Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Перпендикулярность прямой и плоскости.

1. Перпендикулярные прямые в пространстве.

Определение. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между прямыми равен 90°.
Обозначение перпендикулярности прямых а и b: a⊥b

Перпендикулярные прямые могут пересекаться, а могут быть скрещивающимися.

Лемма перпендикулярности двух параллельных прямых к третьей прямой.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Обратите внимание, что следующее утверждение планиметрии в стереометрии не действует:
Если две прямые перпендикулярны к третьей, то они параллельны.

На рисунке видно, что две прямые a и b перпендикулярны прямой с , но не параллельны .

2.Параллельные прямые, перпендикулярные к плоскости.

Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна ко всем прямым, лежащим в этой плоскости.
Обозначение перпендикулярности прямой и плоскости: a⊥ γ.

На рисунке прямая а перпендикулярна плоскости γ. Из определения следует, что прямая a перпендикулярна каждой прямой, лежащей в этой плоскости.

Теорема.
Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.

3. Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Для того, чтобы прямая в пространстве была плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой былагоризонтальной проекции горизонтали, а фронтальная проекция - к фронтальной проекции фронтали этой плоскости.

Определение расстояния от точки до плоскости (рис. 19)

1.Из точки опустить перпендикуляр на плоскость (для этого в плоскости

провести h,f);

2.Найти точку пересечения прямой с плоскостью (см. рис.18);

3.Найти н.в. отрезка перпендикуляра (см. рис 7).

Второй раздел Метод замены плоскостей проекций

(к задачам 5, 6,7)

Данную геометрическую фигуру оставляют в системе плоскостей проекций неподвижной. Новые плоскости проекции устанавливают так, чтобы получаемые на них проекции обеспечивали рациональное решение рассматриваемой задачи. При этом каждая новая система плоскостей проекций должна быть системой ортогональной. После проецирования объектов на плоскости, они совмещаются в одну посредством вращения их вокруг общих прямых (осей проекций) каждой пары взаимно перпендикулярных плоскостей.

Так например, пусть в системе двух плоскостей П 1 и П 2 задана точка А. Дополним систему еще одной плоскостью П 4 (рис. 20), П 1 П 4 . Она имеет общую линию Х 14 с плоскостью П 1 . Строим проекцию А 4 на П 4 .

АА 1 =А 2 А 12 =А 4 А 14.

На рис. 21, где плоскости П 1 , П 2 и П 4 приведены в совмещение, этот факт определен результатом А 1 А 4 Х 14 , а А 14 А 4 А 2 А 12.

Расстояние новой проекции точки до новой оси проекции (А 4 А 14) равно расстоянию от заменяемой проекции точки до заменяемой оси (А 2 А 12).

Большое количество метрических задач начертательной геометрии решаются на основе следующих четырех задач:

1. Преобразование прямой общего положения в прямую уровня (рис.22):

а) П 4 || АВ (ось Х 14 || А 1 В 1);

б) А 1 А 4 Х 14 ; В 1 В 4 Х 14 ;

в) А 4 А 14 =А 12 А 2 ;

В 4 В 14 =В 12 В 2 ;

А 4 В 4 - н.в.

2. Преобразование прямой общего положения в проецирующую (рис.23):

а) П 4 || АВ (Х 14 || А 1 В 1);

А 1 А 4 Х 14 ;

В 1 В 4 Х 14 ;

А 14 А 4 =А 12 А 2 ;

В 14 В 4 =В 12 В 2 ;

А 4 В 4 - н.в.;

б) П 5 АВ (Х 45 А 4 В 4);

А 4 А 5 Х 45 ;

В 4 В 5 Х 45 ;

А 45 А 5 =В 45 В 5 =А 14 А 1 =В 14 В 1 ;

3. Преобразование плоскости общего положения в проецирующее положение (рис.24):

Плоскость можно привести в проецирующее положение, если одну прямую плоскости сделать проецирующей. В плоскости АВС проведем горизонталь (h 2 ,h 1), которую за одно преобразование можно сделать проецирующей. Проведем плоскость П 4 перпендикулярно горизонтали; на эту плоскость она спроецируется точкой, а плоскость треугольника - прямой линией.

4. Преобразование плоскости общего положения в плоскость уровня (рис.25).

Плоскость сделать плоскостью уровня с помощью двух преобразований. Вначале плоскость надо сделать проецирующей (см. рис. 25), а затем провести П 5 || А 4 В 4 С 4 , получим А 5 В 5 С 5 - н.в.

Задача №5

Определить расстояние от точки С до прямой общего положения (рис.26).

Решение сводится ко 2-й основной задаче. Тогда расстояние по эпюре определяется как расстояние между двумя точками

А 5 В 5 D 5 и С 5.

Проекция С­ 4 D 4 || Х 45.

Задача №6

Определить расстояние от ()Dдо плоскости, заданной точками А,В,С, (рис. 27).

Задачу решают, используя 2-ю основную задачу. Расстояние (Е 4 D 4), от ()D 4 до прямой A 4 C 4 В 4 ,в которую спроецировалась плоскость АВС, является натуральной величиной отрезкаED.

Проекция D­ 1 E 1 || Х 14 ;

Е 2 Е Х12 =Е 4 Е Х14.

Построить самостоятельно D­ 1 E 1.

Построить самостоятельно D­ 2 E 2.

Задача №7

Определить натуральную величину треугольника АВС (см. решение 4-й основной задачи) (рис.25)

В планиметрии построение перпендикуляра основано на том, что он соединяет данную точку и точку, симметричную с ней относительно рассматриваемой прямой. Если мы хотим составить понятие о перпендикуляре к плоскости, то можно взять любую точку, лежащую вне этой плоскости, отразить эту точку в данной плоскости, как в зеркале, и соединить данную точку с ее отражением; тогда получим перпендикуляр к плоскости. Следует, однако, заметить, что в случае отражения относительно прямой все дело сводилось к сгибу плоскости вдоль данной прямой, т. е. к движению, хотя и производимому в пространстве. Отражение же в плоскости уже не сводится к движению. Поэтому изложение вопроса о перпендикуляре к плоскости сложнее соответствующего изложения вопроса о перпендикуляре к прямой в планиметрии, оно опирается на следующее известное читателю

Определение. Прямая называется перпендикуляром к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Так как угол между двумя скрещивающимися прямыми равен по определению углу между пересекающимися прямыми, параллельными данным, то прямая а (рис. 337), перпендикулярная ко всем прямым плоскости К, проходящим через точку пересечения прямой а с плоскостью К, будет перпендикулярна и к плоскости К. Действительно, она образует прямой угол с любой прямой в плоскости так как она перпендикулярна к прямой b, проведенной в этой плоскости через точку параллельно b.

В действительности имеет место гораздо более простой Признак перпендикулярности прямой и плоскости. Прямая, перпендикулярная к двум пересекающимся прямым плоскости, перпендикулярна к этой плоскости.

Доказательство. Пусть на рис. 338 прямая а перпендикулярна к двум пересекающимся прямым , лежащим в плоскости Х. В силу сделанного выше замечания мы можем, не нарушая общности, предположить, что прямая а проходит через точку пересечения прямых тип. Требуется доказать, что прямая а перпендикулярна и к любой прямой плоскости в силу того же замечания можно предположить, что прямая проходит через точку . Сделаем следующие вспомогательные построения: на прямой а возьмем произвольную точку М и точку М на продолжении по другую сторону плоскости Я на расстоянии от точки Три прямые в плоскости X пересечем какой-либо прямой с, не проходящей через точки пересечения обозначим соответственно Р, Q, R. Соединим точки М и М с точками Р, Q, R. Треугольники равны, так как они прямоугольные, катеты равны по построению, а катет общий; значит, равны и их гипотенузы: (можно еще проще заметить, что МР - МР, как наклонные с равными проекциями). Отрезки MQ, MQ также равны. Значит, равны треугольники MPQ и MPQ (по трем сторонам). Отсюда заключаем, что равны треугольники MQR и у них между равными сторонами MQ и MQ и общей стороной QR заключены равные углы: (соответственные углы в равных треугольниках). Теперь уже видно, что равны и треугольники трем сторонам). Таким образом, углы MMUR и равны, и так как они смежные, то каждый из них прямой. Утверждение доказано.

К любой прямой можно провести перпендикулярную плоскость.

В самом деле, возьмем произвольную прямую и в любой ее точке проведем к ней два каких-либо перпендикуляра (лежащие в каких-либо двух плоскостях, проведенных через эту прямую). Через них, как через две пересекающиеся прямые, проходит плоскость. По предыдущему, данная прямая служит перпендикуляром к этой плоскости.

Из проведенных рассуждений также следует вывод: все прямые, перпендикулярные к данной прямой в одной из ее точек, лежат в одной плоскости, перпендикулярной к этой прямой.

В любой точке плоскости также можно восставить перпендикуляр к ней.

Для этого достаточно провести через данную в плоскости точку две прямые, лежащие в этой плоскости, а затем построить в той же точке две плоскости, перпендикулярные к проведенным прямым. Имея общую точку, эти две плоскости пересекутся по прямой, которая будет одновременно перпендикулярна к двум пересекающимся прямым в плоскости и, следовательно, перпендикулярна к самой плоскости.

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости.
В начале урока вспомним определение прямой, перпендикулярной к плоскости. Далее рассмотрим и докажем теорему-признак перпендикулярности прямой и плоскости. Для доказательства этой теоремы вспомним свойство серединного перпендикуляра.
Далее решим несколько задач на перпендикулярность прямой и плоскости.

Тема: Перпендикулярность прямой и плоскости

Урок: Признак перпендикулярности прямой и плоскости

На этом уроке мы повторим теорию и докажем теорему-признак перпендикулярности прямой и плоскости .

Определение . Прямая а называется перпендикулярной к плоскости α, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство .

Пусть нам дана плоскость α. В этой плоскости лежат две пересекающиеся прямые p и q . Прямая а перпендикулярна прямой p и прямой q . Нам нужно доказать, что прямая а перпендикулярна плоскости α, то есть, что прямая а перпендикулярна любой прямой, лежащей в плоскости α.

Напоминание .

Для доказательства нам нужно вспомнить свойства серединного перпендикуляра к отрезку. Серединный перпендикуляр р к отрезку АВ - это геометрическое место точек, равноудаленных от концов отрезка. То есть, если точка С лежит на серединном перпендикуляре р, то АС = ВС .

Пусть точка О - точка пересечения прямой а и плоскости α (рис. 2). Без ограничения общность, будем считать, что прямые p и q пересекаются в точке О . Нам нужно доказать перпендикулярность прямой а к произвольной прямой m из плоскости α.

Проведем через точку О прямую l , параллельно прямой m. На прямой а отложим отрезки ОА и ОВ , причем ОА = ОВ , то есть точка О - середина отрезка АВ . Проведем прямую PL , .

Прямая р перпендикулярна прямой а (из условия), (по построению). Значит, р АВ . Точка Р лежит на прямой р . Значит, РА = РВ .

Прямая q перпендикулярна прямой а (из условия), (по построению). Значит, q - серединный перпендикуляр к отрезку АВ . Точка Q лежит на прямой q . Значит, QА = .

Треугольники АР Q и ВР Q равны по трем сторонам (РА = РВ , QА = QВ, Р Q - общая сторона). Значит, углы АР Q и ВР Q равны.

Треугольники А PL и BPL равны по углу и двум прилежащим сторонам (∠АР L = ∠ВР L, РА = РВ , PL - общая сторона). Из равенства треугольников получаем, что AL = BL .

Рассмотрим треугольник ABL. Он равнобедренный, так как AL = BL. В равнобедренном треугольнике медиана является и высотой, то есть прямая перпендикулярна АВ .

Мы получили, что прямая а перпендикулярна прямой l, а значит, и прямой m, что и требовалось доказать.

Точки А, М, О лежат на прямой, перпендикулярной к плоскости α, а точки О, В, С и D лежат в плоскости α (рис. 3). Какие из следующих углов являются прямыми: ?

Решение

Рассмотрим угол . Прямая АО перпендикулярна плоскости α, а значит, прямая АО перпендикулярна любой прямой, лежащей в плоскости α, в том числе прямой ВО . Значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой ОС , значит, .

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, . Рассмотрим треугольник DAO . В треугольнике может быть только один прямой угол. Значит, угол DAM - не является прямым.

Рассмотрим угол . Прямая АО перпендикулярна прямой О D , значит, .

Рассмотрим угол . Это угол в прямоугольном треугольнике BMO , он не может быть прямым, так как угол МОВ - прямой.

Ответ : .

В треугольнике АВС дано: , АС = 6 см, ВС = 8 см, СМ - медиана (рис. 4). Через вершину С проведена прямая СК , перпендикулярная к плоскости треугольника АВС , причем СК = 12 см. Найдите КМ .

Решение :

Найдем длину АВ по теореме Пифагора: (см).

По свойству прямоугольного треугольника середина гипотенузы М равноудалена от вершин треугольника. То есть СМ = АМ = ВМ , (см).

Рассмотрим треугольник КСМ . Прямая КС перпендикулярна плоскости АВС , а значит, КС перпендикулярна СМ . Значит, треугольник КСМ - прямоугольный. Найдем гипотенузу КМ из теоремы Пифагора: (см).

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 1, 2, 5, 6 стр. 57

2. Дайте определение перпендикулярности прямой и плоскости.

3. Укажите в кубе пару - ребро и грань, которые являются перпендикулярными.

4. Точка К лежит вне плоскости равнобедренного треугольника АВС и равноудалена от точек В и С . М - середина основания ВС . Докажите, что прямая ВС перпендикулярна плоскости АКМ .