В разделе на вопрос дан прямоугольный треугольник ABC,угол С-прямой. Найдите синус внешнего угла при вершине В, если АС=3,а АВ=5 заданный автором Анастасия Полупан лучший ответ это Внешний угол треугольника. Синус и косинус внешнего угла
В некоторых задачах ЕГЭ требуется найти синус, косинус или тангенс внешнего угла треугольника. А что такое внешний угол треугольника?
Давайте вспомним сначала, что такое смежные углы. Вот они, на рисунке. У смежных углов одна сторона общая, а две другие лежат на одной прямой. Сумма смежных углов равна.
Смежные углы
Возьмем треугольник и продолжим одну из его сторон. Внешний угол при вершине - это угол, смежный с углом. Если угол острый, то смежный с ним угол - тупой, и наоборот.
Внешний угол треугольника
Обратите внимание, что:
Запомните эти важные соотношения. Сейчас мы берем их без доказательств. В разделе «Тригонометрия» , в теме «Тригонометрический круг» , мы вернемся к ним.
Легко доказать, что внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
1. В треугольнике угол равен, .Найдите тангенс внешнего угла при вершине.
Внешний угол прямоугльного треугольника
Пусть - внешний угол при вершине.
Зная, найдем по формуле
Получим:
2. В треугольнике угол равен, .Найдите синус внешнего угла при вершине.
Задача решается за четыре секунды. Поскольку сумма углов и равна, .Тогда и синус внешнего угла при вершине также равен.

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Ньютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон, работая над « », свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r 2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m , деленному на квадрат расстояния между ними r 2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.

Все тела в природе взаимно притягивают друг друга. Закон, которому подчиняется это притяжение, был установлен Ньютоном и носит название закона всемирного тяготения. Согласно этому закону сила, с которой две материальные точки притягивают друг друга, пропорциональна массам этих точек и обратно пропорциональна квадрату расстояния между ними:

Здесь - коэффициент пропорциональности, называемый гравитационной постоянной.

Направлена сила вдоль прямой, проходящей через взаимодействующие материальные точки (рис. 45.1).

В векторном виде силу, с которой вторая материальная точка притягивает к себе первую, можно записать следующим образом:

Симолом обозначен единичный вектор, имеющий направление от первой материальной точки ко второй (см. рис. 45.1). Заменив в формуле (45.2) вектор вектором получим силу действующую на вторую материальную точку.

Для определения силы взаимодействия протяженных тел их нужно разбить на элементарные массы каждую из которых можно было бы принять за материальную точку (рис. 45.2). Согласно (45.2) i-я элементарная масса тела 1 притягивается к элементарной массе тела 2 с силой

где расстояние между элементарными массами.

Просуммировав (45.3) по всем значениям индекса k, получим силу, действующую со стороны тела 2 на принадлежащую телу 1 элементарную массу :

Наконец, просуммировав (45.4) по всем значениям индекса i, т. е. сложив силы, приложенные ко всем элементарным массам первого тела, получим силу, с которой тело 2 действует на тело 1:

Суммирование производится по всем значениям индексов i и k. Следовательно, если тело 1 разбить на а тело 2 - на элементарных масс, то сумма (45.5) будет содержать слагаемых.

Практически суммирование (45.5) сводится к интегрированию и является, вообще говоря, очень сложной математической задачей. Если взаимодействующие тела однородны и имеют правильную форму, вычисления сильно упрощаются. В частности, в случае, когда взаимодействующие тела представляют собой однородные шары, вычисление согласно (45.5) приводит к формуле (45.2), в которой под следует понимать массы шаров, под - расстояние между их центрами и под единичный вектор, имеющий направление от центра первого шара к центру второго. Таким образом, шары взаимодействуют как материальные точки, имеющие массы, равные массам шаров, и помещенные в их центрах.

Если одно из тел представляет собой однородный шар очень большого радиуса (например земной шар), а второе тело можно рассматривать как материальную точку, то их взаимодействие описывается формулой (45.2), в которой под нужно понимать расстояние от центра шара до материальной точки (это утверждение будет доказано в следующем параграфе).

Размерность гравитационной постоянной в соответствии с (45.1) равна

Численное значение у было определено путем измерения силы, с которой притягиваются друг к другу тела известной массы. При таких измерениях возникают большие трудности, так как для тел, массы которых могут быть непосредственно измерены, сила притяжения оказывается крайне малой. Так, например, два тела с массой 100 кг каждое, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой порядка , т. е. порядка

Первой успешной попыткой определения V были измерения, осуществленные Кавендишем (1798 г.). Он применил для измерения сил весьма чувствительный метод крутильных весов (рис. 45.3). Два свинцовых шара (с массой 0,729 кг каждый), прикрепленных к концам легкого коромысла, помещались вблизи симметрично расположенных шаров М (с массой по 158 кг). Коромысло подвешивалось на упругой нити, по закручиванию которой можно было измерять силу притяжения шаров друг к другу. Верхний конец нити был закреплен в установочной головке, поворотом которой можно было менять расстояние между шарами и М. Наиболее точным из определенных разными способами считается значение

Если в (45.1) подставить , равные единице, то сила оказывается численно равной . Таким образом, два шара с массой 1 кг каждый, центры которых отстоят друг от друга на 1 м, притягиваются взаимно с силой, равной .

Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость

План ответа

1. Силы гравитации. 2. Закон всемирного тяготения. 3. Физический смысл гравитационной по­стоянной. 4. Сила тяжести. 5. Вес тела, перегрузки. 6. Невесомость.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называютсилами гравитации, илисилами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил за­коны движения небесных тел и выяснил, что F = G(m 1 *m 2)/R 2 , где G - коэффициент пропорциональности, называется гравитационной постоянной. Чис­ленное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу вза­имодействия между свинцовыми шарами. В резуль­тате закон всемирного тяготения звучит так:между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.

Физический смысл гравитационной постоян­ной вытекает из закона всемирного тяготения. Если m 1 = m 2 = 1 кг, R = 1 м, то G = F, т. е. гравитацион­ная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное зна­чение: G = 6,67 10 -11 Н м 2 /кг 2 . Силы всемирного тя­готения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для мате­риальных точек и шаров (в этом случае за расстоя­ние принимается расстояние между центрами ша­ров).

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называютсилой тяжести. Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым зако­ном Ньютона g = f т /m, следовательно, f т = mg. Сила тяжести всегда направлена к центру Земли. В зави­симости от высоты h над поверхностью Земли и гео­графической широты положения тела ускорение сво­бодного падения приобретает различные значения. На поверхности Земли и в средних широтах ускоре­ние свободного падения равно 9,831 м/с 2 .

В технике и быту широко используется поня­тие веса тела.Весом тела называют силу, с которой тело давит на опору или подвес в результате грави­тационного притяжения к планете (рис. 5). Вес тела обозначается Р. Единица измерения веса - 1 Н. Так как вес равен силе, с которой тело действует на опо­ру, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо найти, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следова­тельно, и вес тела равен силе тяжести (рис. 6):р = N = mg.

В случае движения тела вертикально вверх вместе с опорой с ускорением, по второму закону Ньютона, можно записать mg + N = та (рис. 7, а).

В проекции на ось OX: -mg + N = та, отсюда N = m(g + а ).

Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и нахо­дится по формуле Р = m(g + а).

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называютперегруз­кой. Действие перегрузки испытывают на себе кос­монавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при выполнении фигур высшего пилотажа, и водители автомобилей при резком торможении.

Если тело движется Вниз по вертикали, то с помощью аналогичных рассуждений получаем mg +

+N = та; mg -N = та; N = m(g -а); Р = m(g - а), т. е. вес при движении по вертикали с ускорением будет меньше силы тяжести.

Если тело свободно падает, в этом случае Р = (g - g)m = 0.

Состояние тела, в котором его вес равен нулю, называютневесомостью. Состояние невесомости на­блюдается в самолете или космическом корабле при движении с ускорением свободного падения незави­симо от направления и значения скорости их движе­ния. За пределами земной атмосферы при выключе­нии реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все те­ла, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состоя­ние невесомости.

Электрон движения в вакууме со скоростью 3 ×10 6 м/с в однородном магнитном поле с магнитной индукцией 0,1 Тл. Чему равна сила, действующая на электрон, если угол между направлением скорости электрона и линиями индукции равен 90°?