Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.


Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.


В этой статье мы поговорим о нахождении координат середины отрезка по координатам его концов. Сначала мы дадим необходимые понятия, далее получим формулы для нахождения координат середины отрезка, в заключении рассмотрим решения характерных примеров и задач.

Навигация по странице.

Понятие середины отрезка.

Для того, чтобы ввести понятие середины отрезка, нам потребуются определения отрезка и его длины.

Понятие отрезка дается на уроках математики в пятом классе средней школы следующим образом: если взять две произвольных несовпадающих точки А и В , приложить к ним линейку и провести от А к В (или от В к А ) линию, то мы получим отрезок АВ (или отрезок В А). Точки А и В называются концами отрезка . Следуем иметь в виду, что отрезок АВ и отрезок ВА есть один и тот же отрезок.

Если отрезок АВ бесконечно продолжить в обе стороны от концов, то мы получим прямую АВ (или прямую ВА ). Отрезок АВ представляет собой часть прямой АВ , заключенную между точками А и В . Таким образом, отрезок АВ – это объединение точек А , В и множества всех точек прямой АВ , находящихся между точками А и В . Если взять произвольную точку М прямой АВ , находящуюся между точками А и В , то говорят, что точка М лежит на отрезке АВ .

Длиной отрезка АВ называется расстояние между точками А и В при заданном масштабе (отрезке единичной длины). Длину отрезка АВ будем обозначать как .

Определение.

Точка С называется серединой отрезка АВ , если она лежит на отрезке АВ и находится на одинаковом расстоянии от его концов.

То есть, если точка С является серединой отрезка АВ , то она лежит на нем и .

Далее нашей задачей будет нахождение координат середины отрезка АВ , если заданы координаты точек А и В на координатной прямой или в прямоугольной системе координат .

Координата середины отрезка на координатной прямой.

Пусть нам задана координатная прямая Ох и две несовпадающих точки А и В на ней, которым соответствуют действительные числа и . Пусть точка С – середина отрезка АВ . Найдем координату точки С .

Так как точка С – середина отрезка АВ , то справедливо равенство . В разделе расстояние от точки до точки на координатной прямой мы показали, что расстояние между точками равно модулю разности их координат, следовательно, . Тогда или . Из равенства находим координату середины отрезка АВ на координатной прямой: - она равна полусумме координат концов отрезка. Из второго равенства получаем , что невозможно, так как мы брали несовпадающие точки А и В .

Итак, формула для нахождения координаты середины отрезка АВ с концами и имеет вид .

Координаты середины отрезка на плоскости.

Введем прямоугольную декартову систему координат Оxyz на плоскости. Пусть нам даны две точки и и известно, что точка С – середина отрезка АВ . Найдем координаты и точки С .

По построению прямые параллельны, а также параллельны прямые , поэтому, по теореме Фалеса из равенства отрезков АС и СВ следует равенство отрезков и , а так же отрезков и . Следовательно, точка - середина отрезка , а - середина отрезка . Тогда в силу предыдущего пункта этой статьи и .

По этим формулам можно вычислять координаты середины отрезка АВ и в случаях, когда точки А и В лежат на одной из координатных осей или на прямой, перпендикулярной одной из координатных осей. Оставим эти случаи без комментариев, а приведем графические иллюстрации.

Таким образом, середина отрезка АВ на плоскости с концами в точках и имеет координаты .

Координаты середины отрезка в пространстве.

Пусть в трехмерном пространстве введена прямоугольная система координат Oxyz и заданы две точки и . Получим формулы для нахождения координат точки С , которая является серединой отрезка АВ .

Рассмотрим общий случай.

Пусть и - проекции точек А , В и С на координатные оси Оx , Оу и Oz соответственно.


По теореме Фалеса , следовательно, точки есть середины отрезков соответственно. Тогда (смотрите первый пункт этой статьи). Так мы получили формулы для вычисления координат середины отрезка по координатам его концов в пространстве .

Эти формулы можно применять и в случаях, когда точки А и В лежат на одной из координатных осей или на прямой, перпендикулярной одной из координатных осей, а также если точки А и В лежат в одной из координатных плоскостей или в плоскости, параллельной одной из координатных плоскостей.

Координаты середины отрезка через координаты радиус-векторов его концов.

Формулы для нахождения координат середины отрезка легко получить, обратившись к алгебре векторов.

Пусть на плоскости задана прямоугольная декартова система координат Oxy и точка С – середина отрезка АВ , причем и .

По геометрическому определению операций над векторами справедливо равенство (точка С является точкой пересечения диагоналей параллелограмма, построенного на векторах и , то есть, точка С – середина диагонали параллелограмма). В статье координаты вектора в прямоугольной системе координат мы выяснили, что координаты радиус-вектора точки равны координатам этой точки, следовательно, . Тогда, выполнив соответствующие операции над векторами в координатах , имеем . Откуда можно сделать вывод, что точка С имеет координаты .

Абсолютно аналогично могут быть найдены координаты середины отрезка АВ через координаты его концов в пространстве. В этом случае, если С – середина отрезка АВ и , то имеем .

Нахождение координат середины отрезка, примеры, решения.

Во многих задачах приходится использовать формулы для нахождения координат середины отрезка. Рассмотрим решения наиболее характерных примеров.

Начнем с примера, в котором лишь требуется применить формулу.

Пример.

На плоскости заданы координаты двух точек . Найдите координаты середины отрезка АВ .

Решение.

Пусть точка С – середина отрезка АВ . Ее координаты равны полусуммам соответствующих координат точек А и В :

Таким образом, середина отрезка АВ имеет координаты .

Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).

Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой. Большинству эти задания будут не интересны. Но изложить их считаю необходимым.

Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь н емного теории.

Построим на координатной плоскости точку А с координатами х= 6, y=3.


Говорят, что абсцисса точки А равна шести, ордината точки А равна трём.

Если выразиться просто, то ось ох это ось абсцисс, ось оу это ость ординат.

То есть, абсцисса это точка на оси ох в которую проецируется точка заданная на координатной плоскости; ордината это точка на оси оу в которую проецируется оговоренная точка.

Длина отрезка на координатной плоскости

Формула для определения длины отрезка, если известны координаты его концов:

Как вы видите, длина отрезка — это длина гипотенузы в прямоугольными треугольнике с катетами равными

Х В – Х А и У В – У А

* * *

Середина отрезка. Её Координаты.


Формула для нахождения координат середины отрезка:

Уравнение прямой проходящей через две данные точки


Формула уравнения прямой походящей через две данные точки имеет вид:

где (х 1 ;у 1 ) и (х 2 ;у 2 ) координаты заданных точек.

Подставив значения координат в формулу, она приводится к виду:

y = kx + b , где k — это угловой коэффициент прямой

Эта информация нам понадобиться при решении другой группы задач связанных с координатной плоскостью. Статья об этом будет, не пропустите!

Что ещё можно добавить?

Угол наклона прямой (или отрезка) это угол между осью оХ и этой прямой, лежит в пределах от 0 до 180 градусов.


Рассмотрим задачи.

Из точки (6;8) опущен перпендикуляр на ось ординат. Найдите ординату основания перпендикуляра.

Основание перпендикуляра опущенного на ось ординат будет иметь координаты (0;8). Ордината равна восьми.

Ответ: 8

Найдите расстояние от точки A с координатами (6;8) до оси ординат.

Расстояние от точки А до оси ординат равно абсциссе точки А.

Ответ: 6.

A (6;8) относительно оси Ox .

Точка симметричная точке А относительно оси оХ имеет координаты (6;– 8).

Ордината равна минус восьми.

Ответ: – 8

Найдите ординату точки, симметричной точке A (6;8) относительно начала координат.

Точка симметричная точке А относительно начала координат имеет координаты (– 6;– 8).

Её ордината равна – 8.


Ответ: –8

Найдите абсциссу середины отрезка, соединяющего точки O (0;0) и A (6;8).


Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (0;0) и (6;8).

Вычисляем по формуле:

Получили (3;4). Абсцисса равна трём.

Ответ: 3

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку. Середину отрезка несложно будет определить по клеткам.

Найдите абсциссу середины отрезка, соединяющего точки A (6;8) и B (–2;2).


Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (–2;2) и (6;8).

Вычисляем по формуле:

Получили (2;5). Абсцисса равна двум.

Ответ: 2

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку.

Найдите длину отрезка, соединяющего точки (0;0) и (6;8).


Длина отрезка при данных координатах его концов вычисляется по формуле:

в нашем случае имеем О(0;0) и А(6;8). Значит,

*Порядок координат при вычитании не имеет значения. Можно из абсциссы и ординаты точки О вычесть абсциссу и ординату точки А:

Ответ:10

Найдите косинус угла наклона отрезка, соединяющего точки O (0;0) и A (6;8), с осью абсцисс.


Угол наклона отрезка – это угол между этим отрезком и осью оХ.

Из точки А опустим перпендикуляр на ось оХ:


То есть, угол наклона отрезка это угол ВОА в прямоугольном треугольнике АВО.

Косинусом острого угла в прямоугольном треугольнике является

отношение прилежащего катета к гипотенузе

Необходимо найти гипотенузу ОА.

По теореме Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Таким образом, косинус угла наклона равен 0,6

Ответ: 0,6

Из точки (6;8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.

Через точку (6;8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью оУ .

Найдите расстояние от точки A с координатами (6;8) до оси абсцисс.

Найдите расстояние от точки A с координатами (6;8) до начала координат.

Если вы хорошо заточенным карандашом прикоснетесь к тетрадному листу, то останется след, который дает представление о точке. (рис. 3 ).

Отметим на листе бумаги две точки A и B. Эти точки можно соединить различными линиями (рис. 4 ). А как соединить точки A и B самой короткой линией? Это можно сделать с помощь линейки (рис. 5 ). Полученную линию называют отрезком .

Точка и отрезок − примеры геометрических фигур .

Точки A и B называют концами отрезка .

Существует единственный отрезок, концами которого являются точки A и B. Поэтому отрезок обозначают, записывая точки, которые являются его концами. Например, отрезок на рисунке 5 обозначают одним из двух способов: AB или BA. Читают: "отрезок AB" или "отрезок BA".

На рисунке 6 изображены три отрезка. Длина отрезка AB равна 1 см. Он помещается в отрезке MN ровно три раза, а в отрезке EF − ровно 4 раза. Будем говорить, что длина отрезка MN равна 3 см, а длина отрезка EF − 4 см.

Также принято говорить: "отрезок MN равен 3 см", "отрезок EF равен 4 см". Пишут: MN = 3 см, EF = 4 см.

Длины отрезков MN и EF мы измерили единичным отрезком , длина которого равна 1 см. Для измерения отрезков можно выбрать и другие единицы длины , например: 1 мм, 1 дм, 1 км. На рисунке 7 длина отрезка равна 17 мм. Он измерен единичным отрезком, длина которого равна 1 мм, с помощью линейки с делениями. Также с помощью линейки можно построить (начертить) отрезок заданной длины (см. рис. 7 ).

Вообще, измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается .

Длина отрезка обладает следующим свойством.

Если на отрезке AB отметить точку C, то длина отрезка AB равна сумме длин отрезков AC и CB (рис. 8 ).

Пишут: AB = AC + CB.

На рисунке 9 изображены два отрезка AB и CD. Эти отрезки при наложении совпадут.

Два отрезка называют равными, если они совпадут при наложении.

Следовательно отрезки AB и CD равны. Пишут: AB = CD.

Равные отрезки имеют равные длины.

Из двух неравных отрезков бОльшим будем считать тот, у уоторого длина больше. Например, на рисунке 6 отрезок EF больше отрезка MN.

Длину отрезка AB называют расстоянием между точками A и B.

Если несколько отрезков расположить так, как показано на рисунке 10, то получится геометрическая фигура, которую называют ломаная . Заметим, что все отрезки на рисунке 11 ломаную не образуют. Считают, что отрезки, образуют ломаную, если конец первого отрезка совпадает с концом второго, а другой конец второго отрезка − с концом третьего и т. д.

Точки A, B, C, D, E − вершины ломаной ABCDE, точки A и E − концы ломаной , а отрезки AB, BC, CD, DE − ее звенья (см. рис. 10 ).

Длиной ломаной называют сумму длин всех ее звеньев.

На рисунке 12 изображены две ломаные, концы которых совпадают. Такие ломаные называют замкнутыми .

Пример 1 . Отрезок BC на 3 см меньше отрезка AB, длина которого равна 8 см (рис. 13 ). Найдите длину отрезка AC.

Решение. Имеем: BC = 8 − 3 = 5 (см).

Воспользовавшись свойством длины отрезка, можно записать AC = AB + BC. Отсюда AC = 8 + 5 = 13 (см).

Ответ: 13 см.

Пример 2 . Известно, что MK = 24 см, NP = 32 см, MP = 50 см (рис. 14 ). Найдите длину отрезка NK.

Решение. Имеем: MN = MP − NP.

Отсюда MN = 50 − 32 = 18 (см).

Имеем: NK = MK − MN.

Отсюда NK = 24 − 18 = 6 (см).

Ответ: 6 см.

Существуют три основных системы координат, используемых в геометрии, теоретической механике, других разделах физики: декартова, полярная и сферическая. В этих системах координат вся точка имеет три координаты. Зная координаты 2-х точек, дозволено определить расстояние между этими двумя точками.

Вам понадобится

  • Декартовы, полярные и сферические координаты концов отрезка

Инструкция

1. Разглядите для начала прямоугольную декартову систему координат. Расположение точки в пространстве в этой системе координат определяется координатами x,y и z. Из начала координат к точке проводится радиус-вектор. Проекции этого радиус-вектора на координатные оси и будут координатами этой точки.Пускай у вас сейчас есть две точки с координатами x1,y1,z1 и x2,y2 и z2 соответственно. Обозначьте за r1 и r2, соответственно, радиус-векторы первой и 2-й точки. Видимо, что расстояние между этими двумя точками будет равно модулю вектора r = r1-r2, где (r1-r2) – векторная разность.Координаты вектора r, видимо, будут следующими: x1-x2, y1-y2, z1-z2. Тогда модуль вектора r либо расстояние между двумя точками будет равно: r = sqrt(((x1-x2)^2)+((y1-y2)^2)+((z1-z2)^2)).

2. Разглядите сейчас полярную систему координат, в которой координата точки будет задаваться радиальной координатой r (радиус-вектор в плоскости XY), угловой координатой? (углом между вектором r и осью X) и координатой z, аналогичной координате z в декартовой системе.Полярные координаты точки дозволено перевести в декартовы дальнейшим образом: x = r*cos?, y = r*sin?, z = z. Тогда расстояние между двумя точками с координатами r1, ?1 ,z1 и r2, ?2, z2 будет равно R = sqrt(((r1*cos?1-r2*cos?2)^2)+((r1*sin?1-r2*sin?2)^2)+((z1-z2)^2)) = sqrt((r1^2)+(r2^2)-2r1*r2(cos?1*cos?2+sin?1*sin?2)+((z1-z2)^2))

3. Сейчас разглядите сферическую систему координат. В ней расположение точки задается тремя координатами r, ? и?. r – расстояние от начала координат до точки, ? и? – азимутальные и зенитный угол соответственно. Угол? аналогичен углу с таким же обозначением в полярной системе координат, а? – угол между радиус-вектором r и осью Z, причем 0<= ? <= pi.Переведем сферические координаты в декартовы: x = r*sin?*cos?, y = r*sin?*sin?*sin?, z = r*cos?. Расстояние между точками с координатами r1, ?1, ?1 и r2, ?2 и?2 будет равно R = sqrt(((r1*sin?1*cos?1-r2*sin?2*cos?2)^2)+((r1*sin?1*sin?1-r2*sin?2*sin?2)^2)+((r1*cos?1-r2*cos?2)^2)) = (((r1*sin?1)^2)+((r2*sin?2)^2)-2r1*r2*sin?1*sin?2*(cos?1*cos?2+sin?1*sin?2)+((r1*cos?1-r2*cos?2)^2))

Видео по теме