Главный антигерой современности – рак – кажется, все-таки попался в сети ученых. Израильские специалисты из Бар-Иланского университета рассказали о своем научном открытии: они создали нанороботов, способных убивать раковые клетки . Киллеры состоят из ДНК, натурального биосовместимого и биоразлагаемого материала, и могут нести в себе биоактивные молекулы и лекарства. Роботы способны перемещаться с током крови и распознавать злокачественные клетки, тут же уничтожая их. Этот механизм схож с работой нашего иммунитета, но более точен.

Ученые провели уже 2 стадии эксперимента.

  • Вначале они подсадили нанороботов в пробирку со здоровыми и раковыми клетками. Уже через 3 дня половина злокачественных была уничтожена, а ни одна здоровая не пострадала!
  • Затем исследователи ввели охотников в таракана (ученые вообще испытывают к усачам странную любовь, так что те еще появятся в этой статье), доказав, что роботы могут успешно собираться из фрагментов ДНК и точно находить клетки-мишени, необязательно раковые, внутри живого существа.
В испытаниях на людях, которые начнутся в этом году, примут участие больные с крайне неблагоприятным прогнозом (всего несколько месяцев жизни, по оценкам врачей). Если расчеты ученых окажутся верными, нанокиллеры справятся с онкологией в течение месяца.

Изменение цвета глаз

Проблему улучшения или изменения внешности человека пока решает пластическая хирургия. Глядя на Микки Рурка, попытки не всегда можно назвать удачными, да и о всевозможных осложнениях мы наслышаны. Но, к счастью, наука предлагает все новые способы преображения.

Калифорнийские врачи из компании Stroma Medical тоже совершили научное открытие: научились превращать карие глаза в голубые . Несколько десятков операций уже были проведены в Мексике и Коста-Рике (в США разрешение на такие манипуляции пока не получено из-за недостатка данных о безопасности).

Суть метода в том, чтобы удалить тонкий слой, содержащий пигмент меланин, с помощью лазера (процедура занимает 20 секунд). Через несколько недель отмершие частицы самостоятельно выводятся организмом, и из зеркала на пациента смотрит натуральная Синеглазка. (Фокус в том, что при рождении у всех людей голубые очи, но у 83% они заслоняются слоем, в разной степени наполненным меланином.) Не исключено, что после разрушения пигментного слоя врачи научатся наполнять глаза новыми цветами. Тогда-то люди с оранжевыми, золотыми или фиолетовыми очами и наводнят улицы, радуя поэтов-песенников.

Изменение цвета кожи

А на другом конце мира, в Швейцарии, ученые наконец разгадали секрет выкрутасов хамелеона. Менять цвет ему позволяет сеть из нанокристаллов, располагающихся в специальных клетках кожи – иридофорах. Ничего сверхъестественного в этих кристаллах нет: они состоят из гуанина, составного компонента ДНК. В расслабленном состоянии наногерои образуют плотную сеть, отражающую зеленый и синий цвета. В возбужденном – сеть натягивается, расстояние между кристаллами увеличивается, и кожа начинает отражать красный, желтый и другие цвета.

В общем, как только генная инженерия позволит создавать клетки, подобные иридофорам, мы проснемся в обществе, где настроение можно будет транслировать не только мимикой, но и цветом руки . А там недалеко и до сознательного управления внешностью, как у Мистик из фильма «Люди Икс».

Органы, напечатанные на 3D-принтере

Важный прорыв в починке человеческих тел совершен и у нас на родине. Ученые из лаборатории «3Д Биопринтинг Солюшенс» создали уникальный 3D-принтер, печатающий ткани тела. Недавно впервые была получена ткань мышиной щитовидной железы, которую в ближайшие месяцы собираются пересадить живому грызуну. Структурные компоненты организма, например трахею, штамповали и раньше. Цель российских ученых – получить полностью функционирующую ткань. Это могут быть железы внутренней секреции, почки или печень. Печать тканей с известными параметрами позволит избежать несовместимости – одной из главных проблем трансплантологии.

Тараканы на службе МЧС

Еще одна удивительная разработка может спасти жизни людей, застрявших под завалами после катастроф или попавших в труднодоступные места – шахты или пещеры. Используя специальные акустические стимулы, передаваемые с помощью «рюкзачка» на спинке таракана, умы сделали научное открытие: научились манипулировать насекомым как радиоуправляемой машинкой . Толк от использования живого существа заключается в его инстинкте самосохранения и умении ориентироваться, благодаря которому усач преодолевает препятствия и избегает опасности. Повесив на таракана маленькую камеру, можно успешно «осматривать» труднодоступные места и принимать решения о способе эвакуации.

Телепатия и телекинез для всех

Очередная невероятная новость: телепатия и телекинез, всю дорогу считавшиеся шарлатанством, вообще-то реальны. За последние годы ученые смогли наладить телепатическую связь между двумя животными, животным и человеком, и, наконец, недавно впервые на расстояние была передана мысль – от одного гражданина другому. Чудо случилось благодаря 3 технологиям.

  1. Электроэнцефалография (ЭЭГ) позволяет снимать электрическую активность мозга в виде волн и служит «устройством вывода». После некоторой тренировки определенные волны можно связать с конкретными образами в голове.
  2. Транскраниальная магнитная стимуляция (ТМС) позволяет с помощью магнитного поля создавать в мозге электрический ток, который дает возможность «заносить» эти образы в серое вещество. ТМС служит «устройством ввода».
  3. И, наконец, интернет позволяет передавать эти образы в виде цифровых сигналов от одного человека другому. Пока что транслируемые образы и слова весьма примитивны, но всякая сложная технология должна с чего-то начинать.

Телекинез стал возможен благодаря той же электрической активности серого вещества. Пока эта технология требует хирургического вмешательства: сигналы снимаются с мозга силами крошечной сетки электродов и передаются в цифровом виде на манипулятор. Недавно 53-летняя парализованная женщина Джен Шоерман с помощью этого научного открытия специалистов из Университета Питтсбурга успешно управляла самолетом в компьютерном симуляторе истребителя F-35. Например, автор статьи с трудом справляется с авиасимуляторами, даже имея две функционирующие руки.

В будущем технологии передачи мыслей и движений на расстоянии не только улучшат качество жизни парализованных, но и наверняка войдут в быт, позволяя разогреть ужин силой мысли.

Безопасное вождение

Лучшие умы работают над автомобилем, который не требует активного участия водителя. Машины Tesla, например, уже умеют самостоятельно парковаться, по таймеру выезжать из гаража и подкатывать к хозяину, перестраиваться в потоке и подчиняться дорожным знакам, ограничивающим скорость движения. И близок день, когда компьютерное управление позволит наконец закинуть ноги на приборную панель и спокойно сделать педикюр по дороге на работу.

Параллельно словацкие инженеры из компании AeroMobil действительно создали авто родом из фантастических фильмов. Двухместная машина ездит по шоссе, но стоит ей вырулить в поле, она в буквальном смысле расправляет крылья и взлетает , чтобы срезать путь. Или перемахнуть через пункт оплаты на платных трассах. (Увидеть это своими глазами можно на YouTube.) Конечно, штучные летающие агрегаты производились и раньше, но на сей раз инженеры обещают выпустить на рынок машину с крыльями уже через 2 года.

Медицинская физика Подколзина Вера Александровна

1. Медицинская физика. Краткая история

Медицинская физика – это наука о системе, которая состоит из физических приборов и излучений, лечебно-диагностических аппаратов и технологий.

Цель медицинской физики – изучение этих систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение.

Медицинские физики непосредственно участвуют в лечебно-диагностическом процессе, совмещая физико-медицинские знания, разделяя с врачом ответственность за пациента.

Развитие медицины и физики всегда были тесно переплетены между собой. Еще в глубокой древности медицина использовала в лечебных целях физические факторы, такие как тепло, холод, звук, свет, различные механические воздействия (Гиппократ, Авиценна и др.).

Первым медицинским физиком был Леонардо да Винчи (пять столетий назад), который проводил исследования механики передвижения человеческого тела. Наиболее плодотворно медицина и физика стали взаимодействовать с конца XVIII – начала XIX вв., когда были открыты электричество и электромагнитные волны, т. е. с наступлением эры электричества.

Назовем несколько имен великих ученых, сделавших важнейшие открытия в разные эпохи.

Конец XIX – середина ХХ вв. связаны с открытием рентгеновских лучей, радиоактивности, теорий строения атома, электромагнитных излучений. Эти открытия связаны с именами В. К. Рентгена, А. Беккереля,

М. Складовской-Кюри, Д. Томсона, М. Планка, Н. Бора, А. Эйнштейна, Э. Резерфорда. Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в. – с наступлением атомной эры. В медицине стали широко применяться радиодиагностические гамма-аппараты, электронные и протоновые ускорители, радиодиагностические гамма-камеры, рентгеновские компьютерные томографы и другие, гипертермия и магнитотерапия, лазерные, ультразвуковые и другие медико-физические технологии и приборы. Медицинская физика имеет много разделов и названий: медицинская радиационная физика, клиническая физика, онкологическая физика, терапевтическая и диагностическая физика.

Самым важным событием в области медицинского обследования можно считать создание компьютерных томографов, которые расширили исследования практически всех органов и систем человеческого организма. ОКТ были установлены в клиниках всего мира, и большое количество физиков, инженеров и врачей работало в области совершенствования техники и методов доведения ее практически до пределов возможного. Развитие радионуклидной диагностики представляет собой сочетание методов радиофармацевтики и физических методов регистрации ионизирующих излучений. Позитронная эмиссионная томография-визуализация была изобретена в 1951 г. и опубликована в работе Л. Ренна.

Из книги Черные дыры и молодые вселенные автора Хокинг Стивен Уильям

5. Краткая история «Краткой истории»6 Я все еще ошеломлен тем приемом, какой получила моя книга «Краткая история времени». В течение тридцати семи недель она оставалась в списке бестселлеров «Нью-Йорк Таймс» и в течение двадцати семи недель – в списке «Санди Таймс» (в

Из книги Медицинская физика автора Подколзина Вера Александровна

3. Медицинская метрология и ее специфика Технические устройства, используемые в медицине, называют обобщенным термином «медицинская техника». Большая часть медицинской техники относится к медицинской аппаратуре, которая в свою очередь подразделяется на медицинские

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

48. Медицинская электроника Одно из распространенных применений электронных устройств связано с диагностикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а

Из книги История свечи автора Фарадей Майкл

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

ФАРАДЕЙ И ЕГО "ИСТОРИЯ СВЕЧИ" "История свечи" - серия лекций, прочитанных великим английским ученым Майклом Фарадеем для юношеской аудитории. Немного об истории этой книги и ее авторе. Майкл (Михаил) Фарадей родился 22 сентября 1791 года в семье лондонского кузнеца. Его

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

11. Земля: история недр В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. I.8 представлена Земля в разрезе.Кора

Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

ИСТОРИЯ И ОРГАНИЗАЦИЯ 12.2. Проект реорганизации, имевшей место в начале 1942 г., и последующая постепенная передача дела, находившегося в ведении ОСРД, Манхэттенскому Округу были описаны в главе V. Напомним, что изучение физики атомной бомбы сперва входило в обязанности

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Глава 1 Краткая история относительности О том, как Эйнштейн заложил основы двух фундаментальных теорий ХХ века: общей теории относительности и квантовой механики Альберт Эйнштейн, создатель специальной и общей теорий относительности, родился в 1879 г. в немецком городе

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

Из книги Твиты о вселенной автора Чаун Маркус

Физика современная и физика фундаментальная Прежде всего выясним суть новой физики, отличавшую ее от физики предыдущей. Ведь опыты и математика Галилея не выходили за пределы возможностей Архимеда, которого Галилей не зря называл «божественнейшим». В чем Галилей вышел

Из книги Квант. Эйнштейн, Бор и великий спор о природе реальности автора Кумар Манжит

Из книги Быть Хокингом автора Хокинг Джейн

История науки Арнольд В.И. Гюйгенс и Барроу, Ньютон и Гук. М.: Наука, 1989.Белый Ю.А. Иоганн Кеплер. 1571–1630. М.: Наука, 1971.Вавилов С.И. Дневники. 1909–1951: В 2 кн. М.: Наука, 2012.Вернадский В.И. Дневники. М.: Наука, 1999, 2001, 2006, 2008; М.: РОССПЭН, 2010.Визгин В.П. Единые теории поля в первой трети ХХ

Из книги автора

КРАТКАЯ ИСТОРИЯ БАКа Главным архитектором БАКа стал Лин Эванс. Я слышала одно из его выступлений в 2009 г., но встретиться с этим человеком мне довелось лишь на конференции в Калифорнии в начале января 2010 г. Момент был удачным - БАК наконец начал работать, и даже сдержанный

Из книги автора

История астрономии 115. Кто были первые астрономы? Астрономия - самая старая из наук. Или так говорят про астрономов. Первыми астрономами были доисторические люди, задававшиеся вопросом, каковы Солнце, Луна и звезды.Ежедневное движение Солнца установило часы.

Из книги автора

Краткая история квантовой физики 1858 23 апреля. В Киле (Германия) родился Макс Планк.1871 30 августа. В Брайтуотере (Новая Зеландия) родился Эрнест Резерфорд.1879 14 марта. В Ульме (Германия) родился Альберт Эйнштейн.1882 11 декабря. В Бреслау (Германия) родился Макс Борн.1885 7 октября. В

Из книги автора

6. Семейная история Как только главное решение было принято, все остальное постепенно встало на свои места, если не автоматически, то с некоторым усилием с нашей стороны. Следующий год пролетел незаметно в приливе эйфории. Какие бы сомнения по поводу состояния здоровья

Доктор биологических наук Ю. ПЕТРЕНКО.

Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

Наука и жизнь // Иллюстрации

Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

"НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

"Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

Доктор биологических наук Ю. ПЕТРЕНКО.

Невероятные факты

Человеческое здоровье напрямую касается каждого из нас.

Средства массовой информации изобилуют рассказами о нашем здоровье и теле, начиная созданием новых лекарственных препаратов и заканчивая открытиями уникальных методов хирургии, которые дают надежду инвалидам.

Ниже мы расскажем о самых свежих достижениях современной медицины.

Последние достижения медицины

10. Учёные идентифицировали новую часть тела

Ещё в 1879 году французский хирург по имени Пол Сегон (Paul Segond) описал в одном из своих исследований "жемчужную, устойчивую волокнистую ткань", проходящую вдоль связок в колене человека.


Об этом исследовании благополучно забыли до 2013 года, когда учёные обнаружили переднебоковую связку, коленную связку , которая часто повреждается при возникновении травм и других проблем.

Учитывая, как часто сканируется колено человека, открытие было сделано очень поздно. Оно описано в журнале "Анатомия" и опубликовано он-лайн в августе 2013 года.


9. Интерфейс мозг-компьютер


Учёные, работающие в Корейском университете и Технологическом университете Германии, разработали новый интерфейс, который даёт возможность пользователю управлять экзоскелетом нижних конечностей.

Он работает с помощью декодирования конкретных мозговых сигналов. Результаты исследования были опубликованы в августе 2015 года в журнале "Нейронная инженерия".

Участники эксперимента носили электроэнцефалограммовый головной убор и управляли экзоскелетом, просто смотря на один из пяти светодиодов, установленных на интерфейсе. Это заставляло экзоскелет двигаться вперёд, поворачивать направо или налево, а также сидеть или стоять.


Пока система была протестирована лишь на здоровых добровольцах, но есть надежда, что в конечном итоге её можно будет использовать, чтобы помочь инвалидам.

Соавтор исследования Клаус Мюллер (Klaus Muller) объяснил, что "люди с боковым амиотрофическим склерозом или с травмами спинного мозга часто сталкиваются с трудностями в общении и в контролировании своих конечностей; расшифровка их мозговых сигналов такой системой предлагает решение обеих проблем".

Достижения науки в медицине

8. Устройство, которое может двигать парализованную конечность силой мысли


В 2010 году Яна Беркхарта (Ian Burkhart) парализовало, когда во время несчастного случая в бассейне он сломал себе шею. В 2013 году благодаря совместным усилиям специалистов университета штата Огайо и Баттелль, мужчина стал первым в мире человеком, который теперь может обойти свой спинной мозг и двигать конечностью, используя только силу мысли.

Прорыв случился благодаря использованию нового вида электронного нервного байпаса, устройства размером с горошину, которое имплантируется в моторную кору головного мозга человека.

Чип интерпретирует сигналы мозга и передаёт их на компьютер. Компьютер считывает сигналы и посылает их на специальный рукав, который носит пациент. Таким образом, нужные мышцы приводятся в действие.

Весь процесс занимает доли секунды. Однако, чтобы добиться такого результата, команде пришлось изрядно потрудиться. Команда технологов сначала выяснила точную последовательность электродов, которая позволяла Беркхарту двигать рукой.

Затем мужчине пришлось проходить несколько месяцев терапию для восстановления атрофированных мышц. Конечным результатом является то, что теперь он может вращать рукой, сжимать её в кулак, а также на ощупь определять, что перед ним находится.

7. Бактерия, которая питается никотином и помогает курильщикам завязать с пагубной привычкой


Бросить курить – это чрезвычайно трудная задача. Любой, кто пытался это сделать, подтвердит сказанное. Почти 80 процентов тех, кто пробовал это совершить с помощью аптечных препаратов, претерпел неудачу.

В 2015 году учёные из научно-исследовательского института Скриппса дают новую надежду желающим бросить. Им удалось выявить бактериальный фермент, который поедает никотин ещё до того, как он успевает добраться до мозга.

Фермент принадлежит бактерии Pseudomonas putida. Данный фермент не является новейшим открытием, однако, его только недавно удалось вывести в лабораторных условиях.

Исследователи планируют использовать этот фермент для создания новых методов отказа от курения. Блокируя никотин прежде, чем он достигнет мозга и вызовет производство допамина, они надеются, что они смогут отбить у курильщика желание взять в рот сигарету.


Чтобы стать работоспособной, любая терапия должна быть достаточно стабильной, не вызывая во время активности дополнительных проблем. В настоящее время произведенный в лабораторных условиях фермент ведёт себя стабильно в течение более трёх недель , находясь в буферном растворе.

Тесты с участием лабораторных мышей не показали никаких побочных эффектов. Учёные опубликовали результаты своего исследования в он-лайн версии августовского номера журнала "Американское химическое сообщество".

6. Универсальная вакцина против гриппа


Пептиды – это короткие цепочки аминокислот, которые существует в клеточной структуре. Они выступают в качестве основного строительного блока для белков. В 2012 году учёным, работавшим в университете Саутгемптона, Оксфордском университете и лаборатории вирусологии Ретроскин, удалось выявить новый набор пептидов, найденных у вируса гриппа.

Это может привести к созданию универсальной вакцины против всех штаммов вируса. Результаты были опубликованы в журнале Nature Medicine.

В случае гриппа пептиды на внешней поверхности вируса очень быстро мутируют, что делает их почти недосягаемыми для вакцин и лекарств. Недавно обнаруженные пептиды живут во внутренней структуре клетки и мутируют довольно медленно.


Более того, эти внутренние структуры можно обнаружить в каждом штамме гриппа, начиная от классического и заканчивая птичьим. Для разработки современной вакцины от гриппа требуется около шести месяцев, однако, она не обеспечивает иммунитетом на долгое время.

Тем не менее, возможно, сориентировав усилия на работе внутренних пептидов, создать универсальную вакцину, которая даст долговременную защиту.

Грипп – это вирусное заболевание верхних дыхательных путей, которое поражает нос, горло и лёгкие. Оно может быть смертельно опасным, особенно если заразился ребёнок или пожилой человек.


Штаммы гриппа ответственны за несколько пандемий на протяжении всей истории, самая страшная из которых, - пандемия 1918 года. Никто не знает наверняка, сколько людей погибло от этой болезни, но по некоторым оценкам, 30-50 миллионов человек во всем мире.

Новейшие медицинские достижения

5. Возможное лечение болезни Паркинсона


В 2014 году учёные взяли искусственные, но полностью функционирующие человеческие нейроны и успешно привили их в мозг мышам. У нейронов есть потенциал для лечения и даже вылечивания таких заболеваний, как болезнь Паркинсона.

Нейроны были созданы группой специалистов из института Макса Планка, университетской клиники Мюнстера и университета Билефельда. Учёным удалось создать стабильную нервную ткань из нейронов, перепрограммированных из клеток кожи.


Другими словами, они индуцировали нейронные стволовые клетки. Это метод, который увеличивает совместимость новых нейронов. Спустя шесть месяцев у мышей не развилось никаких побочных эффектов, а имплантированные нейроны отлично интегрировались с их мозгом.

Грызуны продемонстрировали нормальную мозговую деятельность, в результате которой сформировались новые синапсы.


У новой методики есть потенциал, который может дать нейрологам возможность заменить больные, поврежденные нейроны здоровыми клетками, которые в один прекрасный день смогут справиться с болезнью Паркинсона. Из-за неё нейроны, поставляющие допамин, умирают.

На сегодняшний день никакого лечения от этого заболевания нет, но симптомы поддаются лечению. Болезнь, как правило, развивается у людей в возрасте 50-60 лет. При этом мышцы становятся жёсткими, происходят изменения в речи, меняется походка и появляется тремор.

4. Первый в мире бионический глаз


Пигментный ретинит является наиболее распространённым среди наследственных заболеваний глаз. Он приводит к частичной потере зрения, а зачастую и к полной слепоте. К ранним симптомам относится потеря ночного видения и трудности с периферийным зрением.

В 2013 году была создана система протезирования сетчатки Argus II, первый в мире бионический глаз, предназначенный для лечения запущенной стадии пигментного ретинита.

Система Argus II – это пара наружных стёкол, оснащённых камерой. Изображения преобразуются в электрические импульсы, которые передаются электродам, имплантированным в сетчатку глаза пациента.

Эти изображения головным мозгом воспринимаются как световые шаблоны. Человек учится интерпретировать эти паттерны, постепенно восстанавливая зрительное восприятие.

В настоящее время система Argus II пока доступна только на территории США и Канады, но есть планы по её внедрению во всём мире.

Новые достижения в области медицины

3. Обезболивающее, которое работает только за счёт света


Сильную боль традиционно лечат опиоидными препаратами. Основной недостаток в том, что многие такие препараты могут вызывать привыкание, поэтому потенциал для злоупотреблений у них огромен.

А что если учёные смогли бы останавливать боль не используя ничего, кроме света?

В апреле 2015 года неврологи Вашингтонской медицинской школы при университете в Сент-Луисе объявили, что им удалось это сделать.


Путём соединения свето-чувствительного белка с опиоидными рецепторами в пробирке, они смогли активировать опиоидные рецепторы также, как это делают опиаты, но только с помощью света.

Есть надежда, что эксперты смогут разработать способы использования света для облегчения боли при применении лекарств с меньшими побочными эффектами. Согласно исследованиям Эдварда Сиуда (Edward R. Siuda), вполне вероятно, что после дополнительных экспериментов, свет сможет полностью заменить лекарства.


Для тестирования нового рецептора светодиодный чип размером примерно с человеческий волос был имплантирован в мозг мыши, который после этого связали с рецептором. Мышей помещали в камеру, где их рецепторы стимулировали на выработку допамина.

Если мыши уходили из специальной отведённой зоны, то свет выключали и стимулирование останавливалось. Грызуны быстро возвращались на место.

2. Искусственные рибосомы


Рибосома – это молекулярная машина, состоящая из двух субъединиц, которые используют аминокислоты из клеток, чтобы создавать белки.

Каждая из субъединиц рибосом синтезируется в ядре ячейки, а затем экспортируется в цитоплазму.

В 2015 году исследователи Александр Мэнкин (Alexander Mankin) и Майкл Джеветт (Michael Jewett) смогли создать первую в мире искусственную рибосому. Благодаря этому у человечества появился шанс узнать новые подробности о работе этой молекулярной машины.

Достижения медицины

История медицины – это неотъемлемая часть человеческой культуры. Медицина развивалась и формировалась по законам, которые были едиными для всех наук. Но если древние лекари следовали религиозным догмам, то позже развитие медицинской практики проходило уже под знаменем грандиозных открытий науки. Портал Samogo.Net предлагает Вам ознакомиться с самыми значимыми достижениями в мире медицины.

Андреасом Везалием изучалась анатомия человека на основе проводимых им вскрытий. Для 1538 года анализ человеческих трупов был необычным, но Везалий считал, что понятие анатомии очень важно для проведения оперативных вмешательств. Андреас создал анатомические схемы нервной и кровеносной систем, а в 1543 году опубликовал работу, которая стала началом в зарождении анатомии, как науки.

В 1628 году Уильям Харви установил, что сердце – это орган, который отвечает за кровообращение и что кровь циркулирует по человеческому организму. Его очерк про работу сердца и циркуляцию крови у животных стал основой для науки физиологии.

В 1902 году в Австрии, биолог Карл Ландштейнер и его сотрудники обнаружили у человека четыре группы крови, а также разработали классификацию. Знание групп крови имеет большое значение при переливании крови, что широко используется в лечебной практике.

В период с 1842 по 1846 годы некоторые из ученых обнаруживают, что химические вещества можно использовать в анестезии для обезболивания операций. Еще в 19 веке в стоматологии использовали веселящий газ и серный эфир.

Революционные открытия

В 1895 году Вильгельм Рентген, проводя эксперименты с выбросом электронов, случайно обнаружил рентгеновские лучи. Это открытие принесло Рентгену Нобелевскую премию в истории физики в 1901 году и стало революцией в области медицины.

В 1800 году Пастер Луи формулирует теорию и считает, что болезни вызывают разные виды микробов. Пастер поистине считается «отцом» бактериологии и его работа стала толчком для дальнейших исследований в науке.

Ф. Хопкинс и ряд других ученых в 19 веке обнаружили, что недостаток определенных веществ вызывает заболевания. Эти вещества позже назвали витаминами.

В период с 1920 по 1930 годы А. Флеминг случайно открывает плесень и называет ее пенициллином. Позже, Г. Флори и Э. Борис выделяют пенициллин в чистом виде и подтверждают его свойства на мышах, которые имели бактериальную инфекцию. Это дало толчок в развитии антибиотикотерапии.

В 1930 году Г. Домагк выясняет, что оранжево-красный краситель влияет на стрептококковую инфекцию. Это открытие позволяет синтезировать химиотерапевтические препараты.

Дальнейшие исследования

Врач Э. Дженнер, в 1796 году, впервые проводит вакцинацию от оспы и определяет, что эта прививка обеспечивает иммунитет.

Ф. Бантинг и сотрудники в 1920 году выявили инсулин, который помогает уравновесить сахар в крови у людей, которые болеют сахарным диабетом. До открытия этого гормона таким больным нельзя было спасти жизнь.

В 1975 году Г. Вармус и М. Бишоп открыли гены, которые стимулируют развитие опухолевых клеток (онкогены).

Независимо друг от друга в 1980 году ученые Р. Галло и Л. Монтанье открывают новый ретровирус, который позже назвали вирусом иммунодефицита человека. Также эти ученые классифицировали вирус как возбудителя синдрома приобретенного иммунодефицита.