КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ

Кафедра «Автоматизации управления войсками»

Только для преподавателей

"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.

доцент А.И.СМИРНОВА

"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"

ЛЕКЦИЯ № 2 / 1

Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________

Кострома, 2004.

Введение

1. Определители второго и третьего порядка.

2. Свойства определителей. Теорема разложения.

3. Теорема Крамера.

Заключение

Литература

1. В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

2. В.С. Щипачев, Высшая математика, гл.10, п.2.

ВВЕДЕНИЕ

На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.

1-ый учебный вопросОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА

Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.

ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражение вида :

(1)

Числа а 11, …, а 22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а 11 ; а 22 называется г л а в н ой, а диагональ, образованная элементами а 12 ; а 21 -п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

ПРИМЕРЫ. Вычислить:

Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:

ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида :

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:


" + " " – "

С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.

ПРИМЕРЫ. Вычислить по правилу треугольников:


ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.

2-ой учебный вопросСВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ

Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.

Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину .

.

Свойство 3. Общий множитель элементов строки (или столбца ) можно выносить за знак определителя.

.

Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.

Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - DÞ 2 D = 0 ÞD = 0.

Свойство 5. Если все элементы какой–то строки (или столбца ) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов ) определителя пропорциональны, то определитель равен нулю.

.

Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.

.

Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.

ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента а i j обозначается М i j . Так для элемента а 11 минор

Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1) k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.

Алгебраическое дополнение элемента а i j обозначается А i j .

Таким образом, А i j =

.

Выпишем алгебраические дополнения для элементов а 11 и а 12.

. .

Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс , если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус , если эта сумма нечетная .

Определителем второго порядка

и вычисляется по правилу

Числа называютсяэлементами определителя (первый индекс указывает номер строки, а второй
номер столбца, на пересечении которых стоит этот элемент); диагональ, образованная элементами
,
, называетсяглавной , элементами
,

побочной .

Аналогично вводится понятие определителя третьего порядка.

Определителем третьего порядка называется число, которое обозначается символом

и вычисляется по правилу

Диагональ, образованная элементами
,
,
, называетсяглавной , элементами
,
,

побочной .

Чтобы запомнить какие произведения в правой части равенства (1) берутся со знаком «
», а какие со знаком «
», полезно использовать следующее «правило треугольников»:

Можно ввести понятие определителя 4-го, 5-го и т. д. порядков.

Минором
некоторого элемента определителя называется определитель, образованный из данного вычёркиванием строки и столбца, на пересечении которых находится этот элемент.

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на
, где
номер строки,
номер столбца, на пересечении которых находится этот элемент:

.

Свойства определителей.

    Величина определителя не изменится, если его строки поменять местами со столбцами.

Рассмотренная операция называется транспонированием. Свойство 1

устанавливает равноправность строк и столбцов определителя.


Задача 1. Вычислить определители:

1) 2)3)4).

Задача 2. Вычислить определители, разложив их по элементам первого столбца:

1)
2)

Задача 3. Найти из уравнений:

1)
2)

1.2. Решение систем линейных уравнений с помощью определителей. Формулы Крамера

I) Система двух линейных неоднородных уравнений с двумя неизвестными

Обозначим

основной определитель системы;

,
вспомогательные определители.

а) Если определитель системы

,
. (1)

б) Если определитель системы
, то возможны случаи:

1)
(уравнения пропорциональны), тогда система содержит только одно уравнение, например,
и имеет бесконечно много решений (неопределённая система). Для её решения необходимо выразить одну переменную через другую, значение которой выбирается произвольно;

2) если хотя бы один из определителей
отличен от нуля, то система не имеет решений (несовместная система).

II) Система двух линейных однородных уравнений с тремя переменными

(2)

Линейное уравнение называется однородным , если свободный член этого уравнения равен нулю.

а) Если
, то система (2) сводится к одному уравнению (например, первому), из которого одно неизвестное выражается через два других, значения которых выбираются произвольно.

б) Если условие
не выполнено, то для решения системы (2) перенесем одну переменную вправо и решим систему двух линейных неоднородных уравнений с использованием формул Крамера (1).

III) Система трёх линейных неоднородных уравнений с тремя неизвестными:

Составим и вычислим основной определитель и вспомогательные определители,.

а) Если
, то система имеет единственное решение, которое находится по формулам Крамера:

,
,
(3)

б) Если
, то возможны случаи:

1)
, тогда система будет иметь бесконечно много решений, она будет сводиться либо к системе состоящей из одного, либо из двух уравнений (одну неизвестную перенесём направо и решим систему двух уравнений с двумя неизвестными);

2) хотя бы один из определителей
отличен от нуля, система не имеет решения.

IV) Система трёх линейных однородных уравнений с тремя неизвестными:

Эта система всегда совместна, так как имеет нулевое решение.

а) Если определитель системы
, то она имеет единственное нулевое решение.

б) Если же
, то система сводится либо к двум уравнениям (третье является их следствием), либо к одному уравнению (остальные два являются его следствием) и имеет бесконечно много решений (см. п.II).

Задача 4. Решить систему уравнений

Решение. Вычислим определитель системы

Так как
, то система имеет единственное решение. Воспользуемся формулами Крамера (3). Для этого вычислим вспомогательные определители:

,
,

,
,

Задача 5. Решить систему уравнений

Решение. Вычислим определитель системы:

Следовательно, система однородных уравнений имеет бесконечно много решение, отличных от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием):

Перенесём переменную в правую часть равенства:

Отсюда по формулам (1) получаем


,
.

Задачи для самостоятельного решения

Задача 6. Решить с помощью определителей системы уравнений:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Матрица - прямоугольная таблица, составленная из чисел.

Пусть дана квадратная матрица 2 порядка:

Определителем (или детерминантом) 2 порядка, соответствующим данной матрице, называется число

Определитель (или детерминант) 3 порядка, соответствующим матрице называется число

Пример1: Найти определители матриц и

Система линейных алгебраических уравнений

Пусть дана система 3х линейных уравнений с 3мя неизвестными

Систему (1) можно записать в матрично-векторной форме

где А - матрица коэффициентов

В - расширенная матрица

Х - искомый компонентный вектор;

Решение систем уравнений методом Крамера

Пусть дана система линейных уравнений с двумя неизвестными:

Рассмотрим решение систем линейных уравнений с двумя и тремя неизвестными по формулам Крамера. Теорема 1. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

где x1, x2 - корни системы уравнений,

Главный определитель системы, x1, х2 - вспомогательные определители.

Вспомогательные определители:

Решение систем линейных уравнений с тремя неизвестными по методу Крамера.

Пусть дана система линейных уравнений с тремя неизвестными:

Теорема 2. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

где x1, x2, x3 - корни системы уравнений,

Главный определитель системы,

x1, x2, x3 - вспомогательные определители.

Главный определитель системы определяется:

Вспомогательные определители:


  • 1. Составить табличку (матрицу) коэффициентов при неизвестных и вычислить основной определитель.
  • 2. Найти - дополнительный определитель x, получаемый из заменой первого столбца на столбец свободных членов.
  • 3. Найти - дополнительный определитель y, получаемый из заменой второго столбца на столбец свободных членов.
  • 4. Найти - дополнительный определитель z, получаемый из заменой третьего столбца на столбец свободных членов. Если основной определитель системы не равен нулю, то выполняют пункт 5.
  • 5. Найти значение переменной x по формуле x / .
  • 6. Найти значение переменной у по формуле y / .
  • 7. Найти значение переменной z по формуле z / .
  • 8. Записать ответ: х=…; у=…, z=… .