Текст, представленный ниже, нужно расценивать как личное мнение автора. Никакой секретной информацией (или доступом к ней) он не обладает. Всё, что изложено - это факты из открытых источников плюс немного здравого смысла («диванной аналитики», если угодно).

Научная фантастика - все эти бластеры и «пиу-пиу» в открытом космосе на крошечных одноместных истребителях - приучила человечество серьезно переоценивать доброжелательность Вселенной по отношению к теплым белковым организмам. Особенно сильно это проявляется, когда фантасты описывают путешествия к другим планетам. Увы, освоение «настоящего космоса» вместо привычных нам нескольких сотен «камэ» под защитой магнитного поля Земли будет более трудным предприятием, чем представлялось обывателю всего десятилетие назад.

Итак, вот мой главный тезис. Психологический климат и конфликты внутри экипажа далеко не главные проблемы, с которыми столкнется человек при организации пилотируемых полетов на Марс.

Главная проблема человека, путешествующего за пределы магнитосферы Земли - проблема с большой буквы «Р».

Что такое космическая радиация и почему мы не гибнем от нее на Земле

Ионизирующее излучение в космосе (за пределами нескольких сотен километров околоземельного пространства, которые человек действительно освоил) состоит из двух частей.

Излучение Солнца. Это, прежде всего, «солнечный ветер» - поток частиц, который постоянно «дует» во все стороны от светила и который чрезвычайно хорош для будущих космических парусников, потому что позволит им как следует разогнаться для путешествий за пределы Солнечной системы. Вот только для живых существ основная часть этого ветра не особо полезна. Замечательно, что нас от жесткой радиации защищают толстый слой атмосферы, ионосфера (та, где озоновые дыры), а еще мощное магнитное поле Земли.

Помимо ветра, который разлетается более-менее равномерно, наше светило еще периодически постреливает так называемыми солнечными вспышками. Последние представляют собой выбросы коронарного вещества Солнца. Они настолько серьезны, что время от времени приводят к проблемам у людей и техники даже на Земле, где самое веселье, повторюсь, недурственно экранируется.

Итак, у нас есть атмосфера и магнитное поле планеты. В уже довольно близком космосе, на расстоянии десятка-другого тысяч километров от Земли, солнечная вспышка (даже слабая, всего-то пара Хиросим), попав в корабль, гарантированно выведет его живую начинку из строя без малейших шансов на выживание. Помешать этому сегодня - при текущем уровне развития технологий и материалов - нам абсолютно нечем. По этой и только по этой причине многомесячное путешествие к Марсу человечеству придется отложить до времени, когда мы не решим эту проблему хотя бы частично. Также его придётся планировать в периоды наиболее спокойного солнца и много молиться всем техническим богам.

Космические лучи. Эти вездесущие злодейские штуки несут огромное количество энергии (больше, чем способен закачать в частицу БАК). Они приходят из других частей нашей галактики. Попадая в щит земной атмосферы, такой луч взаимодействует с ее атомами и расшибается на десятки менее энергичных частиц, которые каскадно порождают потоки еще менее энергичных (но тоже опасных) и в итоге все это великолепие проливается радиационным дождём на поверхность планеты. Примерно 15% от фонового излучения на Земле приходится на гостей из космоса. Чем выше ты живешь над уровнем моря, тем выше ловимая в течении жизни доза. И происходит это круглосуточно.

В качестве школьного упражнения попробуйте представить, что произойдёт с космическим кораблём и его «живой начинкой» в случае прямого попадании в них такого луча где-нибудь в открытом космосе. Лететь к Марсу, напомню, предстоит несколько месяцев, кораблик для этого предстоит строить здоровенный и вероятность описанного выше «контакта» (а то и не одного) достаточно велика. Просто пренебречь ею при длительных полетах с живым экипажем, увы, никак не получится.

Что ещё?

Помимо той радиации, что долетает до Земли от Солнца, есть ещё та солнечная радиация, которую магнитосфера планеты отталкивает, не пропускает внутрь и самое главное - накапливает*. Знакомьтесь, читатели. Это радиационный пояс Земли (РПЗ). Он же пояс Ван Аллена, как его называют за рубежом. Преодолеть его космонавтам предстоит что называется «на полных парах», чтобы не получить летальную дозу радиации всего за несколько часов. Повторный контакт с этим поясом - если мы вопреки здравому смыслу решим вернуть астронавтов с Марса на Землю - запросто может их добить.

*Значительная доля частиц пояса Ван Аллена приобретает опасную скорость уже в самом поясе. То есть он не только защищает нас от радиации извне, но еще и усиливает эту накопленную радиацию.

До сих пор речь шла об открытом космосе. Но не нужно забывать о том, что у Марса (в отличие от Земли) почти нет магнитного поля**, а атмосфера разрежённая и дохленькая, так что подвергаться воздействию этих негативных факторов люди будут не только в полёте.

**Ладно, немножко есть - в районе южного полюса.

Отсюда вывод. Жить будущим колонистам вероятнее всего предстоит не на поверхности планеты (как нам показывали в эпичном кино «Миссия на Марс»), а глубоко под ней.

Как быть?

Прежде всего, видимо, не питать иллюзий на скорое (в течение десятка-другого-третьего лет) разрешение всех этих проблем. Чтобы избежать гибели экипажа от лучевой болезни, нам придётся или вообще его туда не посылать и осваивать космос с помощью умных машин (кстати, не самое глупое решение), либо очень здорово поднапрячься, потому что, если я прав, то отправка людей на Марс с созданием там постоянной колонии - задача для одной страны (хоть США, хоть России, хоть Китая) в ближайшие полстолетия, а то и дольше совершенно неподъёмная. Один корабль для такой миссии обойдется в сумму, эквивалентную постройке и полному обслуживанию пары-тройки МКС (см. ниже).

И да, забыл сказать: пионеры Марса будут заведомо «смертниками», поскольку ни обратной дороги, ни долгой и комфортной жизни на Марсе обеспечить им в ближайшие полвека у нас, скорее всего, получится.

Как теоретически могла бы выглядеть миссия на Марс, имей мы для этого все ресурсы и технологии старушки-Земли? Сравните описанное ниже с тем, что вы видели в культовом фильме «Марсианин».

Миссия на Марс. Условно реалистичная версия

Во-первых, человечеству предстоит сильно напрячься и построить циклопических размеров космический корабль с мощной антирадиационной защитой, который сможет частично компенсировать адскую лучевую нагрузку на экипаж за пределами магнитного поля Земли и обеспечить доставку более-менее живых колонистов на Марс - в один конец.

Как может выглядеть такой корабль?

Это здоровенная махина в десятки (а лучше сотни) метров в поперечнике, обеспеченная собственным магнитным полем (сверхпроводящие электромагниты) и источниками энергии для его поддержания (атомные реакторы). Огромные размеры конструкции позволяют набить её изнутри поглощающими радиацию материалами (например, это может быть вспененный освинцованный пластик или герметичные контейнеры с простой либо «тяжелой» водой), которые десятилетиями (!) предстоит возить на орбиту и монтировать вокруг сравнительно крошечной капсулы жизнеобеспечения, куда потом мы поместим астронавтов.

Помимо размеров и дороговизны, марсианский корабль должен быть чертовски надежным и, главное, полностью автономным в плане управления. Чтобы доставить экипаж живым безопаснее всего будет погрузить его в искусственную кому и немного охладить (всего на пару-тройку градусов), чтобы замедлить метаболические процессы. В таком состоянии люди а) будут менее чувствительны к радиации, б) занимают меньше места и их дешевле экранировать от все той же радиации.

Очевидно, помимо корабля, нужен искусственный интеллект, способный уверенно доставить корабль на орбиту Марса, выгрузить колонистов на его поверхность, не повредив в процессе ни себя, ни груз, а потом ещё без участия людей вернуть астронавтов в сознание (уже на Марсе). Пока таких технологий у нас нет, но есть некоторая надежда, что подобный ИИ, а главное политические и экономические ресурсы для постройки описанного корабля, появятся у нас, допустим, ближе к середине столетия.

Хорошей новостью является то, что марсианский «паром» для колонистов вполне может быть многоразовым. Ему предстоит как челноку курсировать между Землёй и конечным пунктом, доставляя в колонию партии «живого груза» на замену выбывших «от естественных причин» людей. Для доставки «неживого» груза (еды, воды, воздуха и техники) противолучевая защита особо не нужна, так что марсианским грузовиком суперкорабль делать не обязательно. Он нужен исключительно для доставки колонистов и, возможно, семян растений / молоди сельскохозяйственных животных.

Во-вторых, нужно заранее забросить на Марс технику и запасы воды-еды-кислорода на экипаж из 6-12 человек на 12-15 лет (с учётом всех форс-мажоров). Это само по себе нетривиальная задачка, но допустим, что в ресурсах для ее решения мы не ограничены. Предположим, что войны и политические пертурбации Земли утихли, а на марсианскую миссию работает в едином порыве вся планета.

Забрасываемая на Марс техника, как вы уже должны догадаться, представляет собой полностью автономных роботов с искусственным интеллектом и питанием от компактных ядерных реакторов. Им предстоит методично в течение десятка-полутора лет отрыть сначала глубокий тоннель под поверхность красной планеты. Затем - ещё за несколько лет - небольшую сеть тоннелей, в которую предстоит втащить блоки жизнеобеспечения и запасы для будущей экспедиции, а потом все это герметично смонтировать в автономный подмарсианский поселок.

Метроподобное обиталище кажется оптимальным решением по двум причинам. Во-первых, оно экранирует космонавтов от космических лучей уже на самом Марсе. Во-вторых, из-за остаточной «марсотермальной» активности недр под поверхностью планеты на градус-другой теплее, чем снаружи. Это пригодится колонистам как для экономии энергии, так и для выращивания картошки на собственных фекалиях.

Уточним важный момент: строить колонию придётся в южном полушарии, где на планете ещё сохранилось остаточное магнитное поле.

Выходить на поверхность астронавтам в идеале не придётся вообще (Марс «вживую» они или не увидят совсем, или увидят один раз - при посадке). Всю работу на поверхности предстоит делать роботам, действиями которых колонистам предстоит руководить из своего бункера всю их недолгую жизнь (лет двадцать при удачном стечении обстоятельств).

В-третьих, надо поговорить о самом экипаже и методах его подбора.

Идеальной схемой последнего станет поиск по всей Земле… генетически идентичных (монозиготных) близнецов, один из которых только что превратился в донора органов (например, «удачно» попав в автокатастрофу). Звучит до крайности цинично, но пусть это не помешает вам дочитать текст до конца.

Что нам дает близнец-донор?

Погибший близнец даёт возможность своему брату (или сестре) стать идеальным колонистом на Марсе. Дело в том, что красный костный мозг первого, будучи доставлен на красную планету в дополнительно защищённом от радиации контейнере, можно будет перелить близнецу-астронавту. Тем самым повышаются шансы на выживание оного при лучевой болезни, остром лейкозе и других неприятностях, которые с колонистом весьма вероятно приключатся за годы миссии.

Итак, как выглядит процедура отсева будущих колонистов?

Отбираем несколько миллионов близнецов. Ждём, пока что-то происходит с одним из них, и делаем предложение оставшемуся. Набирается пул из, скажем, ста тысяч потенциальных кандидатов. Теперь внутри этого пула проводим итоговый отбор на психологическую совместимость и профпригодность.

Естественно, для расширения выборки отбирать астронавтов придётся по всей Земле, а не в одной или двух странах.

Ещё бы, конечно, здорово помогла некая технология выявления особо устойчивых к облучению кандидатов. Известно, что некоторая часть людей гораздо более устойчива к радиации, чем другая. Наверняка её можно выявить с помощью неких генетических маркеров. Если дополнить этим методом идею с близнецами, вместе они должны существенно повысить выживаемость марсианских колонистов.

Помимо этого, полезно было бы научиться переливать людям костный мозг в невесомости. Это не единственная штука, которую предстоит изобрести специально под этот проект, но, по счастью, время у нас ещё есть, а МКС пока что болтается на орбите Земли будто специально для отработки подобных технологий.

PS. Я должен специально оговориться, что принципиальным противником космических путешествий я не являюсь и верю, что рано или поздно «космос будет наш». Вопрос только в цене этого успеха, а также во времени, которое человечество затратит на отработку необходимых технологий. Мне кажется, под влиянием научной фантастики и массовой культуры многие из нас довольно беспечны в смысле понимания трудностей, которые на этом пути предстоит преодолеть. Чтобы несколько отрезвить эту часть «космооптимистов » и написан этот текст.

Во и частях я расскажу какие еще варианты у нас имеются в вопросе освоения космоса человеками в долгосрочной перспективе.

Комикс про то, как ученые в борьбе с космической радиацией освоят Марс.

В ней рассматривается несколько направлений для будущих исследований по защите космонавтов от облучения, включая лекарственную терапию, генную инженерию и технологию гибернации. Авторы также замечают, что радиация и старение убивают организм схожими методами, и предполагают, что способы борьбы с одним могут действовать и против другого. Статья с боевым девизом в названии Viva la radioresistance! («Да здравствует сопротивление радиации!») была опубликована в журнале Oncotarget .

«Ренессанс космонавтики, вероятно, приведет к первым человеческим миссиям на Марс и в глубокий космос. Но для выживания в условиях повышенной космической радиации людям придется стать более устойчивыми к внешним факторам. В этой статье мы предлагаем методологию достижения повышенной радиорезистентности, стрессоустойчивости и устойчивости к старению. В процессе работы над стратегией мы собрали ведущих ученых из России, а также из NASA, Европейского космического агентства, Канадского радиационного центра и более чем 25 других центров по всему миру. На Земле тоже пригодятся технологии радиорезистентности, особенно если «побочным эффектом» будет здоровое долголетие», – комментирует Александр Жаворонков, адъюнкт-профессор МФТИ.

. " alt="Мы сделаем так, чтобы радиация не препятствовала человечеству в покорении космоса и колонизации Марса. Благодаря ученым долетим до Красной планеты и будем устраивать там диско и жарить барбекю. " src="/sites/default/files/images_custom/2018/03/mars7.png">

Мы сделаем так, чтобы радиация не препятствовала человечеству в покорении космоса и колонизации Марса. Благодаря ученым долетим до Красной планеты и будем устраивать там диско и жарить барбекю.

Космос против человека

«В космических масштабах наша планета – всего лишь небольшой корабль, неплохо защищенный от космического излучения. Магнитное поле Земли отклоняет солнечные и галактические заряженные частицы, тем самым существенно снижая уровень радиации на поверхности планеты. При дальних космических полетах и колонизации планет с очень слабыми магнитными полями (например, Марса) такой защиты не будет, и астронавты и колонисты будут подвергаться постоянному воздействию потоков заряженных частиц с огромной энергией. Фактически космическое будущее человечества зависит от того, как мы преодолеем эту проблему», – делится заведующий отделом экспериментальной радиобиологии и радиационной медицины Федерального медицинского биофизического центра имени А. И. Бурназяна, профессор РАН, сотрудник лаборатории разработки инновационных лекарственных средств МФТИ Андреян Осипов.

Человек беззащитен перед опасностями космоса: солнечное облучение, галактические космические лучи, магнитные поля, радиоактивная среда Марса, радиационный пояс Земли, микрогравитация (невесомость).

Человечество со всей серьезностью нацелилось колонизировать Марс – SpaceX обещает доставить человека на Красную планету уже в 2024 году, однако некоторые существенные проблемы до сих пор не решены. Так, одной из основных опасностей для здоровья космонавтов является космическая радиация. Ионизирующее излучение повреждает биологические молекулы, в частности ДНК, что приводит к различным нарушениям: нервной системы, сердечно-сосудистой системы и, главным образом, к раку. Ученые предлагают объединить усилия и, используя последние достижения биотехнологий, повысить радиорезистентность человека, чтобы он мог покорять просторы глубокого космоса и колонизировать другие планеты.

Человеческая оборона

У организма есть способы защищаться от повреждений ДНК и восстанавливать их. На наше ДНК постоянно воздействует природная радиация, а также активные формы кислорода (АФК), которые образуются при нормальном клеточном дыхании. Но при починке ДНК, особенно в случае тяжелых повреждений, могут происходить ошибки. Накопление повреждений ДНК считается одной из главных причин старения, так что радиация и старение – схожие враги человечества. Однако клетки могут адаптироваться к облучению. Показано, что маленькая доза радиации может не только не навредить, но и подготовить клетки ко встрече с более высокими дозами. Сейчас международные стандарты радиационной защиты это не учитывают. Последние же исследования говорят о том, что существует некий порог радиации, ниже которого действует принцип «тяжело в учении – легко в бою». Авторы статьи считают, что нужно исследовать механизмы радиоадаптивности, чтобы взять их на вооружение.

Способы повышения радиорезистентности: 1) генная терапия, мультиплексная генная инженерия, экспериментальная эволюция; 2) биобанкинг, регенеративные технологии, инженерия тканей и органов, индуцированное обновление клеток, клеточная терапия; 3) радиопротекторы, геропротекторы, антиоксиданты; 4) гибернация; 5) дейтерированные органические компоненты; 6) медицинский отбор радиорезистентных людей.

Заведующий лабораторией генетики продолжительности жизни и старения МФТИ, член-корреспондент РАН, доктор биологических наук Алексей Москалев поясняет: «Наши многолетние исследования эффектов малых доз ионизирующих излучений на продолжительность жизни модельных животных показали, что небольшие повреждающие воздействия способны стимулировать собственные защитные системы клеток и организма (репарацию ДНК, белки теплового шока, удаление нежизнеспособных клеток, врожденный иммунитет). Однако в космосе люди столкнутся с более существенным и опасным диапазоном доз радиации. Нами накоплена большая база данных по геропротекторам. Полученные знания говорят о том, что многие из них функционируют по механизму активизации резервных возможностей, повышения стрессоустойчивости. Вполне вероятно, что подобная стимуляция поможет будущим колонизаторам космических просторов».

Инженерия космонавтов

Более того, среди людей радиорезистентность отличается: кто-то больше устойчив к радиации, кто-то меньше. Медицинский отбор радиорезистентных индивидов предполагает взятие образцов клеток у потенциальных кандидатов и всесторонний анализ радиоадаптивности этих клеток. Самые устойчивые к облучению полетят в космос. Кроме этого, можно проводить полногеномные исследования людей, проживающих в областях с высоким уровнем фонового излучения или сталкивающихся с ним по профессии. Геномные отличия людей, менее подверженных раку и другим заболеваниям, связанным с облучением, можно в будущем выделить и «привить» космонавтам с помощью современных методов генной инженерии, таких как редактирование генома.

Есть несколько вариантов, какие гены нужно внести, чтобы повысить радиорезистентность. Во-первых, гены антиоксидантов помогут защитить клетки от активных форм кислорода, появляющихся в результате облучения. Несколько экспериментальных групп уже успешно попробовали снизить чувствительность к радиации с помощью таких трансгенов. Однако от прямого воздействия облучения этот способ не спасет, только от опосредованного.

Можно вносить гены белков, ответственных за восстановление ДНК. Такие опыты уже проводились – некоторые гены действительно помогали, а некоторые приводили к повышенной геномной неустойчивости, так что эта область ждет новых исследований.

Более перспективный метод – это использование радиозащитных трансгенов. Многие организмы (например тихоходки) обладают высокой степенью радиорезистентности, и если выяснить, какие гены и молекулярные механизмы за этим стоят, их можно перевести на людей с помощью генной терапии. Чтобы убить 50% тихоходок, нужна доза облучения, в 1000 превышающая смертельную для человека. Недавно был обнаружен белок, который, предположительно, является одним из факторов такой выносливости – так называемый супрессор повреждений Dsup. В эксперименте с клеточной линией человека оказалось, что введение гена Dsup уменьшает повреждения на 40%. Это делает ген перспективным кандидатом в защитники человека от радиации.

Аптечка бойца

Лекарства, которые увеличивают радиационную защиту организма, называются «радиопротекторами». На сегодняшний день существует только один радиопротектор, одобренный FDA . Но основные сигнальные пути в клетках, которые включены в процессы старческих патологий, участвуют также и в ответах на облучение. Исходя из этого геропротекторы – лекарства, которые уменьшают скорость старения и продлевают продолжительность жизни – могут служить и радиопротекторами. Согласно базам данных Geroprotectors.org и DrugAge , существует более 400 потенциальных геропротекторов. Авторы считают, что будет полезно рассмотреть существующие лекарства на наличие геро- и радиопротекторных свойств.

Так как ионизирующее облучение действует также через активные формы кислорода, справляться с радиацией могут помочь редокс-поглотители, или, проще говоря, антиоксиданты, такие как глутатион, NAD и его предшественник NMN. Последние, по-видимому, играют важную роль в ответе на повреждение ДНК, поэтому представляют большой интерес с точки зрения защиты от радиации и старения.

Гипернация в гибернации

Вскоре после запуска первых космических полетов ведущий конструктор советской космической программы Сергей Королев начал разрабатывать амбициозный проект пилотируемого полета на Марс. Его идея заключалась в том, чтобы привести экипаж в состояние гибернации (англ. hibernation - «зимняя спячка») во время длительных космических путешествий. При гибернации все процессы в организме замедляются. Эксперименты с животными показывают, что в таком состоянии повышается устойчивость к экстремальным факторам: понижению температуры, смертельным дозам облучения, перегрузкам и так далее. В СССР проект Марса был закрыт после смерти Сергея Королева. А в настоящее время Европейское космическое агентство работает над проектом «Аврора» по полетам на Марс и Луну, в котором рассматривается вариант спячки космонавтов. ЕКА считает, что при длительном автоматизированном полете гибернация обеспечит большую безопасность. Если же говорить о будущей колонизации космоса, то проще перевозить и защищать от радиации банк криоконсервированных зародышевых клеток, а не популяцию «готовых» людей. Но это явно будет не в ближайшем будущем, и, возможно, к тому моменту методы радиозащиты будут развиты достаточно, чтобы человек не боялся космоса.

Тяжелая артиллерия

Все органические соединения содержат углерод-водородные связи (С-Н). Однако можно синтезировать соединения, которые содержат вместо водорода дейтерий – более тяжелый аналог водорода. Из-за большей массы связи с дейтерием сложнее разорвать. Однако организм рассчитан на работу с водородом, поэтому если слишком много водорода заменить на дейтерий, это может привести к плохим последствиям. Было показано на разных организмах, что добавление дейтерированной воды увеличивает продолжительность жизни и оказывает противораковое действие, но больше 20% дейтерированной воды в рационе начинает оказывать токсическое действие. Авторы статьи считают, что следует проводить доклинические испытания и искать порог безопасности.

Интересной альтернативой представляется замена не водорода, а углерода на более тяжелый аналог. 13 C тяжелее 12 C всего на 8%, в то время как дейтерий тяжелее водорода на 100% – такие изменения для организма будут менее критичны. Однако этот способ не защитит от разрыва N-H и O-H связи, которые скрепляют основания ДНК. К тому же производство 13 C на сегодняшний день является очень дорогим. Тем не менее, если получится снизить стоимость производства, то замена углерода может быть дополнительной защитой человека от космической радиации.

«Проблема радиационной безопасности участников космических миссий относится к классу очень сложных проблем, которые невозможно решить в рамках одного научного центра или даже целой страны. Именно по этой причине мы решили объединить специалистов из ведущих центров в России и по всему миру для того, чтобы узнать и консолидировать их видение путей решения данной проблемы. В частности, среди российских авторов статьи есть ученые из ФМБЦ им. А. И. Бурназяна, ИМБП РАН, МФТИ и других всемирно известных учреждений. В ходе работы над проектом многие его участники впервые познакомились друг с другом и теперь планируют продолжать начатые совместные исследования», – заключает координатор проекта Иван Озеров, радиобиолог, руководитель группы анализа клеточных сигнальных путей Сколковского стартапа «Инсилико».

Дизайнер Елена Хавина, пресс-служба МФТИ

Даже если бы межпланетные полеты были реальностью, ученые все чаще говорят о том, что человеческий организм с чисто биологической точки зрения поджидают все больше опасностей. Одной из главных опасностей специалисты называют жесткое космическое радиационное излучение. На других планетах, например на том же Марсе, это излучение будет таким, что оно в разы ускорит наступление болезни Альцгеймера.

"Космическое излучение представляет собой очень значительную угрозу для будущих космонавтов. Возможность того, что космическое радиационное облучение может привести к возникновению проблем со здоровьем, таких как рак, уже давно признана", - говорит Керри О"Банион, доктор неврологии из Медицинского центра при Университете Рочестера. "Наши опыты также достоверно установили, что жесткое излучение также провоцирует ускорение изменений в головном мозге, связанных с болезнью Альцгеймера".

По словам ученых, все космическое пространство буквально пронизано радиационным излучением, тогда как толстая земная атмосфера защищает нашу планету от него. Влияние радиации на себе могут ощутить уже и участники кратковременных полетов на МКС, хотя формально они находятся на низкой орбите, где защитный купол земной гравитации еще работает. Особенно активно радиационное излучение работает в те моменты, когда на Солнце происходят вспышки с последующими выбросами радиационных частиц.

Ученые говорят, что уже сейчас в НАСА вплотную работает над различными подходами, связанными с защитой человека от космической радиации. Впервые космическое ведомство начало финансирование "радиационных исследований" еще 25 лет назад. Сейчас значительная часть инициатив в этой области связана с исследованиями на предмет того, как уберечь будущих марсонавтов от жесткой радиации на Красной планете, где нет такого же атмосферного купола, как на Земле.

Уже сейчас специалисты говорят с очень большой вероятностью о том, что марсианская радиация провоцирует онкологические заболевания. Еще большие объемы излучения есть вблизи астероидов. Напомним, что миссию на астероид с участием человека НАСА планирует на 2021 год, а на Марс - не позже 2035 года. Полет на Марс и обратно с некоторым пребыванием там может занять около трех лет.

Как рассказали в НАСА, сейчас доказано, что космическая радиация провоцирует, помимо рака, также заболевания сердечно-сосудистой системы, костно-мышечной и эндокринной. Сейчас же специалисты из Рочестера выявили и еще один вектор опасности: в рамках исследований было установлено, что высокие дозы космической радиации провоцируют заболевания связанные с нейродегенерацией, в частности активируют процессы, которые способствуют развитию болезни Альцгеймера. Также специалисты изучили то, как космическая радиация влияет на центральную нервную систему человека.

Специалисты на основании опытов установили, что радиоактивные частицы в космосе имеют в своей структуре ядра атомов железа, которые имеют феноменальную проникающую способность. Именно поэтому защититься от них удивительно трудно.

На Земле исследователи проводили симуляцию космической радиации в американской Брукхевенской национальной лаборатории на Лонг-Айленде, где находится специальный ускоритель элементарных частиц. В процессе экспериментов исследователи определили, сроки, в течение которых болезнь возникает и прогрессирует. Впрочем, пока исследователи проводили эксперименты на лабораторных мышах, подвергая их дозам радиации, сопоставимых с теми, что получили бы люди во время полета на Марс. После опытов практически все мыши получили нарушения в работе когнитивной системы головного мозга. Также были отмечены нарушения в работе сердечно-сосудистой системы. В головном мозге выявлены очаги накопления бета-амилоида - белка, который является верным признаком надвигающейся болезни Альцгеймера.

Ученые говорят, что они пока не знают, как побороть космическую радиацию, но они уверены, что радиация - это тот фактор, который заслуживает самого серьезного внимания при планировании будущих космических полетов.

Оригинал взят у sokolov9686 в Так были ли американцы на Луне?...

Выше 24 000 км над Землей радиация убивает все живое

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса во время миссии «Аполлон-8» (архив НАСА)


Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал:

«Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

NASA | Гелиофизика | Спутник открыл новый пояс радиации!


про кольца Ван Аллена 28.30 минута радиация убивает все


Куча музеев в европе, где выставлен реголит в свободном для просмотра доступе довольно большими кусками. Не верите, адреса музеев есть, легко проверить.

Вот например камень в Тулузском Cité de l"Espace:

Оригинал взят у toomth в Почему НАСА прячет «лунный грунт» от всего мира?

Считается, что американцы привезли с Луны 378 кг лунного грунта и камней. Во всяком случае, об этом заявляет НАСА. Это почти четыре центнера. Ясно, что доставить такое количество грунта могли только астронавты: никаким космическим станциям это не под силу.

Камни сфотографированы, переписаны и являются постоянными статистами «лунных» фильмов НАСА. Во многих таких фильмах в роли эксперта и комментатора выступает астронавт-геолог «Аполлона-17», доктор Хариссон Шмидт, якобы лично собравший на Луне много таких камней


Логично ожидать, что при таком лунном богатстве Америка будет им потрясать, всячески демонстрировать и уж кому-кому, а своему главному сопернику отвалит от щедрот килограммов 30-50. Нате, мол, исследуйте, убеждайтесь в наших успехах... Но с этим-то как раз почему-то не получается. Грунта нам дали мало. Зато «свои» (опять же, по данным НАСА) получили 45 кг лунного грунта и камней.

Правда, некоторые особо въедливые исследователи провели подсчет по соответствующим публикациям научных центров и не смогли обнаружить убедительных свидетельств того, что эти 45 кг дошли до лабораторий даже западных ученых. Более того, по ним получается, что в настоящее время в мире из лаборатории в лабораторию кочует не более 100 г американского лунного грунта, так что обычно исследователь получал полграмма горной породы.

Т. е. НАСА относится к лунному грунту, как скупой рыцарь к золоту: хранит заветные центнеры в своих подвалах в надежно запертых сундуках, выдавая исследователям лишь жалкие граммы. Не избежал этой участи и СССР.

В нашей стране в то время головной научной организацией по всем исследованиям лунного грунта являлся Институт геохимии АН СССР (ныне - ГЕОХИ РАН). Заведующий отделом метеоритики этого института доктор М.А. Назаров сообщает: «Американцами было передано в СССР 29,4 грамма (!) лунного реголита (проще говоря, лунной пыли) из всех экспедиций «Аполлон», а из нашей коллекции образцов «Луны-16, 20 и 24» было выдано за рубеж 30,2 г». Фактически американцы обменялись с нами лунным прахом, который может доставить любая автоматическая станция, хотя космонавты должны бы были привезти увесистые булыжники, и интереснее всего посмотреть на них.

Что НАСА собирается делать с остальным лунным «добром»? О, это - «песня».

«В США принято решение сохранить главную массу доставленных образцов в полной неприкосновенности до тех пор, пока не будут разработаны новые, более совершенные способы их изучения», - пишут компетентные советские авторы, из-под пера которых вышла не одна книга по лунному грунту.
«Необходимо расходовать минимальное количество материала, оставив нетронутой и незагрязненной бóльшую часть каждого отдельного образца для изучения будущими поколениями ученых», - разъясняет позицию НАСА американский специалист Дж. А. Вуд.

Очевидно, американский специалист полагает, что на Луну уже не полетит никто и никогда - ни сейчас, ни в будущем. А посему нужно беречь центнеры лунного грунта пуще глаза. Одновременно унижены современные ученые: они своими приборами могут рассмотреть каждый отдельный атом в веществе, а им отказано в доверии - не доросли. Или рылом не вышли. Такая настойчивая забота НАСА о будущих ученых более похожа на то, что это - удобный предлог, чтобы скрыть неутешительный факт: в ее кладовых нет ни лунных камней, ни центнеров лунного грунта.

Еще одна странность: после завершения «лунных» полетов НАСА вдруг стало испытывать острую нехватку денег на их исследование.

Вот что пишет по состоянию на 1974 год один из американских исследователей: «Значительная часть образцов будет храниться в качестве резерва в центре космических полетов в Хьюстоне. Сокращение ассигнований уменьшит число исследователей и замедлит темпы исследований».

Потратив $25 млрд на то, чтобы доставить лунные образцы, НАСА вдруг обнаружило, что денег на их исследование не осталось...

Интересна и история с обменом советского и американского грунта. Вот сообщение от 14 апреля 1972 года главного официального издания советского периода - газеты «Правда»:

«13 апреля Президиум Академии наук СССР посетили представители НАСА. Состоялась передача образцов лунного грунта из числа доставленных на Землю советской автоматической станцией «Луна-20». Одновременно советским ученым был передан образец лунного грунта, полученного экипажем американского корабля «Аполлон-15». Обмен совершен в соответствии с соглашением между Академией наук СССР и НАСА, подписанным в январе 1971 года».

Теперь нужно пройтись по срокам.

Июль 1969 г. Астронавты «Аполлона-11» якобы привозят 20 кг лунного грунта. СССР из этого количества не дают ничего. У СССР к этому моменту лунного грунта еще нет.

Сентябрь 1970 г. Наша станция «Луна-16» доставляет на Землю лунный грунт, и отныне советские ученым есть что предложить в обмен. Это ставит НАСА в трудное положение. Но НАСА рассчитывает, что в начале 1971 года оно сможет автоматически доставить на Землю свой лунный грунт, и в расчете на это в январе 1971 г. соглашение об обмене уже заключено. Но самого обмена не происходит еще 10 месяцев. Видимо, у США что-то не заладилось с автоматической доставкой. И американцы начинают тянуть резину.

Июль 1971 г. В порядке доброй воли СССР в одностороннем порядке передает США 3 г грунта от «Луны-16», но от США не получает ничего, хотя соглашение об обмене подписано уже полгода назад, а в кладовых НАСА якобы уже лежит 96 кг лунного грунта (от «Аполлона-11», «Аполлона-12» и «Аполлона-14»). Проходит еще 9 месяцев.

Апрель 1972 г. Наконец-то НАСА передает образец лунного грунта. Он якобы доставлен экипажем американского корабля «Аполлон-15», хотя со времени полета «Аполлона-15» (июль 1971 г.) прошло уже 8 месяцев. В кладовых НАСА к этому времени якобы уже лежат 173 кг лунных камней (от «Аполлона-11», «Аполлона-12», «Аполлона-14» и «Аполлона-15»).

Советские ученые получают от этих богатств некий образец, параметры которого в газете «Правда» не сообщаются. Но благодаря доктору М.А. Назарову мы знаем, что этот образец состоял из реголита и не превышал 29 г по массе.

Очень похоже на то, что примерно до июля 1972 года у США вообще не было настоящего лунного грунта. Видимо, где-то в первой половине 1972 года у американцев появились первые граммы настоящего лунного грунта, который был доставлен с Луны автоматическим способом. Вот только тогда у НАСА и проявилась готовность к совершению обмена.

А в последние годы лунный грунт у американцев (точнее, то, что они выдают за лунный грунт) и вовсе начал исчезать. Летом 2002 года огромное количество образцов лунного вещества - сейф весом почти 3 центнера - исчезло из запасников музея Американского космического центра НАСА им. Джонсона в Хьюстоне.

Вы никогда не пробовали украсть 300-килограммовый сейф с территории космического центра? И не пробуйте: слишком тяжелая и опасная работа. А вот воришкам, на след которых полиция вышла на диво быстро, это легко удалось. Тиффани Фоулер и Тэд Робертс, работавшие в здании в период пропажи, были арестованы специальными агентами ФБР и НАСА в одном из ресторанов штата Флорида. Впоследствии в Хьюстоне был взят под стражу и третий подельщик, Шэ Саур, а затем - и четвертый участник преступления, Гордон Мак Вотер, способствовавший транспортировке краденого. Воры намеревались сбыть бесценные свидетельства лунной миссии НАСА по цене $1000-5000 за грамм через сайт минералогического клуба в Антверпене (Голландия). Стоимость украденного, по информации из-за океана, составляла более $1 млн.

Через несколько лет - новое несчастье. В США в районе Вирджиния-Бич из автомобиля неизвестными злоумышленниками были выкрадены две небольших запаянных пластиковых коробки в форме диска с образцами метеоритного и лунного вещества, судя по имевшейся на них маркировке. Образцы такого рода, сообщает Space, передаются НАСА специальным инструкторам «для учебных целей». Прежде чем получить подобные образцы, преподаватели проходят специальный инструктаж, в ходе которого их обучают правильно обращаться с этим национальным достоянием США. А «национальное достояние», оказывается, так просто украсть... Хотя это похоже не на кражу, а на инсценировку кражи в целях избавления от улик: нет грунта - нет «неудобных» вопросов.

Русский философ Н.Ф. Фёдоров (1828 - 1903) впервые заявил о том, что перед людьми лежит путь к освоению всего космического пространства как стратегического пути развития человечества. Он обратил внимание на то, что только такая безбрежная область способна привлечь к себе всю духовную энергию, все силы человечества, которые растрачиваются на взаимные трения или расходуются по пустякам. ... Его идея о переориентации промышленного и научного потенциала военно-промышленного комплекса на исследование и освоение космоса, в том числе и дальнего, способно кардинальным образом снизить военную опасность в мире. Для того, чтобы это произошло на практике, сначала это должно произойти в головах людей, в первую очередь принимающих глобальные решения. ...

На пути освоения космического пространства возникают различные сложности. Главным препятствием на первый план якобы выходит проблема радиации, вот перечень публикаций об этом:

29.01.2004 , газета «Труд», «Облучение на орбите»;
("И вот печальная статистика. Из 98 наших летавших космонавтов в живых нет уже восемнадцати, то есть каждого пятого. Из них четверо погибли при возвращении на Землю, Гагарин - в авиакатастрофе. Четверо умерли от рака (Анатолию Левченко было 47 лет, Владимиру Васютину - 50...). ")

2. За 254 дня полёта на Марс марсохода «Кьюриосити» доза облучения составила более 1 Зв , т.е. в среднем более 4 мЗв/день.

3. При полётах космонавтов вокруг Земли доза облучения составляет от 0,3 до 0,8 мЗв/день ()

4. С момента открытия радиации, её научного изучения и практического массового освоения промышленностью накоплен огромный , в том числе и по воздействию радиации на организм человека .
Чтобы связать заболевание космонавта с воздействием космической радиации нужно сравнивать между собой заболеваемость космонавтов, летавших в космос, с заболеваемостью космонавтов контрольной группы, которые в космосе не были.

5. В космической интернет энциклопедии www.astronaut.ru собрана вся информация по космонавтам, астронавтам и тайконавтам, летавшим в космос, а также кандидатах, отобранных для полётов, но не летавших в космос.
Пользуясь этими данными я составил сводную таблицу по СССР/России с персональными налётами, датами рождения и смерти, причинами смерти и др.
Обобщенные данные представлены в таблице:

В базе
космической
энциклопедии,
человек
Живут,
человек
Умерли
от всех причин,
человек
Умерли
от рака,
человек
Летали в космос 116 ,
из них
28 - с налетом до 15 дней,
45 - с налетом от 16 до 200 дней,
43 - с налетом от 201 до 802 дней
87
(ср.возраст - 61 год)

из них
61
на пенсии

29 (25%)
ср.возраст - 61 год
7 (6%),
из них

3 - с налетом 1-2 дня,
3 - с налетом 16-81 дней
1 - с налётом 269 дней
Не летали в космос 158 101
(ср.возраст - 63 года)

из них
88
на пенсии

57 (36%)
ср.возраст - 59 лет
11 (7%)

Существенных и явных отличий между группой лиц, летавших в космос и контрольной группой не обнаруживается.
Из 116 человек СССР/России летавших в космос хотя бы единожды 67 человек имеет индивидуальный космический налет более 100 суток (максимально 803 суток), 3 человека из них умерли в 64, 68 и 69 лет. У одного из умерших был рак. Остальные на ноябрь 2013 года живы, включая 20 космонавтов с максимальными налётами (от 382 до 802 суток) с дозами (210 - 440 мЗв) при среднесуточной 0,55 мЗв. Что подтверждает радиационную безопасность длительных космических полетов.

6. Также много и других данных по здоровью людей, получивших повышенные дозы радиационного облучения в годы создания атомной отрасли в СССР. Так, «на ПО «Маяк»: «В 1950-1952 гг. мощности дозы внешнего гамма(излучения вблизи технологических аппаратов достигали 15-180 мР/ч. Годовые дозы внешнего облучения у 600 наблюдаемых работников завода составляли 1,4-1,9 Зв/год. В отдельных случаях максимальные годовые дозы внешнего облучения достигали 7-8 Зв/год. …
Из 2300 работников, перенесших хроническую лучевую болезнь, после 40-50 лет наблюдений в живых остается 1200 человек со средней суммарной дозой 2,6 Гр при среднем возрасте 75 лет. А из 1100 умерших (средняя доза 3,1 Гр) в структуре причин смерти заметно увеличение доли злокачественных опухолей, но и их средний возраст составил 65 лет.»
«Проблемы ядерного наследия и пути их решения.» — Под общей редакцией Е.В. Евстратова, А.М. Агапова, Н.П. Лаверова, Л.А. Большова, И.И. Линге. — 2012 г. — 356 с. — Т1. (скачать)

7. «… обширные исследования, охватившие около 100 000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки в 1945 году, показали, что пока рак является единственной причиной повышения смертности в этой группе населения.
«Однако в то же самое время развитие рака под действием радиации не является специфическим, оно может вызываться также другими природными или техногенными факторами (курением, загрязнением воздуха, воды, продуктов химическими веществами и др.). Радиация лишь повышает риск, существующий без нее. Например, российские медики считают, что вклад нерационального питания в развитие раковых заболеваний составляет 35%, а курения — 31%. А вклад радиации, даже при серьезном облучении, не больше 10%».()


(ист. «Ликвидаторы. Радиологические последствия Чернобыля», В. Иванов, Москва, 2010 год (скачать)

8. «В современной медицине радиотерапия является, одним из трех ключевых методов лечения онкологических заболеваний (двумя другими являются химиотерапия и традиционная хирургия). При этом, если отталкиваться от тяжести побочных эффектов, лучевая терапия переносится гораздо легче. В особо тяжелых случаях пациенты могут получать очень высокую суммарную дозу - до 6 грей (при том, что доза порядка 7-8 грей является смертельной!). Но даже при такой огромной дозе, когда больной выздоравливает, он зачастую возвращается к полноценной жизни здорового человека - даже дети, рожденные бывшими пациентами клиник лучевой терапии, не обнаруживают никаких признаков врожденных генетических отклонений, связанных с облучением.
Если тщательно обдумать и взвесить факты, то такое явление, как радиофобия - иррациональный страх перед радиацией и всем, что с ней связано - становится совершенно нелогичным. Действительно: люди считают, что случилось нечто страшное, когда дисплей дозиметра показывает хотя бы двукратное превышение естественного фона - и в то же время с удовольствием ездят поправлять здоровье на радоновые источники, где фон может быть превышен в десять и более раз. Большие дозы ионизирующего излучения излечивают больных смертельными заболеваниями - и в то же время человек, случайно попавший в поле излучения, однозначно приписывает ухудшение своего здоровья (если такое ухудшение вообще произошло) действию радиации.» ("Радиация в медицине" , Ю.С.Коряковский, А.А. Акатов, Москва, 2009г.)
Статистика смертности говорит о том, что каждый третий житель Европы умирает от различного рода раковых заболеваний.
Одним из основных методов лечения злокачественных опухолей является лучевая терапия, которая необходима примерно для 70% онкологических больных, тогда как в России ее получают только около 25% нуждающихся. ()

На основе всех накопленных данных, можно смело утверждать: проблема радиации при освоении космоса сильно преувеличена и дорога к освоению космического пространства для человечества открыта.

P.S. Статья была опубликована в профессиональном журнале "Атомная стратегия" , а перед этим на сайте журнала была оценена рядом специалистов. Вот наиболее информативный комментарий полученный там: "Что такое космическое излучение. Это излучение Солнечное + Галактическое. Солнечное во много раз интенсивней Галактического, особенно в период солнечной активности. Именно оно определяет основную дозу. Его компонентный и энергетический состав – протоны (90%) и остальное менее существенное(электр., гамма,…). Энергия основной доли протонов- от кэВ до 80-90 МэВ. (Есть и высокоэнергетический хвост, но это уже доли проц.) Пробег 80 МэВ-ного протона ~7 (г/см^2) или около 2,5 см алюминия. Т.е. в стенке космического корабля толщиной 2,5-3 см они полностью поглощаются. Хотя протоны генерируют в ядерных реакциях на алюминии нейтроны, но эффективность генерации небольшая. Таким образом, мощность дозы за обшивкой корабля достаточно высокая (т.к. коэффициент конверсии поток-доза для протонов указанных энергий очень большой). А внутри уровень вполне приемлемый, хотя и повыше, чем на Земле. Вдумчивый и дотошный читатель сразу ехидно спросит – А как же в самолете. Ведь там мощность дозы намного выше, чем на Земле. Ответ – правильно. Объяснение простое. Высокоэнергетические солнечные и галактические протоны и ядра взаимодействую с ядрами атмосферы (реакции множественного рождения адронов), вызывают адронный каскад (ливень). Поэтому высотное распределение плотности потока ионизирующих частиц в атмосфере имеет максимум. То же самое и с электрон-фотонным ливнем. Адронный и e-g ливни развиваются и гасятся в атмосфере. Толщина атмосферы ~80-100 г/см^2 (эквивалентно 200 см бетона или 50 см железа.) А в обшивке вещества недостаточно для образования хорошего ливня. Отсюда кажущийся парадокс – чем больше толщина защиты корабля, тем выше мощность дозы внутри. Поэтому лучше тонкая защита, чем толстая. Но! 2-3 см защита обязательна (ослабляет дозу от протонов на порядок). Теперь по цифрам. На Марсе дозиметр Кьюриосити набрал около 1 Зв за почти год. Причина достаточно высокой дозы – дозиметр не имел тонкого защитного экрана, о котором говорилось выше. Но все таки, много или мало 1 Зв? Смертельно ли? Пара моих друзей ликвидаторов набрали каждый около 100 Р (разумеется по гамма, а в пересчете на адроны – где-то около 1 Зв). Чувствуют себя лучше, чем мы с вами. Не инвалиды. Официальный подход по нормативным документам. - С разрешения территориальных органов госсаннадзора можно за год получить планируемую дозу 0,2 Зв. (Т.е. сопоставимо с 1 Зв). А прогнозируемый уровень облучения, при которых необходимо срочное вмешательство – 1Гр на все тело(это поглощенная доза, приблизительно равная 1 Зв по эквивалентной дозе.) А на легкие - 6 Гр. Т.е. для получивших на все тело дозу менее 1 Зв и не требуется вмешательства. Так, что не так и страшно. Но лучше, конечно, такие дозы не получать. "