Ограниченной осью абсцисс, графиком интегрируемой функции и отрезками прямых x=a\,\! и x=b\,\! , где a\,\! и b\,\! - пределы интегрирования (см. рисунок).

Необходимость применения численного интегрирования чаще всего может быть вызвана отсутствием у представления в и, следовательно, невозможностью аналитического вычисления значения определенного интеграла по . Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

Одномерный случай

Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида

I \approx \sum_{i=1}^{n} w_i\, f(x_i),

где n\,\! - число точек, в которых вычисляется значение подынтегральной функции. Точки x_i\,\! называются узлами метода, числа w_i\,\! - весами узлов. При замене подынтегральной функции на полином нулевой, первой и второй степени получаются соответсвенно методы , и (Симпсона). Часто формулы для оценки значения интеграла называют квадратурными формулами.

Метод прямоугольников

Метод прямоугольников получается при замене подынтегральной функции на константу. В качестве константы можно взять значение функции в любой точке отрезка \left\,\! . Наиболее часто используются значения функции в середине отрезка и на его концах. Соответсвующие модификации носят названия методов средних прямоугольников , левых прямоугольников и правых прямоугольников . Формула для приближенного вычисления значения определенного интеграла методом прямоугольников имеет вид

I \approx f(x) (b-a) ,

где x=\frac{\left(a+b\right)}{2} , a\,\! или b\,\! , соответсвенно.

Метод трапеций

Если через концы отрезка интегрирования провести прямую, получим метод трапеций . Из геометрических соображений легко получить

I \approx \frac{f(a)+f(b)}{2} (b-a) .

Метод парабол

Использовав три точки отрезка интегрирования можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

I \approx \frac{b-a}{6}\left(f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right) .

Увеличение точности

Приближение функции одним полиномом на всем отрезке интегрирования, как правило, приводит к большой ошибке в оценке значения интеграла.

Для уменьшения погрешности отрезок интегрирования разбивают на части и применяют численный метод для оценки интеграла на каждой из них.

При стремлении количества разбиений к бесконечности, оценка интеграла стремится к его истинному значению для любого численного метода.

Приведенные выше методы допускают простую процедуру уменьшения шага в два раза, при этом на каждом шаге требуется вычислять значения функции только во вновь добавленных узлах. Для оценки погрешности вычислений используется .

Метод Гаусса

Описанные выше методы используют фиксированные точки отрезка (концы и середину) и имеют низкий (1, 1 и 3, соответственно). Если мы можем выбирать точки, в которых мы вычисляем значения функции f(x)\,\! , то можно при том же количестве вычислений подынтегральной функции получить методы более высокого порядка точности. Так для двух (как в методе трапеций) вычислений значений подынтегральной функции, можно получить метод уже не 1-го, а 3-го порядка точности:

I \approx \frac{b-a}{2}\left(f\left(\frac{a+b}{2} - \frac{b-a}{2\sqrt{3}} \right)+f\left(\frac{a+b}{2} + \frac{b-a}{2\sqrt{3}} \right) \right) .

В общем случае, используя n\,\! точек, можно получить метод с порядком точности 2n-1\,\! . Значения узлов метода Гаусса по n\,\! точкам являются корнями полинома Лежандра степени n\,\! .

Значения узлов метода Гаусса и их весов приводятся в справочниках специальных функций. Наиболее известен метод Гаусса по пяти точкам.

Метод Гаусса-Кронрода

Недостаток метода Гаусса состоит в том, что он не имеет легкого (с вычислительной точки зрения) пути оценки погрешности полученного значения интеграла. Использование правила Рунге требует вычисления подынтегральной функции примерно в таком же числе точек, не давая при этом практически никакого выигрыша точности, в отличие от простых методов, где точность увеливается в разы при каждом новом разбиении. Кронродом был предложен следующий метод оценки значения интеграла

I \approx \sum_{i=1}^{n} a_i\, f(x_i) + \sum_{i=1}^{n+1} b_i\, f(y_i) ,

где x_i\,\! - узлы метода Гаусса по n\,\! точкам, а 3n+2\,\! параметров a_i\,\! , b_i\,\! , y_i\,\! подобраны таким образом, чтобы порядок точности метода был равен 3n+1\,\! .

Тогда для оценки погрешности можно использовать эмпирическую формулу

\Delta = \left(200 |I - I_G|\right)^{1.5} ,

где I_G\,\! - значение интеграла, оценненое методом Гаусса по n\,\! точкам. Библиотеки [

численное интегрирование формула программирование

Введение

1. Методы численного интегрирования

2. Квадратурные формулы

3. Автоматический выбор шага интегрирования

Заключение

Библиографический список

Введение

Цель реферата состоит в изучение и сравнительный анализ методов численного интегрирования функций; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение задач численного интегрирования на ЭВМ.

При решении инженерных задач часто возникает необходимость в вычислениях значений определенного интеграла вида

. (1)

Если функция непрерывна на отрезке [a , b ] и ее первообразная может быть определена через известную функцию, то вычисление такого интеграла производится по формуле Ньютона – Лейбница:

.

В инженерных задачах получить значение интеграла в аналитическом виде удается редко. Кроме того, функция f (x ) может быть задана, например, таблицей экспериментальных данных. Поэтому на практике для вычисления определенного интеграла используют специальные методы, в основе которых лежит аппарат интерполирования.

Идея таких методов заключается в следующем. Вместо того, чтобы вычислять интеграл по формуле (1), сначала вычисляют значения функции f (x i ) = y i в некоторых узлах x i Î[a , b ]. Затем выбирается интерполяционный многочлен P (x ), проходящий через полученные точки (x i , y i ), который используется при вычислении приближенного значения интеграла (1):

.

При реализации такого подхода формулы численного интегрирования принимают следующий общий вид:

, (2) - узлы интерполирования, A i – некоторые коэффициенты, R – остаточный член, характеризующий погрешность формулы. Заметим, что формулы вида (2) называют квадратурными формулами.

Геометрический смысл численного интегрирования состоит в вычислении площади криволинейной трапеции, ограниченной графиком функции f (х ),осью абсцисс и двумя прямыми х = а и х = b. Приближенное вычисление площади приводит к отбрасыванию в квадратурных формулах остаточного члена R , характеризующего погрешность метода, на которую дополнительно накладывается вычислительная погрешность.

1. Методы численного интегрирования

В прикладных исследованиях часто возникает необходимость вычисления значения определённого интеграла

Как известно из курса математики, аналитически вычисление интеграла можно провести не во всех случаях. И даже в том случае, когда удаётся найти аналитический вид этого интеграла, процедура вычисления даёт приближённый результат, поэтому возникает задача приближенного значения этого интеграла.

Суть приближенного вычисления заключается в двух операциях: 1. в выборе конечного числа вместо n; 2. в выборе точки

в соответствующем отрезке.

В зависимости от выбора

мы получаем различные формулы для вычисления интеграла: Формулы левых и правых прямоугольников (5), (6) (5) (6)

Формула трапеции:


Формула Симпсона

b, a - концы рассматриваемого отрезка.

Для сравнения результатов вычисления вышеизложенными формулами численного интегрирования вычислим 3-мя способами следующий интеграл, разделив отрезок на 6 равных отрезков: h=

По формуле левых прямоугольников:

По формуле трапеции:

По формуле Симпсона:


А результат полученный аналитически равен

=1

Следовательно, можно сделать вывод о том, что численный метод интегрирования по формуле Симпсон является более точным, но используется в общем случае при делении рассориваемого отрезка на чётное число промежутков.

2. Квадратурные формулы

Формулы прямоугольников являются наиболее простыми квадратурными формулами. Разобьем отрезок интегрирования [a, b ] на п равных частей длиной

. Заметим, что величину h называют шагом интегрирования. В точках разбиения х 0 = а , х 1 = a + h , ..., x n = b отметим ординаты y 0 , y 1 ,…, y n кривой f (x ), т.е. вычислим у i = f (x i ), x i = a+ ih = x i -1 + h (i = ). На каждом отрезке длиной h построим прямоугольник со сторонами h и y i , где i = , т.е. по значениям ординат, вычисленных в левых концах отрезков. Тогда площадь криволинейной трапеции, определяющую величину интеграла (1), приближенно можно представить в виде суммы площадей прямоугольников (рис. 1). Отсюда получим формулу прямоугольников:
. (3)

Если при вычислении интегральной суммы брать значения функции f (x ) не в левых, а в правых концах отрезков длиной h , что показано на рис. 1 пунктирной линией, то получим второй вариант формулы прямоугольников:

. (4)

Третий вариант формулы прямоугольников можно получить при использовании значений функции f (x ), вычисленных в средней точке каждого отрезка длины h (рис. 2):

. (5)

Формулы (3), (4) и (4) называют формулами левых, правых и центральных прямоугольников соответственно.




Формула Симпсона. Разобьем интервал интегрирования на 2n равных частей длиной

. На каждом отрезке [x i , x i+2 ] подынтегральную функцию f (х ) заменим параболой, проходящей через точки (x i , y i ), (x i +1 , y i +1), (x i +2 , y i +2). Тогда приближенное значение интеграла определяется формулой Симпсона: . (7)

При вычислениях на ЭВМ более удобна следующая формула:


Метод Симпсона - один из наиболее широко известных и применяемых методов численного интегрирования, он дает точные значения интеграла при интегрировании многочленов до третьего порядка включительно.

Формула Ньютона. Приближенное значение интеграла по формуле Ньютона вычисляется следующим образом:

где число участков разбиения кратно трем, т.е. составляет 3n . При разработке программ для ЭВМ удобнее использовать эквивалентную формулу:


Метод Ньютона дает точные значения интеграла при интегрировании многочленов до четвертого порядка включительно.

3. Автоматический выбор шага интегрирования

В результате расчета по формулам (3) - (8) получают приближенное значение интеграла, которое может отличаться от точного на некоторую величину, называемую погрешностью интегрирования. Ошибка определяется формулой остаточного члена R , различной для каждого из методов интегрирования. Если требуется вычислить значение интеграла с погрешностью, не превышающей e, то необходимо выбрать такой шаг интегрирования h , чтобы выполнялось неравенство R (h ) £e. На практике используют автоматический выбор значения h , обеспечивающего достижение заданной погрешности. Сначала вычисляют значение интеграла I (n ), разбивая интервал интегрирования на п участков, затем число участков удваивают и вычисляют интеграл I (2n ). Процесс вычислений продолжают до тех пор, пока не станет справедливым условие.

1. Постановка задачи.

В прикладных исследованиях часто возникает необходимость вычисления значения определенного интеграла

Этот интеграл может выражать площадь, объем, работу переменной силы и

Если функция непрерывна на отрезке и ее первообразную удается выразить через известные функции, то для вычисления интеграла (13.1) можно воспользоваться формулой Ньютона-Лейбница:

К сожалению, в подавляющем большинстве случаев получить значение определенного интеграла с помощью формулы (13.2) или других аналитических методов не удается.

Пример 13.1. Интеграл широко используется при исследовании процессов теплообмена и диффузии, в статистической физике и теории вероятностей. Однако его значение может быть выражено в виде конечной комбинации элементарных функций.

Заметим, что даже в тех случаях, когда удается получить первообразную функцию в аналитической форме, значительные усилия, затраченные на это, часто оказываются чрезмерно высокой платой за окончательный результат. Добавим еще, что вычисления интеграла в этих случаях по формуле (13.2), как правило, приводят к громоздким (а часто - и приближенным) вычислениям. Следует отметить также, что зачастую найти точное значение интеграла (13.1) просто невозможно. Например, это имеет место, когда функция задается таблицей своих значений.

Обычно для вычисления значения определенного интеграла применяют специальные численные методы. Наиболее широко используют на практике квадратурные формулы - приближенные равенства вида

Здесь некоторые точки из отрезка узлы квадратурной формулы; числовые коэффициенты, называемые весами квадратурной формулы; целое число. Сумма которая принимается за приближенное значение интеграла, называется квадратурной суммой Величина называется погрешностью (или остаточным членом) квадратурной формулы.

Будем говорить, что квадратурная формула (13.3) точна для многочленов степени если для любого многочлена степени не выше эта формула дает точное значение интеграла, т.е.

При оценке эффективности квадратурных формул часто исходят из того, что наиболее трудоемкой операцией при вычислении по формуле (13.3) является нахождение значения функции Поэтому среди двух формул, позволяющих вычислить интеграл с заданной точностью более эффективной считается та, в которой используется меньшее число узлов.

Выведем простейшие квадратурные формулы, исходя из наглядных геометрических соображений. Будем интерпретировать интеграл (13.1) как площадь криволинейной трапеции, ограниченной графиком функции осью абсцисс и прямыми (рис. 13.1, а).

Разобьем отрезок на элементарные отрезки точками Интеграл I разобьется при этом на сумму элементарных интегралов:

где что соответствует разбиению площади исходной криволинейной трапеции на сумму площадей элементарных криволинейных трапеций (рис. 13.1, б).

Введем обозначения: где середина элементарного отрезка. Для простоты шаг будем считать постоянным.

2. Формула прямоугольников.

Заменим приближенно площадь элементарной криволинейной трапеции площадью прямоугольника, основанием которого является отрезок а высота равна значению (на рис. 13.2, а через обозначена точка с координатами Так мы приходим к элементарной квадратурной формуле прямоугольников:

Производя такую замену для всех элементарных криволинейных трапеций, получаем составную квадратурную формулу прямоугольников?

Эта формула соответствует приближенной замене площади исходной криволинейной трапеции площадью ступенчатой фшуры, изображенной на рис. 13 2. б.

Замечание. Иногда используют формулы

называемые соответственно составными квадратурными формулами левых и правых прямоугольников. Геометрические иллюстрации приведены на рис. 13.3, а и б. В соответствии с этим формулу (13.6) иногда называют составной квадратурной формулой центральных прямоугольников.

3. Формула трапеций.

Соединив отрезком точки на графике функции получим трапецию (рис 13.4, а). Заменим теперь приближенно площадь элементарной криволинейной трапеции площадью построенной фигуры. Тогда получим элементарную квадратурную формулу трапеций:

Пользуясь этой формулой при выводим составную квадратурную формулу трапеций:

Эта формула соответствует приближенной замене площади исходной

(кликните для просмотра скана)

криволинейной трапеции площадью фигуры, ограниченной ломаной линией, проходящей через точки (рис. 13.4, 6).

4. Формула Симпсона.

Если площадь элементарной криволинейной трапеции заменить площадью фигуры, расположенной под параболой, проходящей через точки (рис. 13.5, а), то получим приближенное равенство Здесь интерполяционный многочлен второй степени с узлами Как нетрудно убедиться, верна формула

Ее интегрирование приводит к равенству

Таким образом, выведена элементарная квадратурная формула Симпсона:

Применяя эту формулу на каждом элементарном отрезке, выводим составную квадратурную формулу Симпсона:

Замечание 1. Учитывая геометрическую интерпретацию формулы Симпсона, ее иногда называют формулой парабол. Замечание 2. В случае, когда число элементарных отрезков разбиения четно в формуле Симпсона можно использовать лишь узлы с целыми индексами:

При выводе этой формулы роль элементарного отрезка играет отрезок длины

5. Оценка погрешности.

Оценим погрешность выведенных квадратурных формул в предложении, что подынтегральная функция достаточно гладкая. Как и в предыдущих главах, будем использовать обозначение

Теорема 13.1. Пусть функция дважды непрерывно дифференцируема на отрезке Тогда для составных квадратурных формул прямоугольников и трапеций справедливы следующие оценки погрешности:

Выведем сначала оценку (13.13). Представим погрешность формулы прямоугольников в виде

Используя формулу Тейлора

где имеем

Так как то Замечая, что , приходим к оценке (13.13).

Для вывода оценки (13.14) воспользуемся тем, что отрезок, соединяющий точки представляет собой график интерполяционного многочлена первой степени Поэтому для элементарной формулы трапеций верно равенство

Используя оценку (11.28) погрешности линейной интерполяции, имеем

Методы численного интегрирования

ОСНОВЫ ЧИСЛЕННЫХ МЕТОДОВ

Лекция-5

Замечание.

Операторы

use linear_operators

означают подключение библиотек стандартных подпрограмм dfimsl и
linear_operators, соответственно.

В библиотеке linear_operators возможно использовать стандартную подпрограмму определения собственных чисел и векторов eig в виде:

lambda=eig(a,v=y),

a – исходная матрица (двумерный массив nxn ),

lambda – вектор собственных чисел (одномерный массив длиной n ),

y – матрица собственных векторов, расположенных по столбцам (двумерный массив nxn ).

Перечисленные массивы должны быть объявлены в программе.

Пусть требуется вычислить определенный интеграл вида

Для многих функций первообразные представляют собой достаточно сложные комбинации элементарных функций, либо вовсе не выражаются через них. В таких случаях использование формулы Ньютона-Лейбница на практике не представляется возможным. Во многих практических случаях достаточно получить значение интеграла с заданной точностью . Для вычисления приближенного значения интеграла существуют формулы численного интегрирования. Суть построения формул численного интегрирования состоит в следующем.

Разобьем отрезок на частей. Для простоты изложения положим эти части одинаковой длины :

Пронумеруем точки разбиения так, как показано на рис. 2.5.1. Имеем:

Рис. 2.5.1. К вопросу о численном интегрировании.

Исходный интеграл (2.5.1) может быть представлен в виде суммы интегралов по полученным в результате разбиения «малым» отрезкам:

. (2.5.2)

Интегралы

вычисляются по приближенным формулам.

Простейшие формулы для приближенного вычисления интегралов по отрезку называются квадратурными формулами . Рассмотрим некоторые из них ниже, а также изучим вопросы их точности. Порядок точности квадратурной формулы определяется степенью полинома (многочлена), для которой эта квадратурная формула точна.

2.5.2. Формула прямоугольников (формула «средних»).

Заменим на i -ом участке интегрируемую функцию постоянной величиной, например, равной ее значению в средней точке (рис. 2.5.2):

Рис. 2.5.2. К интегрированию по формуле прямоугольников.

, где . (2.5.4)

Тогда интеграл на отрезке заменяется площадью прямоугольника, т.е.

, (2.5.5)

и вычисление исходного интеграла сводится к вычислению суммы

. (2.5.6)

Кроме того, часто из практических соображений в качестве в формуле (2.5.6) берется , либо . В результате получаем:

(2.5.7)


– квадратурная формула «левых» прямоугольников;

(2.5.8)

– квадратурная формула «правых» прямоугольников.

Формулы (2.5.7) и (2.5.8) менее точные, чем (2.5.6), но иногда более удобные, например, при численном решении дифференциальных уравнений.

Точность вычисления . Как следует из построения квадратурные формулы прямоугольников дают точный результат интегрирования для функций, постоянных на i -ом участке (). Квадратурная формула «средних» прямоугольников дает точный результат также и для линейных на i -ом отрезке функций. Это утверждение достаточно проверить для простейшей линейной функции .

При точном интегрировании получаем:

,

а при интегрировании по формуле «средних» прямоугольников

Как видно, результаты точного и численного интегрирования совпадают.

численное интегрирование формула программирование

Введение

1. Методы численного интегрирования

2. Квадратурные формулы

3. Автоматический выбор шага интегрирования

Заключение

Библиографический список

Введение

Цель реферата состоит в изучение и сравнительный анализ методов численного интегрирования функций; реализация этих методов в виде машинных программ на языке высокого уровня и практическое решение задач численного интегрирования на ЭВМ.

При решении инженерных задач часто возникает необходимость в вычислениях значений определенного интеграла вида

Если функция непрерывна на отрезке [a , b ] и ее первообразная может быть определена через известную функцию, то вычисление такого интеграла производится по формуле Ньютона - Лейбница:

В инженерных задачах получить значение интеграла в аналитическом виде удается редко. Кроме того, функция f (x ) может быть задана, например, таблицей экспериментальных данных. Поэтому на практике для вычисления определенного интеграла используют специальные методы, в основе которых лежит аппарат интерполирования.

Идея таких методов заключается в следующем. Вместо того, чтобы вычислять интеграл по формуле (1), сначала вычисляют значения функции f (x i ) = y i в некоторых узлах x i Î[a , b ]. Затем выбирается интерполяционный многочлен P (x ), проходящий через полученные точки (x i , y i ), который используется при вычислении приближенного значения интеграла (1):

При реализации такого подхода формулы численного интегрирования принимают следующий общий вид:

где - узлы интерполирования, A i - некоторые коэффициенты, R - остаточный член, характеризующий погрешность формулы. Заметим, что формулы вида (2) называют квадратурными формулами.

Геометрический смысл численного интегрирования состоит в вычислении площади криволинейной трапеции, ограниченной графиком функции f (х ), осью абсцисс и двумя прямыми х = а и х = b. Приближенное вычисление площади приводит к отбрасыванию в квадратурных формулах остаточного члена R , характеризующего погрешность метода, на которую дополнительно накладывается вычислительная погрешность.

1. Методы численного интегрирования

В прикладных исследованиях часто возникает необходимость вычисления значения определённого интеграла

Как известно из курса математики, аналитически вычисление интеграла можно провести не во всех случаях. И даже в том случае, когда удаётся найти аналитический вид этого интеграла, процедура вычисления даёт приближённый результат, поэтому возникает задача приближенного значения этого интеграла.

Суть приближенного вычисления заключается в двух операциях: 1. в выборе конечного числа вместо n; 2. в выборе точки в соответствующем отрезке.

В зависимости от выбора мы получаем различные формулы для вычисления интеграла: Формулы левых и правых прямоугольников (5), (6)

Формула трапеции:

Формула Симпсона

b, a - концы рассматриваемого отрезка.

Для сравнения результатов вычисления вышеизложенными формулами численного интегрирования вычислим 3-мя способами следующий интеграл, разделив отрезок на 6 равных отрезков:

По формуле левых прямоугольников:

По формуле трапеции:

По формуле Симпсона:

А результат полученный аналитически равен

Следовательно, можно сделать вывод о том, что численный метод интегрирования по формуле Симпсон является более точным, но используется в общем случае при делении рассориваемого отрезка на чётное число промежутков.

2. Квадратурные формулы

Формулы прямоугольников являются наиболее простыми квадратурными формулами. Разобьем отрезок интегрирования [a, b ] на п равных частей длиной . Заметим, что величину h называют шагом интегрирования. В точках разбиения х 0 = а , х 1 = a + h , ..., x n = b отметим ординаты y 0 , y 1 ,…, y n кривой f (x ), т.е. вычислим у i = f (x i ), x i = a+ ih = x i -1 + h (i = ). На каждом отрезке длиной h построим прямоугольник со сторонами h и y i , где i = , т.е. по значениям ординат, вычисленных в левых концах отрезков. Тогда площадь криволинейной трапеции, определяющую величину интеграла (1), приближенно можно представить в виде суммы площадей прямоугольников (рис. 1). Отсюда получим формулу прямоугольников:

Если при вычислении интегральной суммы брать значения функции f (x ) не в левых, а в правых концах отрезков длиной h , что показано на рис. 1 пунктирной линией, то получим второй вариант формулы прямоугольников:

Третий вариант формулы прямоугольников можно получить при использовании значений функции f (x ), вычисленных в средней точке каждого отрезка длины h (рис. 2):

Формулы (3), (4) и (4) называют формулами левых, правых и центральных прямоугольников соответственно.

Рис. 2

Формула трапеций. Здесь на каждом элементарном интервале [x i -1 , x i ] длины h точки с координатами (x i -1 , y i -1) и (x i , y i ) соединяются отрезком (рис. 3). Тогда площадь трапеции, построенной на этом интервале, определяется произведением 0,5h (y i -1 + y i ). Суммируя площади элементарных трапеций для i = получим приближенное значение интеграла:

Формула Симпсона. Разобьем интервал интегрирования на 2n равных частей длиной . На каждом отрезке [x i , x i+2 ] подынтегральную функцию f (х ) заменим параболой, проходящей через точки (x i , y i ), (x i +1 , y i +1), (x i +2 , y i +2). Тогда приближенное значение интеграла определяется формулой Симпсона:

При вычислениях на ЭВМ более удобна следующая формула:

Метод Симпсона - один из наиболее широко известных и применяемых методов численного интегрирования, он дает точные значения интеграла при интегрировании многочленов до третьего порядка включительно.

Формула Ньютона. Приближенное значение интеграла по формуле Ньютона вычисляется следующим образом:

где число участков разбиения кратно трем, т.е. составляет 3n . При разработке программ для ЭВМ удобнее использовать эквивалентную формулу:

Метод Ньютона дает точные значения интеграла при интегрировании многочленов до четвертого порядка включительно.

3. Автоматический выбор шага интегрирования

В результате расчета по формулам (3) - (8) получают приближенное значение интеграла, которое может отличаться от точного на некоторую величину, называемую погрешностью интегрирования. Ошибка определяется формулой остаточного члена R , различной для каждого из методов интегрирования. Если требуется вычислить значение интеграла с погрешностью, не превышающей e, то необходимо выбрать такой шаг интегрирования h , чтобы выполнялось неравенство R (h ) £ e. На практике используют автоматический выбор значения h , обеспечивающего достижение заданной погрешности. Сначала вычисляют значение интеграла I (n ), разбивая интервал интегрирования на п участков, затем число участков удваивают и вычисляют интеграл I (2n ). Процесс вычислений продолжают до тех пор, пока не станет справедливым условие:

где P - порядок точности квадратурной формулы. Для формул левых и правых прямоугольников P = 1, для формул центральных прямоугольников и трапеций P = 2, для формул Симпсона и Ньютона P = 4. В результате полагают, что I » I (2n ) с точностью e.

Заключение

В ходе выполнения курсовой работы был проведен сравнительный анализ численных методов, таких как численное интегрирование.

В настоящее время появилось значительное число различных программных продуктов (MathCAD, MathLAB и т.д.), с помощью которых, задавая только входные данные, можно решить значительное число задач.

Для более глубокого анализа численных методов мы использовали средства MathCAD, а также алгоритмические языки программирования.

Б иблиографический список

1. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Гос. изд-во физ.-мат. литературы, 1960. 659 с.

2. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высш. шк., 1994. 544 с.

3. Ракитин В.И., Первушин В.Е. Практическое руководство по методам вычислений с приложением программ для персональных компьютеров: Учеб. пособие. М.: Высш. шк., 1998. 383 с.

4. Калиткин Н.Н. Численные методы. М.: Наука, 1978.

Размещено на http://www.