В данной теме мы разберём те формулы, которые можно получить, используя второй замечательный предел (тема, посвящённая непосредственно второму замечательному пределу, находится ). Напомню две формулировки второго замечательного предела, которые понадобятся в этом разделе: $\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$ и $\lim_{x\to\ 0}\left(1+x\right)^\frac{1}{x}=e$.

Обычно формулы я привожу без доказательств, но для данной страницы, полагаю, сделаю исключение. Дело в том, что доказательство следствий из второго замечательного предела содержит некоторые приёмы, которые бывают полезны при непосредственном решении задач. Ну, и, вообще говоря, желательно знать, как доказывается та или иная формула. Это позволяет лучше понимать её внутреннюю структуру, а также границы применимости. Но так как доказательства могут быть интересны не всем читателям, то скрою их под примечания, расположенные после каждого следствия.

Следствие №1

\begin{equation} \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=1\end{equation}

Доказательство следствия №1: показать\скрыть

Так как при $x\to 0$ имеем $\ln(1+x)\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости представим выражение $\frac{\ln(1+x)}{x}$ в таком виде: $\frac{1}{x}\cdot\ln(1+x)$. Теперь внесём множитель $\frac{1}{x}$ в степень выражения $(1+x)$ и применим второй замечательный предел:

$$ \lim_{x\to\ 0} \frac{\ln(1+x)}{x}=\left| \frac{0}{0} \right|= \lim_{x\to\ 0} \left(\frac{1}{x}\cdot\ln(1+x)\right)=\lim_{x\to\ 0}\ln(1+x)^{\frac{1}{x}}=\ln e=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $\log_a t=\frac{\ln t}{\ln a}$, то $\log_a (1+x)=\frac{\ln(1+x)}{\ln a}$.

$$ \lim_{x\to\ 0} \frac{\log_a (1+x)}{x}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0}\frac{\ln(1+x)}{ x \ln a}=\frac{1}{\ln a}\lim_{x\to\ 0}\frac{\ln(1+x)}{ x}=\frac{1}{\ln a}\cdot 1=\frac{1}{\ln a}. $$

Следствие №2

\begin{equation} \lim_{x\to\ 0} \frac{e^x-1}{x}=1\end{equation}

Доказательство следствия №2: показать\скрыть

Так как при $x\to 0$ имеем $e^x-1\to 0$, то в рассматриваемом пределе наличествует неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости осуществим замену переменной, обозначив $t=e^x-1$. Так как $x\to 0$, то $t\to 0$. Далее, из формулы $t=e^x-1$ получим: $e^x=1+t$, $x=\ln(1+t)$.

$$ \lim_{x\to\ 0} \frac{e^x-1}{x}=\left| \frac{0}{0} \right|=\left | \begin{aligned} & t=e^x-1;\; t\to 0.\\ & x=\ln(1+t).\end {aligned} \right|= \lim_{t\to 0}\frac{t}{\ln(1+t)}=\lim_{t\to 0}\frac{1}{\frac{\ln(1+t)}{t}}=\frac{1}{1}=1. $$

Вновь имеем неопределённость вида $\frac{0}{0}$. Будем опираться на уже доказанную нами формулу . Так как $a^x=e^{x\ln a}$, то:

$$ \lim_{x\to\ 0} \frac{a^{x}-1}{x}=\left| \frac{0}{0} \right|=\lim_{x\to 0}\frac{e^{x\ln a}-1}{x}=\ln a\cdot \lim_{x\to 0}\frac{e^{x\ln a}-1}{x \ln a}=\ln a \cdot 1=\ln a. $$

Следствие №3

\begin{equation} \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}=\alpha \end{equation}

Доказательство следствия №3: показать\скрыть

Вновь мы имеем дело с неопределённостью вида $\frac{0}{0}$. Так как $(1+x)^\alpha=e^{\alpha\ln(1+x)}$, то получим:

$$ \lim_{x\to\ 0} \frac{(1+x)^\alpha-1}{x}= \left| \frac{0}{0} \right|= \lim_{x\to\ 0}\frac{e^{\alpha\ln(1+x)}-1}{x}= \lim_{x\to\ 0}\left(\frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \frac{\alpha\ln(1+x)}{x} \right)=\\ =\alpha\lim_{x\to\ 0} \frac{e^{\alpha\ln(1+x)}-1}{\alpha\ln(1+x)}\cdot \lim_{x\to\ 0}\frac{\ln(1+x)}{x}=\alpha\cdot 1\cdot 1=\alpha. $$

Пример №1

Вычислить предел $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}$.

Имеем неопределённость вида $\frac{0}{0}$. Для раскрытия этой неопределённости будем использовать формулу . Чтобы подогнать наш предел под данную формулу следует иметь в виду, что выражения в степени числа $e$ и в знаменателе должны совпадать. Иными словами, синусу в знаменателе не место. В знаменателе должно быть $9x$. Кроме того, при решении этого примера будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\left|\frac{0}{0} \right|=\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{9x}{\sin 5x} \right) =\frac{9}{5}\cdot\lim_{x\to\ 0} \left(\frac{e^{9x}-1}{9x}\cdot\frac{1}{\frac{\sin 5x}{5x}} \right)=\frac{9}{5}\cdot 1 \cdot 1=\frac{9}{5}. $$

Ответ : $\lim_{x\to\ 0} \frac{e^{9x}-1}{\sin 5x}=\frac{9}{5}$.

Пример №2

Вычислить предел $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}$.

Имеем неопределённость вида $\frac{0}{0}$ (напомню, что $\ln\cos 0=\ln 1=0$). Для раскрытия этой неопределённости будем использовать формулу . Для начала учтём, что $\cos x=1-2\sin^2 \frac{x}{2}$ (см. распечатку по тригонометрическим функциям). Теперь $\ln\cos x=\ln\left(1-2\sin^2 \frac{x}{2}\right)$, поэтому в знаменателе следует получить выражение $-2\sin^2 \frac{x}{2}$ (чтобы подогнать наш пример под формулу ). В дальнейшем решении будет использован первый замечательный предел .

$$ \lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=\left| \frac{0}{0} \right|=\lim_{x\to\ 0} \frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{x^2}= \lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\frac{-2\sin^2 \frac{x}{2}}{x^2} \right)=\\ =-\frac{1}{2}\lim_{x\to\ 0} \left(\frac{\ln\left(1-2\sin^2 \frac{x}{2}\right)}{-2\sin^2 \frac{x}{2}}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2 \right)=-\frac{1}{2}\cdot 1\cdot 1^2=-\frac{1}{2}. $$

Ответ : $\lim_{x\to\ 0} \frac{\ln\cos x}{x^2}=-\frac{1}{2}$.

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят – это ОЧЕНЬ важно. Почему? Можно не понимать, что такое определители и успешно их решать, можно совершенно не понимать, что такое производная и находить их на «пятёрку». Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению. Вся информация изложена в простой и доступной форме.

А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы . Их можно найти на странице . Лучше всего методички распечатать – это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней. То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически.

Замечательных пределов существует несколько, но на практике у студентов-заочников в 95% случаев фигурируют два замечательных предела: Первый замечательный предел , Второй замечательный предел . Следует отметить, что это исторически сложившиеся названия, и, когда, например, говорят о «первом замечательном пределе», то подразумевают под этим вполне определенную вещь, а не какой-то случайный, взятый с потолка предел.

Первый замечательный предел

Рассмотрим следующий предел: (вместо родной буквы «хэ» я буду использовать греческую букву «альфа», это удобнее с точки зрения подачи материала).

Согласно нашему правилу нахождения пределов (см. статью Пределы. Примеры решений ) пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен нулю), в знаменателе, очевидно, тоже ноль. Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:

Данный математический факт носит название Первого замечательного предела . Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях .

Нередко в практических заданиях функции могут быть расположены по-другому, это ничего не меняет:

– тот же самый первый замечательный предел.

Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

На практике в качестве параметра может выступать не только переменная , но и элементарная функция, сложная функция. Важно лишь, чтобы она стремилась к нулю .

Примеры:
, , ,

Здесь , , , , и всё гуд – первый замечательный предел применим.

А вот следующая запись – ересь:

Почему? Потому что многочлен не стремится к нулю, он стремится к пятерке.

Кстати, вопрос на засыпку, а чему равен предел ? Ответ можно найти в конце урока.

На практике не все так гладко, почти никогда студенту не предложат решить халявный предел и получить лёгкий зачет. Хммм… Пишу эти строки, и пришла в голову очень важная мысль – все-таки «халявные» математические определения и формулы вроде лучше помнить наизусть, это может оказать неоценимую помощь на зачете, когда вопрос будет решаться между «двойкой» и «тройкой», и преподаватель решит задать студенту какой-нибудь простой вопрос или предложить решить простейший пример («а может он (а) все-таки знает чего?!»).

Переходим к рассмотрению практических примеров:

Пример 1

Найти предел

Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела.

Сначала пробуем подставить 0 в выражение под знак предела (делаем это мысленно или на черновике):

Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения. Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе .

В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: «под синусом у нас , значит, в знаменателе нам тоже нужно получить ».
А делается это очень просто:

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания.
Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:


Что произошло? По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении:

Теперь только осталось избавиться от трехэтажности дроби:

Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики .

Готово. Окончательный ответ:

Если не хочется использовать пометки карандашом, то решение можно оформить так:



Используем первый замечательный предел

Пример 2

Найти предел

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль:

Действительно, у нас неопределенность и, значит, нужно попытаться организовать первый замечательный предел. На уроке Пределы. Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители. Здесь – то же самое, степени мы представим в виде произведения (множителей):

Аналогично предыдущему примеру, обводим карандашом замечательные пределы (здесь их два), и указываем, что они стремятся к единице:

Собственно, ответ готов:

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради – Вам уже понятно.

Пример 3

Найти предел

Подставляем ноль в выражение под знаком предела:

Получена неопределенность , которую нужно раскрывать. Если в пределе есть тангенс, то почти всегда его превращают в синус и косинус по известной тригонометрической формуле (кстати, с котангенсом делают примерно то же самое, см. методический материал Горячие тригонометрические формулы на странице Математические формулы, таблицы и справочные материалы ).

В данном случае:

Косинус нуля равен единице, и от него легко избавиться (не забываем пометить, что он стремится к единице):

Таким образом, если в пределе косинус является МНОЖИТЕЛЕМ, то его, грубо говоря, нужно превратить в единицу, которая исчезает в произведении.

Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:

В итоге получена бесконечность, бывает и такое.

Пример 4

Найти предел

Пробуем подставить ноль в числитель и знаменатель:

Получена неопределенность (косинус нуля, как мы помним, равен единице)

Используем тригонометрическую формулу . Возьмите на заметку! Пределы с применением этой формулы почему-то встречаются очень часто.

Постоянные множители вынесем за значок предела:

Организуем первый замечательный предел:


Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:

Избавимся от трехэтажности:

Предел фактически решен, указываем, что оставшийся синус стремится к нулю:

Пример 5

Найти предел

Этот пример сложнее, попробуйте разобраться самостоятельно:

Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов .

Второй замечательный предел

В теории математического анализа доказано, что:

Данный факт носит название второго замечательного предела .

Справка: – это иррациональное число.

В качестве параметра может выступать не только переменная , но и сложная функция. Важно лишь, чтобы она стремилась к бесконечности .

Пример 6

Найти предел

Когда выражение под знаком предела находится в степени – это первый признак того, что нужно попытаться применить второй замечательный предел.

Но сначала, как всегда, пробуем подставить бесконечно большое число в выражение , по какому принципу это делается, разобрано на уроке Пределы. Примеры решений .

Нетрудно заметить, что при основание степени , а показатель – , то есть имеется, неопределенность вида :

Данная неопределенность как раз и раскрывается с помощью второго замечательного предела. Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: в данном примере параметр , значит, в показателе нам тоже нужно организовать . Для этого возводим основание в степень , и, чтобы выражение не изменилось – возводим в степень :

Когда задание оформляется от руки, карандашом помечаем:


Практически всё готово, страшная степень превратилась в симпатичную букву :

При этом сам значок предела перемещаем в показатель :

Пример 7

Найти предел

Внимание! Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Пробуем подставить бесконечно большое число в выражение, стоящее под знаком предела:

В результате получена неопределенность . Но второй замечательный предел применим к неопределенности вида . Что делать? Нужно преобразовать основание степени. Рассуждаем так: в знаменателе у нас , значит, в числителе тоже нужно организовать .

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Доказательство:

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая получим

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом (2)*Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2: Сумму в скобке найдём по формуле суммы членов геометрической прогрессии: Поэтому (3)*

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть Каждое значение x заключено между двумя положительными целыми числами: ,где - это целая часть x. => =>

Если ,то Поэтому, согласно пределу Имеем

По признаку (о пределе промежуточной функции) существования пределов

2. Пусть . Сделаем подстановку − x = t, тогда

Из двух этих случаев вытекает, что для вещественного x.

Следствия:

9 .) Сравнение бесконечно малых. Теорема о замене бесконечно малых на эквивалентные в пределе и теорема о главной части бесконечно малых.

Пусть функции a(x ) и b(x ) – б.м. при x ® x 0 .

ОПРЕДЕЛЕНИЯ.

1) a(x ) называется бесконечно малой более высокого порядка чем b(x ) если

Записывают: a(x ) = o(b(x )) .

2) a(x ) и b(x ) называются бесконечно малыми одного порядка , если

где С Îℝ и C ¹ 0 .

Записывают: a(x ) = O (b(x )) .

3) a(x ) и b(x ) называются эквивалентными , если

Записывают: a(x ) ~ b(x ).

4) a(x ) называется бесконечно малой порядка k относи-
тельно бесконечно малой
b(x ),
если бесконечно малые a(x ) и (b(x )) k имеют один порядок, т.е. если

где С Îℝ и C ¹ 0 .

ТЕОРЕМА 6 (о замене бесконечно малых на эквивалентные).

Пусть a(x ), b(x ), a 1 (x ), b 1 (x ) – б.м. при x ® x 0 . Если a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ),

то

Доказательство: Пусть a(x ) ~ a 1 (x ), b(x ) ~ b 1 (x ), тогда

ТЕОРЕМА 7 (о главной части бесконечно малой).

Пусть a(x ) и b(x ) – б.м. при x ® x 0 , причем b(x ) – б.м. более высокого порядка чем a(x ).

= , a так как b(x )– более высокого порядка чем a(x ) ,то , т.е. из ясно, что a(x ) + b(x ) ~ a(x )

10) Непрерывность функции в точке(на языке пределов эпсилон-дельта,геометрическое) Односторонняя непрерывность. Непрерывность на интервале, на отрезке. Свойства непрерывных функций.

1. Основные определения

Пусть f (x ) определена в некоторой окрестности точки x 0 .

ОПРЕДЕЛЕНИЕ 1. Функция f (x ) называется непрерывной в точке x 0 если справедливо равенство

Замечания .

1) В силу теоремы 5 §3 равенство (1) можно записать в виде

Условие (2) – определение непрерывности функции в точке на языке односторонних пределов .

2) Равенство (1) можно также записать в виде:

Говорят: «если функция непрерывна в точке x 0 , то знак предела и функцию можно поменять местами».

ОПРЕДЕЛЕНИЕ 2 (на языке e-d).

Функция f (x ) называется непрерывной в точке x 0 если "e>0 $d>0 такое , что

если x ÎU(x 0 , d) (т.е. | x x 0 | < d),

то f (x )ÎU(f (x 0), e) (т.е. | f (x ) – f (x 0) | < e).

Пусть x , x 0 Î D (f ) (x 0 – фиксированная, x – произвольная)

Обозначим: Dx = x – x 0 – приращение аргумента

Df (x 0) = f (x ) – f (x 0) – приращение функции в точкеx 0

ОПРЕДЕЛЕНИЕ 3 (геометрическое).

Функция f (x ) называетсянепрерывной в точке x 0 если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции , т.е.

Пусть функция f (x ) определена на промежутке [x 0 ; x 0 + d) (на промежутке (x 0 – d; x 0 ]).

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной в точке x 0 справа (слева ), если справедливо равенство

Очевидно, что f (x ) непрерывна в точке x 0 Û f (x ) непрерывна в точке x 0 справа и слева.

ОПРЕДЕЛЕНИЕ. Функция f (x ) называется непрерывной на интервал е (a ; b ) если она непрерывна в каждой точке этого интервала .

Функция f (x ) называется непрерывной на отрезке [a ; b ] если она непрерывна на интервале (a ; b ) и имеет одностороннюю непрерывность в граничных точках (т.е. непрерывна в точке a справа, в точке b – слева).

11) Точки разрыва, их классификация

ОПРЕДЕЛЕНИЕ. Если функция f (x ) определена в некоторой окрестности точки x 0 , но не является непрерывной в этой точке, то f (x ) называют разрывной в точке x 0 , а саму точку x 0 называют точкой разрыва функции f (x ) .

Замечания .

1) f (x ) может быть определена в неполной окрестности точки x 0 .

Тогда рассматривают соответствующую одностороннюю непрерывность функции.

2) Из определения Þ точка x 0 является точкой разрыва функции f (x ) в двух случаях:

а) U(x 0 , d)ÎD (f ) , но для f (x ) не выполняется равенство

б) U * (x 0 , d)ÎD (f ) .

Для элементарных функций возможен только случай б).

Пусть x 0 – точка разрыва функции f (x ) .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва I рода если функция f (x ) имеет в этой точке конечные пределы слева и справа .

Если при этом эти пределы равны, то точка x 0 называется точкой устранимого разрыва , в противном случае – точкой скачка .

ОПРЕДЕЛЕНИЕ. Точка x 0 называется точкой разрыва II рода если хотя бы один из односторонних пределов функции f (x ) в этой точке равен ¥ или не существует .

12) Свойства функций, непрерывных на отрезке (теоремы Вейерштрасса(без док-ва) и Коши

Теорема Вейерштрасса

Пусть функция f(x) непрерывна на отрезке , тогда

1)f(x)ограничена на

2)f(x) принимает на промежутке своё наименьшее и наибольшее значение

Определение : Значение функции m=fзовется наименьшим, если m≤f(x) для любого x€ D(f).

Значение функции m=fзовется наибольшим, если m≥f(x) для любого x€ D(f).

Наименьшее\наибольшее значение функция может принимать в нескольких точках отрезка.

f(x 3)=f(x 4)=max

Теорема Коши.

Пусть функция f(x) непрерывна на отрезке и х – число, заключенное между f(a) и f(b),тогда существует хотя бы одна точка х 0 € такая, что f(x 0)= g

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.