приложение №3

Урок 225. Рациональные, иррациональные, показательные и тригонометрические неравенства.

Дата проведения:

Тип урока: урок обобщения и систематизации знаний по данной теме.

Цели урока:

обобщение знаний о способах решения показательных неравенств. Подготовка к ЕГЭ;

формирование у учащихся адекватной самооценки и взаимооценки при работе в группе;

развитие математической речи при комментировании решения, при составлении алгоритмов выполнения задания; умения преодолевать трудности умения работать со справочной литературой.

воспитание взаимопомощи.

Знания, умения, навыки и качества, которые актуализируют/приобретут/закрепят/др. обучающиеся в ходе урока:

систематизируют свои знания по данной теме;

закрепят теоретические знания по данной теме;

применят знания в нестандартной ситуации.

Необходимое оборудование и материалы:

Ноутбуки для индивидуального тестирования, мультимедиа проектор;

презентация к уроку;

письменные принадлежности, раздаточный материал, листы самооценки.

Методы обучения: технология проблемно-ситуативного обучения с применением кейс-стадии.

Этапы урока:

1.Орг момент - 1 минута

2. формулировка темы и целей урока 1 минута

3. Актуализация опорных знаний. Блиц-опрос.(3 мин.)

4. Результаты блиц опроса - 2 минуты

5. Проверка домашнего задания. Выставление оценок. 3 минуты

6.Домашнее задание дифференцированного характера с правом выбора. 1 мин

7.Повторение теории и индуктор (нацеливание на выполнение) 2 мин

8. Отработка навыков решения. Работа со справочной литературой. 5 неравенств 10 мин

9. Афиширование 2 минуты

10. Разрыв. Незнакомые задачи – 2 мин

11. решение этих задач 4 минуты

12. Афиширование решения новых задач 4 мин

13. Рефлексия – 2 мин

14. Самооценка 1 минута

Перед началом урока учащиеся рассаживаются в соответствии с тремя уровнями подготовки на определённые ряды. Отметим, что навыки по рассматриваемой теме не относятся к обязательным требованиям к подготовке учащихся, поэтому, у меня её изучают только более подготовленные учащиеся (1 и 2 группа).

Цель урока. Разобрать способы решения иррациональных неравенств среднего и повышенного уровня сложности, разработать опорные схемы.

1 этап урока - организационный (1мин.)

Учитель сообщает учащимся тему урока, цель и поясняет назначение раздаточного материала, который находится на партах.

2 этап урока (5мин.)

Устная работа на повторение по решению простейших задач по теме «Степень с рациональным показателем»

Учитель предлагает учащимся по очереди отвечать на вопросы, комментируя свой ответ с ссылкой на соответствующий теоретический факт.

Степень с рациональным показателем

Упростить: 1) 12m 4 /3m 8

2) 6с 3/7 + 4 (с 1/7) 3

3) (32х 2) 1/5 · х 3/5

4) 2 4,6а · 2 -1,6а

5) 2х 0,2 · х -1,2

6) 4х 3/5 · х 1/10

8) 2х 4/5 · 3х 1/5

9) (3х 2/5) 2 + 2х 4/5

10) 3х 1/2 · х 3/2

Вычислить: 11) 4 3,2 m · 4 -1,2 m , при m =1/4

12) 6 -5,6а · 6 3,6а, при а = 1/2

13) 5 · 27 2/3 - 16 1/4

14) 3 4,4с · 3 -6,4с, при с =1/2

15) 3х 2/5 · х 3/5 , при х = 2

3 этап урока - изучение новой темы (20мин.), лекция

Учитель предлагает 3 группе учащихся приступить к работе над повторением с карточками - консультантами по теме «Простейшие тригонометрические уравнения» (т.к. изучаемый материал повышенного уровня сложности и к обязательному не относится). Учащиеся 3 группы - это, как правила учащиеся со слабой математической подготовкой, педагогически запущенные школьники. После выполнения задания происходит обмен карточками внутри группы. Более подготовленные учащиеся приступают к разбору новой темы.

Перед разбором способов решений иррациональных неравенств учащимся необходимо напомнить основные теоретические факты, на основе которых будут строится опорные схемы для равносильных переходов. В зависимости от уровня подготовки учащихся это могут быть либо устные ответы на вопросы учителя, либо совместная работа учителя и учащихся, но в любом случае на уроке должно прозвучать следующее.

Определение 1. Неравенства, имеющие одно и то же множество решений, называют равносильными.

При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Например, неравенство (х - 3)/(х 2 + 1) равносильны, т.к. имеют одно и то же множество решений: х. Неравенства 2х/(х - 1) 1 и 2х х - 1 не равносильны, т.к. решениями первого являются решения х 1, а решениями второго - числа х -1.

Определение 2. Область определения неравенства - это множество таких значений х, при которых имеют смысл обе части неравенства.

Мотивация. Неравенства сами по себе представляют интерес для изучения, т.к. именно с их помощью на символическом языке записываются важнейшие задачи познания реальной действительности. Часто неравенство служит важным вспомогательным средством, позволяющим доказать или опровергнуть существование каких-либо объектов, оценить их количество провести классификацию. Поэтому, с неравенствами приходится сталкиваться не менее часто, чем с уравнениями.

Определение. Неравенство, содержащие переменную под знаком корня, называется иррациональным.

Пример 1. √(5 - х)

Какова область определения неравенства?

При каком условии при возведении в квадрат обеих частей получится равносильное неравенство?

√(5 - х) 5 - х -11

Пример 2. √10 + х - х 2 ≥ 2 10 + х - х 2 ≥ 0 10 + х - х 2 ≥ 4

10 + х - х 2 ≥ 4

т.к. каждое решение второго неравенства системы является решением первого неравенства.

Пример 3. Решить неравенства

б) √2х 2 + 5х - 3 ≤ 0 2х 2 + 5х - 3 = 0

Разберём три типичных примера, из которых будет видно, как при решении неравенств делать равносильные переходы, когда напрашивающееся преобразование равносильным не является.

Пример 1. √1 - 4х х + 11.

Хотелось бы, конечно, возвести обе части в квадрат, чтобы получить квадратное неравенство. При этом мы можем получить не равносильное неравенство. Если рассматривать только те х для которых обе части не отрицательны (левая неотрицательно заведомо), то возведение в квадрат будет всё таки возможным. Но что же делать с теми х, для которых правая часть отрицательна? А ничего не делать, поскольку ни одно их этих х решением неравенства не будет: ведь для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом, и, стало быть, сама не отрицательна. Итак, следствием нашего неравенства будет такая система

1 - 4х (х + 11) 2

Тем не менее, эта система не обязана быть равносильной исходному неравенству. Областью определения полученной системы является вся числовая прямая, в то время как исходное неравенство определено лишь для тех х, для которых 1 - 4х ≥ 0. Значит если мы хотим, чтобы наша система была равносильна неравенству надо приписать это условие:

Ответ: (- 6; ¼]

Предлагается сильному ученику провести рассуждение в общем виде, получится вот, что

√f (х) g (х) f (х) (g (х)) 2

g (х) ≥ 0

f (х) ≥ 0.

Если бы в исходном неравенстве стоял знак ≤ вместо f (х) ≤ (g (х)) 2 .

Пример 2. √х х - 2

Здесь опять можно возвести в квадрат для тех х, для которых выполнено условие х - 2 ≥ 0. Однако теперь уже нельзя отбросить те х, для которых правая часть отрицательна: ведь в этом случае правая часть будет меньше заведомо не отрицательной левой, так что все такие х будут решениями неравенств. Впрочем, не все, а те которые входят в область определения неравенства, т.е. для которых х ≥ 0. Какие случаи следует рассмотреть?

1 случай: если х - 2 ≥ 0, то из нашего неравенства следует система

2 случай: если х - 2

При разборе случаев возникает составное условие под названием «совокупность». Получим равносильную неравенству совокупность двух систем

Сильному учащемуся предлагается провести рассуждение в общем, виде, то получится вот, что:

√f (х) g (х) f (х) (g (х)) 2

g (х) ≥ 0

f (х) ≥ 0

g (х) .

Если бы в исходном неравенстве стоял знак ≥ вместо, то в качестве первого неравенства этой системы надо было взять f (х) ≥ (g (х)) 2 .

Пример 3. √х 2 - 1 √х + 5.

Какие значения принимают выражения стоящие в левой и правой части?

Можно ли возвести в квадрат?

Какова область определения неравенств?

Получим х 2 - 1 х + 5

Какое условие лишнее?

Таким образом, получим, что данное неравенство равносильно системе

Сильному учащемуся предлагается провести рассуждение в общем виде, то получится вот, что:

√f (х) √g (х) f (х) g (х)

g (х) ≥ 0.

Подумайте, что изменится, если вместо в исходном неравенстве будет стоять знак ≥, ≤ или

На доске вывешиваются 3 схемы решения иррациональных неравенства, ещё раз обсуждается принцип их построения.

4 этап - закрепление знаний (5мин.)

Учащимся 2 группы предлагается указать, какой системе или их совокупности равносильно неравенство № 167 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

Двум наиболее подготовленным учащимся из этой группы предлагается решить на доске неравенства: № 1. √х 2 - 1 1

№ 2. √25 - х 2

Учащиеся 1 группы получают аналогичное задание, но более высокого уровня сложности № 170 (Алгебра и начала анализа 10-11 кл. М, Просвещение, 2005, Ш.А.Алимов)

одному наиболее подготовленному учащемуся из этой группы предлагается решить на доске неравенство: √4х - х 2

При этом всем учащимся разрешается пользоваться конспектом.

В это время учитель работает с учащимися 3 группы: отвечает на их вопросы при необходимости помогает; и контролирует решение задач на доске.

По истечению времени каждой группе выдаётся для проверки лист ответов (можно показать ответы на экране, используя мультимедийную систему).

5 этап урока - обсуждение решений задач, представленных на доске (7мин.)

Учащиеся, выполнявшие задачи у доски, комментируют свои решения, а остальные вносят при необходимости коррективы и выполняют записи в тетрадях.

6 этап урока - подведение итогов урока, комментарии по домашнему заданию (2мин.)

3 группа обмен карточками внутри группы.

2 группа № 168 (3, 4)

1 группа № 169 (5), № 170 (6)

Все задачи B7, которые мне доводилось видеть, были сформулированы примерно одинаково: решить уравнение. При этом сами уравнения относятся к одному из трех видов:

  1. Логарифмические;
  2. Показательные;
  3. Иррациональные.

Вообще говоря, полноценное руководство по каждому типу уравнений займет не один десяток страниц, выходя далеко за рамки ЕГЭ. Поэтому мы рассмотрим лишь самые простые случаи, требующие незатейливых рассуждений и выкладок. Этих знаний будет вполне достаточно, чтобы решить любую задачу B7.

В математике термин «решить уравнение» означает найти множество всех корней данного уравнения, либо доказать, что это множество пусто. Но в бланк ЕГЭ можно вписывать только числа — никаких множеств. Поэтому, если в задании B7 оказалось больше одного корня (или, наоборот, ни одного) — в решении была допущена ошибка.

Логарифмические уравнения

Логарифмическое уравнение — это любое уравнение, которое сводится к виду log a f (x ) = k , где a > 0, a ≠ 1 — основание логарифма, f (x ) — произвольная функция, k — некоторая постоянная.

Такое уравнение решается внесением постоянной k под знак логарифма: k = log a a k . Основание нового логарифма равно основанию исходного. Получим уравнение log a f (x ) = log a a k , которое решается отбрасыванием логарифма.

Заметим, что по условию a > 0, поэтому f (x ) = a k > 0, т.е. исходный логарифм существует.

Задача. Решить уравнение: log 7 (8 − x ) = 2.

Решение. log 7 (8 − x ) = 2 ⇔ log 7 (8 − x ) = log 7 7 2 ⇔ 8 − x = 49 ⇔ x = −41.

Задача. Решить уравнение: log 0,5 (6 − x ) = −2.

Решение. log 0,5 (6 − x ) = −2 ⇔ log 0,5 (6 − x ) = log 0,5 0,5 −2 ⇔ 6 − x = 4 ⇔ x = 2.

Но что делать, если исходное уравнение окажется сложнее, чем стандартное log a f (x ) = k ? Тогда сводим его к стандартному, собирая все логарифмы в одной стороне, а числа — в другой.

Если в исходном уравнении присутствует более одного логарифма, придется искать область допустимых значений (ОДЗ) каждой функции, стоящей под логарифмом. Иначе могут появиться лишние корни.

Задача. Решить уравнение: log 5 (x + 1) + log 5 (x + 5) = 1.

Поскольку в уравнении присутствуют два логарифма, найдем ОДЗ:

  1. x + 1 > 0 ⇔ x > −1
  2. x + 5 > 0 ⇔ x > −5

Получаем, что ОДЗ — это интервал (−1, +∞). Теперь решаем уравнение:

log 5 (x + 1) + log 5 (x + 5) = 1 ⇒ log 5 (x + 1)(x + 5) = 1 ⇔ log 5 (x + 1)(x + 5) = log 5 5 1 ⇔ (x + 1)(x + 5) = 5 ⇔ x 2 + 6x + 5 = 5 ⇔ x (x + 6) = 0 ⇔ x 1 = 0, x 2 = −6.

Но x 2 = −6 не подходит по ОДЗ. Остается корень x 1 = 0.

Показательные уравнения

Показательное уравнение — это любое уравнение, которое сводится к виду a f (x ) = k , где a > 0, a ≠ 1 — основание степени, f (x ) — произвольная функция, k — некоторая постоянная.

Это определение почти дословно повторяет определение логарифмического уравнения. Решаются показательные уравнения даже проще, чем логарифмические, ведь здесь не требуется, чтобы функция f (x ) была положительна.

Для решения сделаем замену k = a t , где t — вообще говоря, логарифм (t = log a k ), но в ЕГЭ числа a и k будут подобраны так, что найти t будет легко. В полученном уравнении a f (x ) = a t основания равны, а значит, равны и показатели, т.е. f (x ) = t . Решение последнего уравнения, как правило, не вызывает проблем.

Задача. Решить уравнение: 7 x − 2 = 49.

Решение. 7 x − 2 = 49 ⇔ 7 x − 2 = 7 2 ⇔ x − 2 = 2 ⇔ x = 4.

Задача. Решить уравнение: 6 16 − x = 1/36.

Решение. 6 16 − x = 1/36 ⇔ 6 16 − x = 6 −2 ⇔ 16 − x = −2 ⇔ x = 18.

Немного о преобразовании показательных уравнений. Если исходное уравнение отличается от a f (x ) = k , применяем правила работы со степенями:

  1. a n · a m = a n + m ,
  2. a n / a m = a n m ,
  3. (a n ) m = a n · m .

Кроме того, надо знать правила замены корней и дробей на степени с рациональным показателем:

Такие уравнения встречаются в ЕГЭ крайне редко, но без них разбор задачи B7 был бы неполным.

Задача. Решить уравнение: (5/7) x − 2 · (7/5) 2x − 1 = 125/343

Заметим, что:

  1. (7/5) 2x − 1 = ((5/7) −1) 2x − 1 = (5/7) 1 − 2x ,
  2. 125/343 = (5 3) /(7 3) = (5/7) 3 .

Имеем: (5/7) x − 2 · (7/5) 2x − 1 = 125/343 ⇔ (5/7) x − 2 · (5/7) 1 − 2x = (5/7) 3 ⇔ (5/7) x − 2 + 1 − 2x = (5/7) 3 ⇔ (5/7) −x − 1 = (5/7) 3 ⇔ −x − 1 = 3 ⇔ x = −4.

Иррациональные уравнения

Под иррациональным понимается любое уравнение, содержащее знак корня. Из всего многообразия иррациональных уравнений мы рассмотрим лишь простейший случай, когда уравнение имеет вид:

Чтобы решить такое уравнение, возведем обе стороны в квадрат. Получим уравнение f (x ) = a 2 . При этом автоматически выполняется требование ОДЗ: f (x ) ≥ 0, т.к. a 2 ≥ 0. Остается решить несложное уравнение f (x ) = a 2 .

Задача. Решить уравнение:

Возводим обе стороны в квадрат и получим: 5x − 6 = 8 2 ⇔ 5x − 6 = 64 ⇔ 5x = 70 ⇔ x = 14.

Задача. Решить уравнение:

Сначала, как и в прошлый раз, возводим обе стороны в квадрат. А затем внесем знак «минус» в числитель. Имеем:

Заметим, что при x = −4 под корнем будет положительное число, т.е. требование ОДЗ выполнено.

Считается, что задача по стереометрии на Профильном ЕГЭ по математике - только для отличников. Что для ее решения необходимы особые таланты и загадочное «пространственное мышление», которым обладают с рождения лишь редкие счастливчики.

Так ли это?

К счастью, всё значительно проще. То, что так красиво называют «пространственным мышлением», чаще всего означает знание основ стереометрии и умение строить чертежи.

Во-первых, необходимо знание формул стереометрии. В наших таблицах «Многогранники » и «Тела вращения » приведены все формулы, по которым вычисляются объемы и площади поверхности трехмерных тел.

Во-вторых - уверенное решение задач по геометрии, представленных в части 1 (первые 12 задач ЕГЭ). Это и планиметрические задачи, и стереометрические .

И главное - для решения задачи 14 вам понадобятся основные аксиомы и теоремы стереометрии. Лучше всего, если вы приобретете учебник по геометрии для 10-11 класса (автор - А. В. Погорелов или Л. С. Атанасян), и ответите на вопросы, список которых приведен ниже. Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.

Работая над этим заданием, сформулируйте для себя - чем отличаются определение и признак . Есть, например, определение параллельности прямой и плоскости - и признак параллельности прямой и плоскости. В чем разница между ними?

Очень хорошо, если вы сделаете задание самостоятельно, а затем сверите с ответами. Все ответы можно найти на нашем сайте, в этом разделе.

Программа по стереометрии .

  1. Плоскость в пространстве .Закончите фразу: Плоскость можно провести через...

    (Дайте четыре варианта ответа).

  2. Расположение плоскостей в пространстве.Закончите фразу: Если две плоскости имеют общую точку, то они...
  3. Параллельность прямой и плоскости. Определение и признак .
  4. Что такое наклонная и проекция наклонной . Рисунок.
  5. Угол между прямой и плоскостью.
  6. Перпендикулярность прямой и плоскости. Определение и признак.
  7. Скрещивающиеся прямые. Угол между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми .
  8. Расстояние от прямой до параллельной ей плоскости.
  9. Параллельность плоскостей. Определение и признак.
  10. Перпендикулярность плоскостей. Определение и признак.
  11. Закончите фразу:а) Линии пересечения двух параллельных плоскостей третьей плоскостью...

    б) Отрезки параллельных прямых, заключенные между параллельными плоскостями...

Приведем несколько простых правил для решения задач по стереометрии:

Есть два основных способа решения задач по стереометрии на ЕГЭ по математике. Первый - классический: применение на практике определений, теорем и признаков, список которых приведен выше. Второй -

Решение задания С 2 по математике.

C2 ЕГЭ по математике.


Основанием пирамиды служит квадрат,
две боковые грани этой пирамиды перпендикулярны к плоскости её основания,
две другие её боковые грани образуют с плоскостью основания равные двугранные углы,
каждый из которых равен 30 градусов.
Высота пирамиды равна sqrt(2).
Найдите площадь боковой поверхности пирамиды.

Решение C2 ЕГЭ по математике.


C2 ЕГЭ по математике.


Диаметр окружности основания цилиндра равен 26, образующая цилиндра равна 21. Плоскость пересекает его основания по хордам длины 24 и 10. Найдите тнгенс угла между этой плоскостью и плоскостью основания цилиндра.

Решение C2 ЕГЭ по математике.




Пусть AB=10 и C1D1 = 24 - хорды, по которым сечение пересекает основания цилиндра. Плоскости оснований параллельны, значит, AB и C1D1 тоже параллельны.

Опустив перпендикуляры из точек C1 и D1 к плоскости OAB, получим отрезок CD, равный C1D1. Пусть K, L и L1 - середины хорд AB, CD и C1D1 соответственно.

Угол между плоскостью сечения и плоскостью основания цилиндра будет равен углу L1KL. Его тангенс мы найдём из прямоугольного треугольника L1LK: tg(L1KL) = LL1/LK.

LL1 = образующей цилиндра = 21
LK = LO+OK.

Из прямоугольного треугольника CLO:
LO = sqrt(CO^2-CL^2) = sqrt(13^2-12^2) = 5

Из прямоугольного треугольника AKO:
OK = sqrt(AO^2-AK^2) = sqrt(13^2-5^2) = 12

Tg(L1KL) = LL1/LK = 21/17

Задание С2 Условие:

В правильной шестиугольной пирамиде SABCDEF
сторона основания AB=√3, боковое ребро SA = √7. Найдите расстояние от вершины A до плоскости BCS.

Решение:

Заметим, что AD параллельно BC, а значит, и всей плоскости BCS.
Это значит, что все точки прямой AD равноудалены от плоскости BCS.

Пусть SH — высота треугольника BCS, SO — перпендикуляр, опущенный из точки S к плоскости основания пирамиды, при этом точка O принадлежит AD. Искомым расстоянием будет длина высоты OM прямоугольного треугольника SOH.

1) Найдём OH из равностороннего треугольника OBC: OH = BC*sqrt(3)/2 = 3/2

2) Найдём SH из прямоугольного треугольника BHS: SH = sqrt(SB^2-BH^2) = sqrt(sqrt(7)^2-(sqrt(3)/2)^2) = 5/2

3) Найдём SO из прямоугольного треугольника SOH: SO = sqrt(SH^2-OH^2) = 4/2

4) Искомое расстояние OM, зная все стороны прямоугольного треугольника SOH, можно, например, найти, записав выражение для его площади двумя разными способами:

S = SO*OH/2 = SH*OM/2,

Откуда OM = SO*OH/SH = 4*3/5 = 6/5

Ответ: 6/5

Задание С2 Условие:

В правильной треугольной пирамиде АВСS с основанием АВС известны ребра: АВ= 5 корней из 3, SC= 13.
Найти угол, образованный плоскостью основания и прямой, проходящей через середину ребер АS и ВС.

Решение:

1. Поскольку SABC - правильная пирамида, то ABC - равносторонний треугольник, а остальные грани - равные между собой равнобедренные треугольники.
То есть все стороны основания равны 5*sqrt(3), а все боковые ребра равны 13.

2. Пусть D - середина BC, E - середина AS, SH - высота, опущенная из точки S к основанию пирамиды, Ep - высота, опущенная из точки E к основанию пирамиды.

3. Найдем AD из прямоугольного треугольника CAD по теореме Пифагора. Получится 15/2 = 7.5.

4. Поскольку пирамида правильная, точка H - это точка пересечения высот/медиан/биссектрис треугольника ABC, а значит, делит AD в отношении 2:1 (AH=2*AD).

5. Найдем SH из прямоугольного треугольника ASH. AH=AD*2/3 = 5, AS = 13, по теореме Пифагора SH = sqrt(13^2-5^2) = 12.

6. Треугольники AEp и ASH оба прямоугольные и имеют общий угол A, следовательно, подобные. По условию, AE = AS/2, значит, и Ap = AH/2, и Ep = SH/2.

7. Осталось рассмотреть прямоугольный треугольник EDp (нас как раз интересует угол EDp).
Ep = SH/2 = 6;
Dp = AD*2/3 = 5;

Тангенс угла EDp = Ep/Dp = 6/5,
Угол EDp = arctg(6/5)

Ответ:

Задание С2 Условие:

В равнобедренном прямоугольном треугольнике один из катетов лежит в плоскости a, а другой образует с ней угол 45 градусов. Найдите угол между гипотенузой данного треугольника и данной плоскостью.

Решение:

Треугольник ABC, угол C - прямой, BC принадлежит плоскости.
AC = BC = x, AB = x*sqrt(2)
Опустим перпендикуляр AA1 к плоскости a.

Искомый угол - угол A1BA.

Угол A1CA равен 45 градусов, угол AA1C - прямой. AA1 = AC*sin(45 градусов) = x/sqrt(2).

sin(A1BA) = AA1/AB = (x/sqrt(2))/(x*sqrt(2)) = 1/2

Угол A1BA = arcsin(1/2) = 30 градусов.