Материал, представленный в видеоуроке, является продолжением темы построения графиков функций путем различных преобразований. Мы рассмотрим, как строится график функции y= f (kx ), если известен график функции у= f (x ) . В данном случае k - любое действительное число, не равное нулю.

Вначале рассмотрим случай, когда k - положительное число. Для примера построим график функции у= f (3 x ) , если график функции у= f (х) у нас есть. На рисунке на оси координат изображен график у= f ), на котором есть точки с координатами А и В. Выбирая произвольные значения х и подставляя их в функцию у= f (3 x ), находят соответствующие значения функции у . Таким образом, получают точки графика функции у= f (3 x ) А 1 и В 1 , у которых ординаты такие же, как у точек А и В. То есть мы можем сказать, что из графика функции у= f (x ) путемсжатия с коэффициентом k к оси ординат можно получить график функции y= f (kx ) . Важно отметить, что точки пересечения с осью ординатпри сжатии остаются на прежнем месте.

В случае, когда k - отрицательное число, график функции y= f (kx ) преобразовывается из графика функции у= f (x ) путем растяжения от оси ординат с коэффициентом 1/ k .

1) вначале строится часть волны графика функции у = sin х (см. рисунок);

2) т.к. k = 2, выполняется сжатие графика функции у= sinx к оси ординат, коэффициент сжатия равен 2. Находим точку пересечения с осью x . Т.к. график функции у = sin х пересекает ось абсцисс в точке π, то график функции у = sin 2 х пересекает ось абсцисс в точке π/k = π/2.Аналогичным способом находятся все остальные точки графика функции у = sin 2x и по этим точкам строится весь график.

Рассмотрим 2-й пример - построение графика функции у = cos (x/2) .

1) строим часть волны графика функции у = cosх (см. рисунок);

2) т.к. k =1/2, выполняем растяжение графика функции у = sin х от оси ординат с коэффициентом ½.

Найдем точку пересечения графика с осью х . Т.к. график функции у = cos х пересекает ось абсцисс в точке π/2, то график функции у = cos (x/2) пересекает ось абсцисс в точке π. Таким же образом находим все остальные точки графика функции у = cos (x/2) , построим по этим точкам весь график.

Далее рассмотрим вариант построения графика функции y = f (kx ), где k - число отрицательное. Например, при k = -1 функция y = f (kx ) = f (- x ). На рисунке изображен график у= f (х), на котором есть точки с координатами А и В. Выбрав произвольные значения х и подставив их в функцию y = f (- x ), находим соответствующие значения функции у . Получим точки графика функции y = f (- x ) А 1 и В 1 , которые будут симметричны точкам А и В относительно оси ординат. То есть при использовании симметрии относительно оси ординат из графика функции у= f (kx ) получаем график функции y= f (- x ).

Переходим к построению графика функции y = f (kx ) при k<0 на примере функции у = 4 sin (- x/2).

1) построим часть волны графика у = sin х ;

2) т.к. k = 4, выполним растяжение полуволны графика относительно оси абсцисс, где коэффициент растяжения равен 4;

3) выполним симметричное преобразование относительно оси абсцисс;

4) произведем растяжение от оси ординат (коэффициент растяжения равен 2);

5) завершим построение всего графика.

В данном видеоуроке мы подробно рассмотрели, каким образом поэтапно можно построить график функции y= f (kx ) при разных значениях k .

ТЕКСТОВАЯ РАСШИФРОВКА:

Сегодня познакомимся с преобразованием, которое поможет научиться строить график функции у = f (kx)

(игрек равен эф от аргумента, который представляет произведение ка и икс), если известен график функции у = f (x) (игрек равно эф от икс), где ка - любое действительное число (кроме нуля)».

1) Рассмотрим случай, когда k - положительное число на конкретном примере, когда k = 3.То есть нужно построить график функции

у = f (3x) (игрек равен эф от трех икс), если известен график функции у = f (x). Пусть на графике функции у = f (x) есть точка А с координатами (6; 5) и В с координатами (-3; 2). Это значит, что f (6) = 5 и f (- 3) = 2 (эф от шести равно пяти и эф от минус трех равно двум). Проследим за перемещением этих точек при построении графика функции у = f (3x).

Возьмем произвольное значение х = 2, вычислим у, подставив значение х в график функции у = f (3x) , получим, что у = 5. (на экране: у = f (3x) = f (3∙2)= f (6) = 5.) То есть на графике функции у= f (3x) есть точка с А 1 координатами (2; 5). Если же х = - 1, то подставив значение х в график функции у = f (3x), получим значение у= 2.

(На экране: у = f (3x) = f (- 1∙ 3) = f (- 3) = 2.)

То есть на графике функции у= f (3x) есть точка с координатами В 1 (- 1; 2). Итак, на графике функции у = f (3x) есть точки с той же ординатой, что и на графике функции у = f (x), при этом абсцисса точки в два раза меньше по модулю.

То же будет справедливо и для других точек графика функции у = f (x), когда мы будем переходить к графику функции у = f (3x).

Обычно такое преобразование называют сжатием к оси у(игрек) с коэффициентом 3.

Следовательно, график функции у = f (kx) получается из графика функции у = f (x) с помощью сжатия к оси у(игрек) с коэффициентом k. Заметим, что при таком преобразовании на месте остается точка пересечения графика функции у = f (x) с осью ординат.

Если же k меньше единицы, то говорят не о сжатии с коэффициентом k, а о растяжении от оси у с коэффициентом (то есть, если k = , то говорят о растяжении с коэффициентом 4).

ПРИМЕР 1. Построить график функции у = sin 2x (игрек равен синусу двух икс).

Решение. Вначале построим полуволну графика у = sin x на промежутке от ноля до пи. Так как коэффициент равен двум, а значит k - положительное число больше единицы, значит осуществим сжатие графика функции у = sin x к оси ординат с коэффициентом 2. Найдем точку пересечения с осью ОХ. Если график функции у = sin x пересекает ось ОХ в точке π, то график функции у = sin 2x будет пересекать в точке (π: k =π: 2 =)(пи делим на ка равно пи деленное на два равно пи на два). Аналогичным способом найдем все остальные точки графика функции у = sin2 x. Так, точке графика функции у = sin x с координатами (;1) будет соответствовать точка графика функции у = sin 2x с координатами (;1). Таким образом получим одну полуволну графика функции у = sin 2x. Используя периодичность функции построим весь график.

ПРИМЕР 2. Построить график функции у = cos (игрек равен косинусу частного икс и двух).

Решение. Вначале построим полуволну графика у = cos x. Так как k - положительное число меньше е единицы, значит осуществим растяжение графика функции у = cos x от оси ординат с коэффициентом 2.

Найдем точку пересечения с осью ОХ. Если график функции у = cos x пересекает ось ОХ в точке, то график функции у = cos будет пересекать в точке π. (: k =π: = π). Аналогичным способом найдем все остальные точки графика функции у = cos. Таким образом получим одну полуволну искомого графика функции. Используя периодичность функции построим весь график.

Рассмотрим случай, когда k равно минус единице. То есть нужно построить график функции у = f (-x) (игрек равен эф от минус икс), если известен график функции у = f (x). Пусть на графике есть точка А с координатами (4; 5) и точка В (-5; 1). Это значит, что f (4) = 5 и f (- 5) = 1.

Так как при подстановке в формулу у = f (-x) вместо х = - 4 получим у = f (4) = 5, то на графике функции у = f (-x) есть точка с координатами А 1

(- 4 ; 5) (минус четыре, пять). Аналогично, графику функции у = f (-x) принадлежит точка В 1 (5; 1).То есть графику функции у = f (x) принадлежат точки А(4; 5) и В(-5; 1), а графику функции у = f (-x) принадлежат точки А 1 (- 4; 5) и В 1 (5; 1). Эти пары точек симметричны относительно оси ординат.

Следовательно, график функции у = f (-x) с помощью преобразования симметрии относительно оси ординат можно получить из график функции у = f (x).

3) И, наконец, рассмотрим случай, когда k - отрицательное число. Учитывая, что равенство f (kx) = f (- |k|x) (эф от произведения ка на икс равно эф от произведения минус модуля ка и икса) справедливое, то речь идет о построении графика функции у = f (- |k|x), который можно построить поэтапно:

1) построить график функции у = f (x);

2) построенный график подвергнуть сжатию или растяжению к оси ординат с коэффициентом |k| (модуль ка);

3) осуществить преобразование симметрии относительно оси у

(игрек) полученного во втором пункте графика.

ПРИМЕР 3. Построить график функции у = 4 sin (-) (игрек равно четыре, умноженное на синус частного минус икс на два).

Решение. Прежде всего вспомним, что sin(- t) = -sint(синус от минус тэ равно минус синусу тэ), значит, у = 4 sin (-) = - 4 sin (игрек равен минус четырем, умноженным на синус частного икс на два). Строить будем поэтапно:

1) Построим одну полуволну графика функции у= sinх.

2) Осуществим растяжение построенного графика от оси абсцисс с коэффициентом 4 и получим одну полуволну графика функции

у= 4sinх(игрек равно четыре, умноженное на синус икс).

3) К построенной полуволне графика функции у= 4sinх применим преобразование симметрии относительно оси х(икс) и получим полуволну графика функции у= - 4sinх.

4) Для полуволны графика функции у= - 4sinх осуществим растяжение от оси ординат с коэффициентом 2; получим полуволну графика функции - 4 sin .

5) С помощью полученной полуволны построим весь график.

>>Математика:Что означает в математике запись у = f(x)

Что означает в математике запись у = f(x)

Изучая какой-либо реальный процесс, обычно обращают внимание на две величины, участвующие в процессе (в более сложных процессах участвуют не две величины, а три, четыре и т.д., но мы пока такие процессы не рассматриваем): одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную мы обозначили буквой х), а другая величина принимает значения, которые зависят от выбранных значений переменной х (такую зависимую переменную мы обозначили буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х, т.е. связи между переменными х и у. Еще раз напомним, что к настоящему моменту мы изучили следующие математические модели: у = b, у = kx, y = kx + m, у = х 2 .

Есть ли у этих математических моделей что-либо общее? Есть! Их структура одинакова: у = f(x).

Эту запись следует понимать так: имеется выражение f(x) с переменной х, с помощью которого находятся значения переменной у.

Математики предпочитают запись у = f(x) не случайно. Пусть, например, f(x) = х 2 , т. е. речь идет о функции у = х 2 . Пусть нам надо выделить несколько значений аргумента и соответствующих значений функции. До сих пор мы писали так:

если х = 1, то у = I 2 = 1;
если х = - 3, то у = (- З) 2 = 9 и т. д.

Если же использовать обозначение f(x) = х 2 , то запись становится более экономной:

f(1) = 1 2 =1;
f(-3) = (-3) 2 = 9.

Итак, мы познакомились еще с одним фрагментом математического языка : фраза «значение функции у = х 2 в точке х = 2 равно 4» записывается короче:

«если у = f(x), где f(x) = x 2 , то f(2) = 4».

А вот образец обратного перевода:

Если у = f(x), где f(x) = x 2 , то f(- 3) = 9. По-другому - значение функции у = х 2 в точке х = - 3 равно 9.

П р и м е р 1. Дана функция у = f(x), где f(x) = х 3 . Вычислить:

а) f(1); б) f(- 4); в) f(о); г) f(2а);
д) f(а-1); е) f(3х); ж) f(-х).

Решение. Во всех случаях план действий один и тот же: нужно в выражении f(x) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования. Имеем:

Замечание. Разумеется, вместо буквы f можно использовать любую другую букву (в основном, из латинского алфавита): g(x), h (х), s (х) и т. д.

Пример 2. Даны две функции: у = f(x), где f(x) = х 2 , и у = g (х), где g (х) = х 3 . Доказать, что:

а) f(-x) = f(x); b) g(-x)= -g(x).

Р е ш е н и е. а) Так как f(x) = х 2 , то f(- х) = (- х) 2 = х 2 . Итак, f(x) = х 2 , f(- х) = х 2 , значит, f(- x) =f (x)

б) Так как g{x) = х 3 , то g(- x) = -x 3 , т.e. g(-x) = -g(x).

Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности, тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.

Опишем с помощью построенного на рисунке 68 графика некоторые свойства функции у - f(x) - такое описание свойств обычно называют чтением графика.

Чтение графика - это своеобразный переход от геометрической модели (от графической модели) к словесной модели (к описанию свойств функции). А
построение графика - это переход от аналитической модели (она представлена в условии примера 4) к геометрической модели.

Итак, приступаем к чтению графика функции у = f(x) (см. рис. 68).

1. Независимая переменная х пробегает все значения от - 4 до 4. Иными словами, для каждого значения х из отрезка [- 4, 4] можно вычислить значение функции f(x). Говорят так: [-4, 4] - область определения функции.

Почему при решении примера 4 мы сказали, что найти f(5) нельзя? Да потому, что значение х = 5 не принадлежит области определения функции.

2. y наим = -2 (этого значения функция достигает при х = -4); У нанб. = 2 (этого значения функция достигает в любой точке полуинтервала (0, 4].

3. у = 0, если 1 = -2 и если х = 0; в этих точках график функции y = f(x) пересекает ось х.

4. у > 0, если х є (-2, 0) или если x є (0, 4]; на этих промежутках график функции y = f(x) расположен выше оси х.

5. у < 0, если же [- 4, - 2); на этом промежутке график функции у = f(x) расположен ниже оси х.

6. Функция возрастает на отрезке [-4, -1], убывает на отрезке [-1, 0] и постоянна (ни возрастает, ни убывает) на полуинтервале (0,4].

По мере того как мы с вами будем изучать новые свойства функций, процесс чтения графика будет становиться более насыщенным, содержательным и интересным.

Обсудим одно из таких новых свойств. График функции, рассмотренной в примере 4, состоит из трех ветвей (из трех «кусочков»). Первая и вторая ветви (отрезок прямой у = х + 2 и часть параболы) «состыкованы» удачно: отрезок заканчивается в к точке (-1; 1), а участок параболы начинается в той же точке. А вот вторая и третья ветви менее удачно «состыкованы»: третья ветвь («кусочек» горизонтальной прямой) начинается не в точке (0; 0), а в точке (0; 4). Математики говорят так: «функция у = f(x) претерпевает разрыв при х = 0 (или в точке х = 0)». Если же функция не имеет точек разрыва, то ее называют непрерывной. Так, все функции, с которыми мы познакомились в предыдущих параграфах (у = b, y = kx, y = kx + m, y = x2) - непрерывные.

Пример 5 . Дана функция . Требуется построить и прочитать ее график.

Решение. Как видите, здесь функция задана достаточно сложным выражением. Но математика - единая и цельная наука, ее разделы тесно связаны друг с другом. Воспользуемся тем, что мы изучали в главе 5, и сократим алгебраическую дробь

справедливо лишь при ограничении Следовательно, мы можем переформулировать задачу так: вместо функции у = х 2
будем рассматривать функцию у = х 2 , где Построим на координатной плоскости хОу параболу у = х 2 .
Прямая х = 2 пересекает ее в точке (2; 4). Но по условию , значит, точку (2; 4) параболы мы должны исключить из рассмотрения, для чего на чертеже отметим эту точку светлым кружком.

Таким образом, график функции построен - это парабола у = х 2 с «выколотой» точкой (2; 4) (рис. 69).


Перейдем к описанию свойств функции у = f (x), т. е. к чтению ее графика:

1. Независимая переменная х принимает любые значения, кроме х = 2. Значит, область определения функции состоит из двух открытых лучей (- 0 о, 2) и

2. у наим = 0 (достигается при х = 0), у наиб _ не существует.

3. Функция не является непрерывной, она претерпевает разрыв при х = 2 (в точке х = 2).

4. у = 0, если х = 0.

5. у > 0, если х є (-оо, 0), если х є (0, 2) и если х є (B,+оо).
6. Функция убывает на луче (- со, 0], возрастает на полуинтервале .

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки