• Перевод

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

π(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

π(n) = ∫ 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Перебор делителей. По определению число n является простым лишь в том случае, если оно не делится без остатка на 2 и другие целые числа, кроме 1 и самого себя. Приведенная выше формула позволяет удалить ненужные шаги и сэкономить время: например, после проверки того, делится ли число на 3, нет необходимости проверять, делится ли оно на 9.

  • Функция floor(x) округляет число x до ближайшего целого числа, которое меньше или равно x.

Узнайте о модульной арифметике. Операция "x mod y" (mod является сокращением латинского слова "modulo", то есть “модуль”) означает "поделить x на y и найти остаток". Иными словами, в модульной арифметике по достижении определенной величины, которую называют модулем , числа вновь "превращаются" в ноль. Например, часы отсчитывают время с модулем 12: они показывают 10, 11 и 12 часов, а затем возвращаются к 1.

  • Во многих калькуляторах есть клавиша mod. В конце данного раздела показано, как вручную вычислять эту функцию для больших чисел.
  • Узнайте о подводных камнях малой теоремы Ферма. Все числа, для которых не выполняются условия теста, являются составными, однако остальные числа лишь вероятно относятся к простым. Если вы хотите избежать неверных результатов, поищите n в списке "чисел Кармайкла" (составных чисел, которые удовлетворяют данному тесту) и "псевдопростых чисел Ферма" (эти числа соответствуют условиям теста лишь при некоторых значениях a ).

    Если удобно, используйте тест Миллера-Рабина. Хотя данный метод довольно громоздок при вычислениях вручную, он часто используется в компьютерных программах. Он обеспечивает приемлемую скорость и дает меньше ошибок, чем метод Ферма. Составное число не будет принято за простое, если провести расчеты для более ¼ значений a . Если вы случайным способом выберете различные значения a и для всех них тест даст положительный результат, можно с достаточно высокой долей уверенности считать, что n является простым числом.

  • Для больших чисел используйте модульную арифметику. Если у вас под рукой нет калькулятора с функцией mod или калькулятор не рассчитан на операции с такими большими числами, используйте свойства степеней и модульную арифметику, чтобы облегчить вычисления. Ниже приведен пример для 3 50 {\displaystyle 3^{50}} mod 50:

    • Перепишите выражение в более удобном виде: mod 50. При расчетах вручную могут понадобиться дальнейшие упрощения.
    • (3 25 ∗ 3 25) {\displaystyle (3^{25}*3^{25})} mod 50 = mod 50 mod 50) mod 50. Здесь мы учли свойство модульного умножения.
    • 3 25 {\displaystyle 3^{25}} mod 50 = 43.
    • (3 25 {\displaystyle (3^{25}} mod 50 ∗ 3 25 {\displaystyle *3^{25}} mod 50) mod 50 = (43 ∗ 43) {\displaystyle (43*43)} mod 50.
    • = 1849 {\displaystyle =1849} mod 50.
    • = 49 {\displaystyle =49} .
  • Все натуральные числа, кроме единицы подразделяются на простые и составные. Простое число - это натуральное число, которое имеет только два делителя: единицу и само себя . Все остальные называются составными. Исследованием свойств простых чисел занимается специальный раздел математики - теория чисел. В теории колец простые числа соотносят с неприводимыми элементами.

    Приведем последовательность простых чисел начиная с 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, ... и т.д.

    Согласно основной теореме арифметики каждое натуральное число, которое больше единицы можно представить в виде произведения простых чисел. Вместе с тем это является единственным способом представления натуральных чисел с точностью до порядка следования сомножителей. Исходя из этого, можно сказать, что простые числа - это элементарные части натуральных чисел.

    Такое представление натурального числа называется разложением натурального числа на простые числа или факторизацией числа.

    Одним из самых древних и эффективных способов вычисления простых чисел является «решето Эрастофена».

    Практика показала, что после вычисления простых чисел с помощью решета Эрастофена требуется проверить, является ли данное число простым. Для этого разработаны специальные тесты, так называемые тесты простоты. Алгоритм этих тестов являются вероятностными. Чаще всего их применяют в криптографии.

    Кстати сказать, что для некоторых классов чисел существуют специализированные эффективные тесты простоты. К примеру, для проверки чисел Мерсенна на простоту применяют тест Люка-Лемера, а для проверки на простоту чисел Ферма - тест Пепина.

    Все мы знаем, что чисел бесконечно много. Справедливо возникает вопрос: сколько же тогда существует простых чисел? Простых чисел также бесконечное количество. Наиболее древним доказательством этого суждения является доказательство Евклида, которое изложено в «Началах». Доказательство Евклида имеет следующий вид:

    Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число невозможно разделить ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Таким образом, число должно делиться на некоторое простое число, не включённое в этот набор.

    Теорема распределения простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растёт как n / ln(n).

    За тысячи лет исследования простых чисел, было выявлено, что наибольшим известным простым числом является 243112609 − 1. Это число включает 12 978 189 десятичных цифр и является простым числом Мерсенна (M43112609). Это открытие было сделано 23 августа 2008 года на математическом факультете университета uCLA в рамках проекта по распределённому поиску простых чисел Мерсенна GIMPS.

    Главной отличительной особенностью чисел Мерсенна является наличие высоко эффективного теста простоты Люка - Лемера. С его помощью простые числа Мерсенна на протяжении длительного периода времени являются самыми большими из известных простых чисел.

    Однако по сей день многие вопросы относительно простых чисел не получили точных ответов. На 5-м Международном математическом конгрессе Эдмунд Ландау сформулировал основным проблемы в области простых чисел:

    Проблема Гольдбаха или первая проблема Ландау заключается в том, что необходимо доказать или опровергнуть, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.
    Вторая проблема Ландау требует найти ответ на вопрос: бесконечно ли множество «простых близнецов» - простых чисел, разность между которыми равна 2?
    Гипотеза Лежандра или третья проблема Ландау такова: верно ли, что между n2 и (n + 1)2 всегда найдётся простое число?
    Четвёртая проблема Ландау: бесконечно ли множество простых чисел вида n2 + 1?
    Помимо вышеперечисленных проблем существует проблема определения бесконечного количества простых чисел во многих целочисленных последовательностях типа числа Фибоначчи, числа Ферма и т. д.

    5 октября 2016 в 14:58

    Красота чисел. Антипростые числа

    • Научно-популярное

    У числа 60 двенадцать делителей: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

    Все знают об удивительных свойствах простых чисел, которые делятся только на самих себя и на единицу. Эти числа исключительно полезны. Относительно большие простые числа (примерно от 10 300) используются в криптографии с открытых ключом, в хеш-таблицах, для генерации псевдослучайных чисел и т.д. Кроме огромной пользы для человеческой цивилизации, эти особенные числа поразительно красивы:

    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199...

    Все остальные натуральные числа больше единицы, которые не являются простыми, называются составными. У них несколько делителей. Так вот, среди составных чисел выделяется особая группа чисел, которые можно назвать «суперсоставными» или «антипростыми», потому что у них особенно много делителей. Такие числа почти всегда являются избыточными (кроме 2 и 4).

    Избыточными называются положительное целое число N, у которого сумма собственных делителей (кроме N) превышает N.

    Например, у числа 12 сразу шесть делителей: 1, 2, 3, 4, 6, 12.

    Это избыточное число, потому что

    1 + 2 + 3 + 4 + 6 = 16 (16 > 12)

    Неудивительно, что именно число 12 используется в огромном количестве практических областей, начиная с религии: 12 богов в греческом пантеоне и столько же в пантеоне скандинавских богов, не считая Одина, 12 учеников Христа, 12 ступеней колеса буддистской сансары , 12 имамов в исламе и т.д. Двенадцатиричная система счисления - одна из самых удобных на практике, поэтому её используют в календаре, чтобы разделить год на 12 месяцев и 4 времени года, а также чтобы разделить день и ночь на 12 часов. Сутки составляют 2 круга часовой стрелки по кругу, разделённому на 12 отрезков; кстати, количество в 60 минут тоже выбрано неспроста - это ещё одно антипростое число с большим количеством делителей.

    Удобная двенадцатиричная система используется в нескольких денежных системах, в том числе в древнерусских княжествах (12 полушек = 1 алтын = 2 рязанки = 3 новгородки = 4 тверских деньги = 6 московок). Как видим, большое количество делителей является критически важным качеством в условиях, когда монеты из разных систем нужно свести к одному номиналу.

    Большие избыточные числа полезны в других областях. К примеру, возьмём число 5040. Это в каком-то смысле уникальное число, вот первые из списка его делителей:

    1, 2, 3, 4, 5, 6, 7, 8, 9, 10...

    То есть число 5040 делится на все простые числа от 1 до 10. Другими словами, если мы возьмём группу из 5040 людей или предметов, то мы можем поделить её на 2, 3, 4, 5, 6, 7, 8, 9 или 10 равных групп. Это просто великолепное число. Вот полный список делителей 5040:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040

    Чёрт побери, да мы можем поделить это число практически на что угодно. У него 60 делителей !

    5040 - идеальное число для урбанистики, политики, социологии и т.д. На это обратил внимание ещё афинский мыслитель Платон 2300 лет назад. В своём фундаментальном труде «Законы» Платон писал, что в идеальной аристократической республике должно быть 5040 граждан, потому что такое количество граждан можно разделить на любое количество равных групп до десяти, без исключения. Соответственно, в такой системе удобно планировать управленческую и представительскую иерархию.

    Конечно, это идеализм и утопия, но использование числа 5040 в самом деле исключительно удобно. Если в городе 5040 жителей, то его удобно делить на равные районы, планировать определённое количество объектов обслуживания для равного количества граждан, выбирать представительные органы на голосовании.

    Такие высокосоставные, крайне избыточные числа и называются «антипростыми». Если мы хотим дать чёткое определение, то можно сказать, что антипростое число - такое положительное целое число, у которого больше делителей, чем у любого целого числа меньше его.

    По такому определению, самым маленьким антипростым числом кроме единицы будет 2 (два делителя), 4 (три делителя). Далее следуют:

    6 (четыре делителя), 12 (шесть делителей), 24, 36, 48, 60 (количество минут в часе), 120, 180, 240, 360 (количество градусов в круге), 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400

    Именно эти числа удобно использовать в настольных играх с картами, фишками, деньгами и т.д. Например, они позволяют раздавать одинаковое количество карт, фишек, денег на разное количество игроков. По этой же причине их удобно использовать для составления классов школьников или студентов - например, чтобы разделить их на равное количество одинаковых групп для выполнения заданий. Для количества игроков в спортивной команде. Для количества команд в лиге. Для количество жителей в городе (о чём уже говорилось выше). Для административных единиц в городе, области, стране.

    Как видно из примеров, многие из антипростых чисел уже де-факто используется в практических устройствах и системах счисления. Например, числа 60 и 360. Это было довольно предсказуемо, учитывая удобство наличия большого количества делителей.

    О красоте антипростых чисел можно спорить. Если простые числа неоспоримо красивы, то антипростые числа, возможно, кому-то покажутся отвратительными. Но это поверхностное впечатление. Давайте посмотрим на них с другой стороны. Ведь фундаментом этих чисел являются простые числа. Именно из простых чисел, словно из строительных блоков, составлены составные числа, избыточные числа и венец творения - антипростые числа.

    Основная теорема арифметики утверждает, что любое составное число можно представить как произведение нескольких простых множителей. Например,

    30 = 2 × 3 × 5
    550 = 2 × 5 2 × 11,

    При этом составное число не будет делиться больше ни на какое другое простое число, кроме своих простых множителей. Антипростые числа по определению отличаются максимальным произведением степеней простых множителей, из которых они состоят.
    При этом их простые множители - это всегда последовательные простые числа. И степени в ряду простых множителей никогда не увеличиваются.

    Так что в антипростых числах тоже есть своя особая красота.