации являются также наш соотечественник Д. И. Блохинцев и современный канадский физик Л. Балленстайн. По сути, именно этими именами представлены три наиболее актуальных этапа в развитии ансамблевой интерпретации, которая всегда признавалась очевидной альтернативой копенгагенской интерпретации.

Эйнштейн, признавая квантовую статистику, полагал, что даже она недостаточна для выражения подлинной природы квантовых объектов, в реальности которых он не сомневался. Квантовая механика неполна.

Д. И. Блохинцев, опираясь на воззрения не Эйнштейна, а фон Неймана и своих коллег Л. И. Мандельштама и К. В. Никольского, сформулировал новую версию ансамблевой интерпретации. Суть его воззрения состоит в том, что на первый план выдвигается не поиск скрытых параметров, а оператор плотности. В статье, в которой он, по сути, подводил итоги своего творчества, связанного с осмыслением квантовой механики, Блохинцев отмечал, что "необходимость введения в квантовую механику оператора плотности, как понятия более общего, нежели волновая функция, основывается на том, что в квантовой области измерения, производимые над системами, описываемыми волновой функцией ψ (“чистый” ансамбль), переводят эти системы в состояния, описываемые набором волновых функций, т.е. в “смешанный” ансамбль.

Поэтому, если мы хотим рассматривать теорию квантовых измерений как главу квантовой механики, то нельзя исключить из рассмотрения смешанные ансамбли, которые не имеют аналогов в классической механике. Они являются аналогами механики статистической. В этом пункте лежит вся суть отличия моей концепции квантовой механики от концепции копенгагенской школы.

Н. Бор явно предпочитал рассматривать ситуацию, когда атомная система описывается волновой функцией (т.е. чистый ансамбль). При таком подходе сам процесс измерения полностью исключается из квантово-механического рассмотрения и тем более не может быть предметом теоретического расчета. Интерпретация измерения при таком подходе ограничивается пониманием измерения как явления изменения информации. Следует подчеркнуть, что в рамках анализа, сосредоточенного на чистом ансамбле, такое толкование измерения логически последовательно и единственно возможно. Но оно исключает на самом деле существующую возможность, на основе той же квантовой механики, исследовать и рассчитать явления измерения. В этой связи концепция фон Неймана, основанная на понятии статистических совокупностей, представляется более широкой основой для понимания квантовой механики, нежели концепция, основанная на более ограниченном понятии волновой функции" .

Квантовые ансамбли всего лишь аналогичны ансамблям Гиббса, используемым в классической физике. Поэтому Блохинцев полагал, что он благополучно развел классическую и квантовую физику в разные стороны. Но при этом оставался открытым вопрос о природе отдельной частицы. Это не преминул отметить его главный оппонент В. А. Фок. Он обвинял Блохинцева в непоследовательности: волновая функция то считается характеристикой отдельной частицы, то характеристикой всего ансамбля, а не отдельной частицы . Фок прав, сторонникам ансамблевой интерпретации никак не удается совладать с отдельными частицами. Либо полностью отрицается, что статистическая интерпретация в духе М. Борна относится к отдельной частице, либо она считается лишь представителем ансамбля.

С позиций современной теории декогеренции оплошность Блохинцева достаточно очевидна. Он ошибочно полагал, что процесс квантово-механического измерения полностью объясняется посредством оператора плотности, его, дескать, совсем не обязательно выводить. Поэтому он ставил его впереди концепта волновой функции, актуальность которого, по сути, принижалась.

Переходим к характеристике воззрений Баллентайна. К сожалению, в своей главной работе он избегает лаконичных характеристик своей позиции, уместных в данной книге. Зато К. Эйлвард иллюстрирует основные положения воззрений Баллентайна в довольно эффектной манере . Он показывает, что ансамблевая интерпретация квантовой механики приводит к выводам, которые никак не согласуются с копенгагенской интерпретацией. Для удобства пронумеруем его комментарии.

  • 1. Не следует думать, что статистические результаты характеризуют отдельную частицу. Допустим, что проводятся испытания с игральной костью. Выпадают значения от 1 до 6. Среднее значение составляет, например, 2,4. Но это не означает, что у игральной кости есть сторона, на которой написано 2,4.
  • 2. Корпускулярно-волновой дуализм несостоятелен. Частицы всегда являются частицами. Верно, что они описываются не классической, а квантовой статистикой. Но они не являются волнами, подобными, например, волнам на воде, которые действительно реальны.
  • 3. Гейзенберговский принцип неопределенности является описанием статистических результатов, проведенных над ансамблем частиц. Вопреки Гейзенбергу отдельная частица не обладает неопределенными значениями параметров.
  • 4. Парадокс шрёдингеровского кота был введен для того, чтобы показать ограничения копенгагенской интерпретации квантовой механики. Реальный кот, конечно же, всегда либо мертв, либо жив, и не представляет собой суперпозицию этих двух состояний.
  • 5. О коллапсе волновой функции. Он не требуется ни формальным аппаратом квантовой механики, ни экспериментальными данными.
  • 6. Утверждается, что одна и та же частица может находиться в различных местах. Но аппарат квантовой механики этого не требует.
  • 7. Утверждается, что в конструировании квантовой реальности принимает участие сознание экспериментатора. В действительности же состояния квантовых объектов от него не зависят.

Итак, по мнению Эйлварда, ансамблевая интерпретация вносит окончательную ясность во многие спорные вопросы квантовой механики, вызванные к жизни копенгагенской интерпретацией.

В 1927 году два основателя квантовой механики - Нильс Бор и Вернер Гейзенберг - сформулировали первую версию так называемой копенгагенской интерпретации квантовой механики. В целом она заключается именно в том, на что мы опирались все это время:

1) система описывается исключительно своей волновой функцией;

2) волновая функция показывает, что определенные измерения сугубо вероятностны;

3) как только мы делаем измерение, происходит коллапс волновой функции, и у нас остается конкретное число.

И хотя мы собираемся описать некоторые другие точки зрения, любой физик, работающий от звонка до звонка, считает копенгагенскую интерпретации^ общепринятой версией событий, в основном потому, что она позволяет нам производить вычисления, не слишком задумываясь о том, что все это на самом деле значит .

Однако даже среди горячих сторонников квантовой механики существуют определенные разногласия относительно того, что на самом деле гласит копенгагенская интерпретация. Существует ли на самом деле волновая функция? И правда ли это, что реальность системы заключается только в том, что мы наблюдаем? Лично нам кажется, что это пустые придирки. Лично нам гораздо ближе версия Дэвида Мермина: «Если бы меня заставили изложить суть копенгагенской интерпретации одной фразой, я бы ответил: "Заткнись и считай!"»

Ближе к делу: как получается, что то, что мы что- то наблюдаем, приводит к коллапсу наблюдаемого? Вообще-то мы и сами состоим из субатомных частиц, которые также подчиняются законам квантовой механики. Откуда Вселенная знает, как перейти из состояния неопределенности до того, как произошло измерение, к определенности после этого?

У наблюдения есть последствия и похуже коллапса волновой функции. Вспомните наш разговор о том, что ваша волновая функция простирается до далеких звезд и, строго говоря, существует вероятность, что вас туда спонтанно телепортирует? Так вот, когда вас наблюдают здесь, на Земле, у вашей волновой функции происходит коллапс, а значит, ваша волновая функция где бы то ни было еще исчезает. Если вас это не беспокоит, советуем задуматься. Что-то происходящее здесь мгновенно влияет на происходящее в нескольких световых годах отсюда - а значит, это влияние распространяется со скоростью больше скорости света.

Давайте забудем обо всем этом и просто посмотрим, что говорит нам Бор про кота. Жив или мертв шредингеровский кот? Согласно копенгагенской интерпретации, да.

Серьезно.

Копенгагенская интерпретация говорит нам: «И то и другое с определенной вероятностью. Если мы откроем ящик, то произойдет коллапс волновой функции, и останется только одна возможность, которую мы и пронаблюдаем».

Чушь какая! Что за глупости - думать, будто кот может быть одновременно и живым, и мертвым! Именно это и хотел сказать Шредингер .

Теперь посмотрим с точки зрения квантовой механики на старинную загадку: если дерево падает в лесу, где его никто не слышит, производит ли оно грохот? «Нет,- отвечает копенгагенская интерпретация.- Для начала, оно даже и не падает, пока не появляется наблюдаемых свидетельств того, что это произошло». Какая нелепость - только представьте себе, что такой крупный предмет, как вековое дерево, настолько подвержен влиянию того, наблюдают его или нет. Это правда. Но в чем же разница между деревом и котом? Или котом и ядром атома?

Бор считал, что на ситуацию влияет не просто наблюдение, а осознанное наблюдение. Если бы вместо шредингеровского кота у нас был бы шре- дингеровский аспирант, мы бы практически не сомневались, что более или менее вменяемый аспирант наблюдал бы за системой сам. Почему же так важно, чтобы наблюдателем был именно человек?

С философской точки зрения самая серьезная проблема с копенгагенской интерпретацией выражается одним вопросом: есть ли разница между тем, что знает ученый, и тем, что знает Вселенная?

Здравый смысл подсказывает, что в случае шредингеровского кота разница очень велика. Очевидно, что Вселенная должна «знать», жив кот или мертв, даже если ученый не знает. В некотором смысле копенгагенская интерпретация утверждает, что неважно, знает ли Вселенная о том, жив кот или мертв, до того, как ящик откроют. Это не изменит ничего наблюдаемого.

Здесь чего-то не хватает. С одной стороны, мы уже видели в опыте с двумя щелями, что прямое или косвенное наблюдение электрона способно заставить его перейти из состояния неопределенности к поведению, подобающему частице. Если мы не будем тревожить электрон, глядя на него, он буквально пройдет через обе щели. А «выбирает» только одну он лишь в том случае, если у нас хватает наглости подглядывать за ним.

Если все обстоит именно так, в чем тогда принципиальное отличие шредингеровского кота? Это просто более сложная система, в которую по случаю входит не просто один электрон, но еще и радиоактивный образец, флакон яда и квадрильоны атомов,

составляющих кота. Те из нас, кто придерживается механистического взгляда на Вселенную, сочтут, что это приведет к невозможной ситуации, поскольку на самом деле мы должны посмотреть на вещи гораздо шире.

Поскольку все частицы во Вселенной в той или иной степени взаимодействуют, Вселенная в целом, в том числе и ученые, и их оборудование, есть одна гигантская волновая функция. Если воспринять это утверждение буквально, становится, мягко говоря, не по себе. Это значит, что все наблюдения, ощущения и поступки как таковые суть комбинация более чем одной возможности, просто вероятность одной из них гораздо, гораздо больше вероятности остальных.

Лично нам вероятность такой «вселенной суперпозиции» кажется настолько неприятной, что мы предпочтем жить во вселенной, где реальность формируется под воздействием сознания .