(определение вариационного ряда; составляющие вариационного ряда; три формы вариационного ряда; целесообразность построения интервального ряда; выводы, которые можно сделать по построенному ряду)

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

Варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Выделяют три формы вариационного ряда: ранжированный ряд, дискретный ряд и интервальный ряд.

Ранжированный ряд - это распределение отдельных единиц совокупности в порядке возрастания или убывания исследуемого признака. Ранжирование позволяет легко разделить количественные данные по группам, сразу обнаружить наименьшее и наибольшее значения признака, выделить значения, которые чаще всего повторяются.

Другие формы вариационного ряда - групповые таблицы, составленные по характеру вариации значений изучаемого признака. По характеру вариации различают дискретные (прерывные) и непрерывные признаки.

Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести тарифный разряд, количество детей в семье, число работников на предприятии и т.д. Эти признаки могут принимать только конечное число определенных значений.

Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака.

Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака нужно строить интервальный вариационный ряд.



Групповая таблица здесь также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота).

Частота (частота повторения) - число повторений отдельного варианта значений признака, обозначается fi , а сумма частот, равная объему исследуемой совокупности, обозначается

Где k - число вариантов значений признака

Очень часто таблица дополняется графой, в которой подсчитываются накопленные частоты S, которые показывают, какое количество единиц совокупности имеет значение признака не большее, чем данное значение.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальным вариационным рядом называется упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

По этому ряду уже можно сделать несколько выводов. Например, средний элемент вариационного ряда (медиана) может быть оценкой наиболее вероятного результата измерения. Первый и последний элемент вариационного ряда (т.е. минимальный и максимальный элемент выборки) показывают разброс элементов выборки. Иногда если первый или последний элемент сильно отличаются от остальных элементов выборки, то их исключают из результатов измерений, считая, что эти значения получены в результате какого-то грубого сбоя, например, техники.

Вариационный ряд - это статистический ряд, показывающий распределение изучаемого явления по величине какого-либо количественного признака. Например, больных по возрасту, по срокам лечения, новорожденных по весу и т.п.

Варианта - отдельные значения признака, по которому проводится группировка (обозначается V ) .

Частота- число, показывающее, как часто встречается та или иная варианта (обозначается P ) . Сумма всех частот показывает общее число наблюдений и обозначается n . Разность между наибольшей и наименьшей вариантой вариационного ряда называется размахом или амплитудой .

Различают вариационные ряды:

1. Прерывные (дискретные) и непрерывные.

Ряд считается непрерывным, если группировочный признак может выражаться дробными величинами (вес, рост т.п.), прерывным, если группировочный признак выражается только целым числом (дни нетрудоспособности, число ударов пульса и т.п.).

2.Простые и взвешенные.

Простой вариационный ряд представляет собой ряд, в котором количественное значение варьирующего признака встречается один раз. Во взвешенном вариационном ряду количественные значения варьирующего признака повторяются с определённой частотой.

3. Сгруппированные (интервальные) и несгруппированые.

Сгруппированный ряд имеет варианты, объединённые в группы, объединяющие их по величине в пределах определённого интервала. В несгруппированном ряду каждой отдельной варианте соответствует определённая частота.

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

структурные средние (мода, медиана);

средняя арифметическая;

средняя гармоническая;

средняя геометрическая;

средняя прогрессивная.

Мода (М о ) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е ) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений;
- знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

,

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

- общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

;
и т.д.

Произведение VP получают путем умножения центральных вариант на частоты
;
и т.д. Затем полученные произведения складывают и получают
, которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

n=100

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (
). В итоге получится 17. Наконец, данные подставляем в формулу:

При изучении варьирующего признака нельзя ограничиваться только вычислением средних величин. Необходимо вычислять и показатели, характеризующие степень разнообразия изучаемых признаков. Величина того или иного количественного признака неодинакова у всех единиц статистической совокупности.

Характеристикой вариационного ряда является среднее квадратичное отклонение (), которое показывает разброс (рассеивание) изучаемых признаков относительно средней арифметической, т.е. характеризует колеблемость вариационного ряда. Оно может определяться непосредственным способом по формуле:

Среднее квадратичное отклонение равняется квадратному корню из суммы произведений квадратов отклонений каждой варианты от средней арифметической (V–M) 2 на свои частоты деленной на сумму частот (
).

Пример вычисления: определить среднее число больничных листов, выдаваемых в поликлинике за день (таблица 3).

Т а б л и ц а 3

Число больничных

листов, выданных

врачом за день (V)

Число врачей (Р)

;

В знаменателе при числе наблюдений менее 30 необходимо от
отнимать единицу.

Если ряд сгруппирован с равными интервалами, тогда можно определить среднее квадратичное отклонение по способу моментов:

,

где i - величина интервала;

- условное отклонение от условной средней;

P - частоты вариант соответствующих интервалов;

- общее число наблюдений.

Пример вычисления : Определить среднюю длительность пребывания больных на терапевтической койке (по способу моментов) (таблица 4):

Т а б л и ц а 4

Число дней

пребывания на койке (V)

больных (Р)

;

Бельгийский статистик А. Кетле обнаружил, что вариации массовых явлений подчиняются закону распределения ошибок, открытому почти одновременно К. Гауссом и П. Лапласом. Кривая, отображающая это распределение, имеет вид колокола. По нормальному закону распределения колеблемость индивидуальных значений признака находится в пределах
, что охватывает 99,73% всех единиц совокупности.

Подсчитано, что если к средней арифметической прибавить и отнять 2, то в пределах полученных величин находится 95,45% всех членов вариационного ряда и, наконец, если к средней арифметической прибавить и отнять 1, то в пределах полученных величин будут находиться 68,27% всех членов данного вариационного ряда. В медицине с величиной
1связано понятие нормы. Отклонение от средней арифметической больше, чем на 1, но меньше, чем на 2является субнормальным, а отклонение больше, чем на 2ненормальным (выше или ниже нормы).

В санитарной статистике правило трех сигм применяется при изучении физического развития, оценке деятельности учреждений здравоохранения, оценке здоровья населения. Это же правило широко применяется в народном хозяйстве при определении стандартов.

Таким образом, среднее квадратичное отклонение служит для:

― измерения дисперсии вариационного ряда;

― характеристики степени разнообразия признаков, которые определяются коэффициентом вариации:

Если коэффициент вариации более 20% - сильное разнообразие, от 20 до 10% - среднее, менее 10% - слабое разнообразие признаков. Коэффициент вариации в известной мере является критерием надежности средней арифметической.

Ряды, построенные по количественному признаку , называются вариационным .

Ряды распределений состоят из вариантов (значений признака) и частот (численности групп). Частоты, выраженные в виде относительных величин (долей, процентов) называются частостями . Сумма всех частот называется объёмом ряда распределения.

По виду ряды распределения делятся на дискретные (построены по прерывным значениям признака) и интервальные (построены на непрерывных значениях признака).

Вариационный ряд представляет собой две колонки (или строки); в одной из которых приводятся отдельные значения варьирующего признака, именуемые вариантами и обозначаемые Х; а в другой – абсолютные числа, показывающие сколько раз (как часто) встречается каждый вариант. Показатели второй колонки называются частотами и условно обозначают через f. Еще раз заметим, что во второй колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуются частостями и условно обозначают через ω Сумма всех частостей в этом случае равна единице. Однако частоты можно выражать и в процентах, и тогда сумма всех частостей дает 100%.

Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд именуют дискретным.

Для непрерывных признаков вариационные ряды строятся как интервальные , то есть значения признака в них выражаются «от… до …». При этом минимальны значения признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей.

Интервальные вариационные ряды строят и для дискретных признаков, варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами.

Рассмотрим как определяется величина равных интервалов. Введем следующие обозначения:

i – величина интервала;

- максимальное значение признака у единиц совокупности;

– минимальное значение признака у единиц совокупности;

n – число выделяемых групп.

, если n известно.

Если число выделяемых групп трудно заранее определить, то для расчета оптимальной величины интервала при достаточном объеме совокупности может быть рекомендована формула, предложенная Стерджессом в 1926 году:

n = 1+ 3.322 lg N, где N – число единиц в совокупности.

Величина неравных интервалов определяется в каждом отдельном случае с учетом особенностей объекта изучения.

Статистическим распределением выборки называют перечень ва­риант и соответствующих им частот (или относительных частот).

Статистическое распределение выборки можно задать в виде таблицы, в первой графе которой располагаются варианты, а во второй - соот­ветствующие этим вариантам частоты ni , или относительные частоты Pi .

Статистическое распределение выборки

Интервальными называются вариационные ряды, в которых значе­ния признаков, положенных в основу их образования, выражены в определенных пределах (интервалах). Частоты в этом случае относятся, не к отдельным значениям признака, а ко всему интервалу.

Интервальные ряды распределения строятся по непрерывным количе­ственным признакам, а также по дискретным признакам, варьирующим в значительных пределах.

Интервальный ряд можно представить статистическим распределени­ем выборки с указанием интервалов и соответствующих им частот. При этом в качестве частоты интервала принимают сумму частот вариант, по­павших в этот интервал.

При группировке по количественным непрерывным признакам важ­ное значение имеет определение размера интервала.

Кроме выборочной средней и выборочной дисперсии применяются и другие характеристики вариационного ряда.

Модой называют варианту, которая имеет наибольшую частоту.

​ Вариационный ряд – ряд, в котором сопоставлены (по степени возрастания или убывания) варианты и соответствующие им частоты

​Варианты – отдельные количественные выражения признака. Обозначаются латинской буквой V . Классическое понимание термина "варианта" предполагает, что вариантой называется каждое уникальное значение признака, без учета количества повторов.

Например, в вариационном ряду показателей систолического артериального давления, измеренного у десяти пациентов:

110, 120, 120, 130, 130, 130, 140, 140, 160, 170;

вариантами являются только 6 значений:

110, 120, 130, 140, 160, 170.

​Частота – число, показывающее, сколько раз повторяется варианта. Обозначается латинской буквой P . Сумма всех частот (которая, разумеется, равна числу всех исследуемых) обозначается как n .

    В нашем примере частоты будут принимать следующие значения:
  • для варианты 110 частота Р = 1 (значение 110 встречается у одного пациента),
  • для варианты 120 частота Р = 2 (значение 120 встречается у двух пациентов),
  • для варианты 130 частота Р = 3 (значение 130 встречается у трех пациентов),
  • для варианты 140 частота Р = 2 (значение 140 встречается у двух пациентов),
  • для варианты 160 частота Р = 1 (значение 160 встречается у одного пациента),
  • для варианты 170 частота Р = 1 (значение 170 встречается у одного пациента),

Виды вариационных рядов:

  1. простой - это ряд, в котором каждая варианта встречается только по одному разу (все частоты при этом равны 1);
  2. взвешенный - ряд, в котором одна или несколько вариант встречаются неоднократно.

Вариационный ряд служит для описания больших массивов чисел, именно в этой форме изначально представляются собранные данные большинства медицинских исследований. Для того, чтобы охарактеризовать вариационный ряд, рассчитываются специальные показатели, в том числе средние величины, показатели вариабельности (так называемой, дисперсии), показатели репрезентативности выборочных данных.

Показатели вариационного ряда

1) Средняя арифметическая - это обобщающий показатель, характеризующий размер изучаемого признака. Средняя арифметическая обозначается как M , представляет собой самый распространенный вид средней. Средняя арифметическая рассчитывается как отношение суммы значений показателей всех единиц наблюдения к числу всех исследуемых. Методика расчета средней арифметической различается для простого и взвешенного вариационного ряда.

Формула для расчета простой средней арифметической:

Формула для расчета взвешенной средней арифметической:

M = Σ(V * P)/ n

​ 2) Мода – еще одна средняя величина вариационного ряда, соответствующая наиболее часто повторяющейся варианте. Или, если выразиться по другому, это варианта, которой соответствует наибольшая частота. Обозначается как Мо . Мода рассчитывается только для взвешенных рядов, так как в простых рядах ни одна из вариант не повторяется и все частоты равны единице.

Например, в вариационном ряду значений частоты сердечных сокращений:

80, 84, 84, 86, 86, 86, 90, 94;

значение моды составляет 86, так как данная варианта встречается 3 раза, следовательно ее частота - наибольшая.

3) Медиана – значение варианты, делящей вариационный ряд пополам: по обе стороны от нее находится равное число вариант. Медиана также, как и средняя арифметическая и мода, относится к средним величинам. Обозначается как Me

4) Среднее квадратическое отклонение (синонимы: стандартное отклонение, сигмальное отклонение, сигма) - мера вариабельности вариационного ряда. Является интегральным показателем, объединяющим все случаи отклонения вариант от средней. Фактически, отвечает на вопрос: насколько далеко и как часто варианты распространяются от средней арифметической. Обозначается греческой буквой σ ("сигма") .

При численности совокупности более 30 единиц, стандартное отклонение рассчитывается по следующей формуле:

Для малых совокупностей - 30 единиц наблюдения и менее - стандартное отклонение рассчитывается по другой формуле:

Понятие вариационного ряда. Первым шагом систематизации материалов статистического наблюдения является подсчет числа единиц, обладающих тем или иным признаком. Расположив единицы в порядке возрастания или убывания их количественного признака и подсчитав число единиц с конкретным значением признака, получаем вариационный ряд. Вариационный ряд характеризует распределение единиц определенной статистической совокупности по какому–либо количественному признаку.

Вариационный ряд представляет собой две колонки, в левой колонке приводятся значения варьирующего признака, именуемые вариантами и обозначаемые (x), а в правой – абсолютные числа, показывающие, сколько раз встречается каждый вариант. Показатели этой колонки называются частотами и обозначаются (f).

Схематично вариационный ряд можно представить в виде табл.5.1:

Таблица 5.1

Вид вариационного ряда

Варианты (x)

Частоты (f)

В правой колонке могут использоваться и относительные показатели, характеризующие долю частоты отдельных вариантов в общей сумме частот. Эти относительные показатели именуют частостями и условно обозначают через , т.е. . Сумма всех частостей равна единице. Частости могут быть выражены и в процентах, и тогда их сумма будет равна 100%.

Варьирующие признаки могут носить разный характер. Варианты одних признаков выражаются в целых числах, например, число комнат в квартире, число изданных книг и т.д. Эти признаки именуют прерывными, или дискретными. Варианты других признаков могут принимать любые значения в определенных пределах, как, например, выполнение плановых заданий, заработная плата и др. Эти признаки называют непрерывными.

Дискретный вариационный ряд. Если варианты вариационного ряда выражены в виде дискретных величин, то такой вариационный ряд называют дискретным, его внешний вид представлен в табл. 5.2:

Таблица 5.2

Распределение студентов по оценкам, полученным на экзамене

Оценки (х)

Количество студентов (f)

В % к итогу ()

Характер распределения в дискретных рядах изображается графически в виде полигона распределения, рис.5.1.

Рис. 5.1. Распределение студентов по оценкам, полученным на экзамене.

Интервальный вариационный ряд. Для непрерывных признаков вариационные ряды строятся интервальные, т.е. значения признака в них выражаются в виде интервалов «от и до». При этом минимальное значение признака в таком интервале именуют нижней границей интервала, а максимальное – верхней границей интервала.

Интервальные вариационные ряды строят как для прерывных признаков (дискретных), так и для варьирующих в большом диапазоне. Интервальные ряды могут быть с равными и неравными интервалами. В экономической практике в большинстве своем применяются неравные интервалы, прогрессивно возрастающие или убывающие. Такая необходимость возникает особенно в тех случаях, когда колеблемость признака осуществляется неравномерно и в больших пределах.

Рассмотрим вид интервального ряда с равными интервалами, табл. 5.3:

Таблица 5.3

Распределение рабочих по выработке

Выработка, т.р. (х)

Число рабочих (f)

Кумулятивная частота (f´)

Интервальный ряд распределения графически изображается в виде гистограммы, рис.5.2.

Рис.5.2. Распределение рабочих по выработке

Накопленная (кумулятивная) частота. В практике возникает потребность в преобразовании рядов распределения в кумулятивные ряды, строящиеся по накопленным частотам. С их помощью можно определить структурные средние, которые облегчают анализ данных ряда распределения.

Накопленные частоты определяются путем последовательного прибавления к частотам (или частостям) первой группы этих показателей последующих групп ряда распределения. Для иллюстрации рядов распределения используются кумуляты и огивы. Для их построения на оси абсцисс отмечаются значения дискретного признака (или концы интервалов), а на оси ординат – нарастающие итоги частот (кумулята), рис.5.3.

Рис. 5.3. Кумулята распределения рабочих по выработке

Если шкалы частот и вариантов поменять местами, т.е. на оси абсцисс отражать накопленные частоты, а на оси ординат – значения вариантов, то кривая, характеризующая изменение частот от группы к группе, будет носит название огивы распределения, рис.5.4.

Рис. 5.4. Огива распределения рабочих по выработке

Вариационные ряды с равными интервалами обеспечивают одно из важнейших требований, предъявляемых к статистическим рядам распределения, обеспечение сравнимости их во времени и пространстве.

Плотность распределения. Однако частоты отдельных неравных интервалов в названных рядах непосредственно не сопоставимы. В подобных случаях для обеспечения необходимой сравнимости исчисляют плотность распределения, т.е. определяют, сколько единиц в каждой группе приходится на единицу величины интервала.

При построении графика распределения вариационного ряда с неравными интервалами высоту прямоугольников определяют пропорционально не частотам, а показателям плотности распределения значений изучаемого признака в соответствующих интервалах.

Составление вариационного ряда и его графическое изображение является первым шагом обработки исходных данных и первой ступенью анализа изучаемой совокупности. Следующим шагом в анализе вариационных рядов является определение основных обобщающих показателей, именуемых характеристиками ряда. Эти характеристики должны дать представление о среднем значении признака у единиц совокупности.

Средняя величина . Средняя величина представляет собой обобщенную характеристику изучаемого признака в исследуемой совокупности, отражающая ее типический уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средняя величина всегда именованная, имеет ту же размерность, что и признак у отдельных единиц совокупности.

Перед вычислением средних величин необходимо произвести группировку единиц исследуемой совокупности, выделив качественно однородные группы.

Средняя, рассчитанная по совокупности в целом называется общей средней, а для каждой группы – групповыми средними.

Существуют две разновидности средних величин: степенные (средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая); структурные (мода, медиана, квартили, децили).

Выбор средней для расчета зависит от цели.

Виды степенных средних и методы их расчета. В практике статистической обработки собранного материала возникают различные задачи, для решения которых требуются различные средние.

Математическая статистика выводит различные средние из формул степенной средней:

где средняя величина; x – отдельные варианты (значения признаков); z – показатель степени (при z = 1 – средняя арифметическая, z = 0 средняя геометрическая, z = - 1 – средняя гармоническая, z = 2 – средняя квадратическая).

Однако вопрос о том, какой вид средней необходимо применить в каждом отдельном случае, разрешается путем конкретного анализа изучаемой совокупности.

Наиболее часто встречающимся в статистике видом средних величин является средняя арифметическая . Она исчисляется в тех случаях, когда объем осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

В зависимости от характера исходных данных средняя арифметическая определяется различными способами:

Если данные несгруппированные, то расчет ведется по формуле простой средней величины

Расчет средней арифметической в дискретном ряду происходит по формуле 3.4.

Расчет средней арифметической в интервальном ряду. В интервальном вариационном ряду, где за величину признака в каждой группе условно принимается середина интервала, средняя арифметическая может отличаться от средней, рассчитанной по несгруппированным данным. Причем, чем больше величина интервала в группах, тем больше возможные отклонения средней, вычисленной по сгруппированным данным, от средней, рассчитанной по несгруппированным данным.

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам. А затем рассчитывают среднюю величину по формуле средней арифметической взвешенной.

Свойства средней арифметической. Средняя арифметическая обладает некоторыми свойствами, которые позволяют упрощать вычисления, рассмотрим их.

1. Средняя арифметическая из постоянных чисел равна этому постоянному числу.

Если х = а. Тогда .

2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится.

Если все веса f уменьшить в k раз, то .

3. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю, т.е.

Если , то . Отсюда .

Если все варианты уменьшить или увеличить на какое- либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же.

Уменьшим все варианты x на a , т.е. x ´ = x a.

Тогда

Среднюю арифметическую первоначального ряда можно получить, прибавляя к уменьшенной средней ранее вычтенное из вариантов числа a , т.е. .

5. Если все варианты уменьшить или увеличить в k раз, то средняя арифметическая нового ряда уменьшится или увеличится во столько же, т.е. в k раз.

Пусть , тогда .

Отсюда , т.е. для получения средней первоначального ряда среднюю арифметическую нового ряда (с уменьшенными вариантами) надо увеличить в k раз.

Средняя гармоническая. Средняя гармоническая это величина обратная средней арифметической. Ее используют, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение (М= xf). Средняя гармоническая будет рассчитываться по формуле 3.5

Практическое применение средней гармонической – для расчета некоторых индексов, в частности, индекса цен.

Средняя геометрическая. При применении средней геометрической индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста.

Средняя геометрическая величина используется также для определения равноудаленной величины от максимального и минимального значений признака. Например, страховая компания заключает договоры на оказание услуг автострахования. В зависимости конкретного страхового случая страховая выплата может колебаться от 10000 до 100000 долл. в год. Средняя сумма выплат по страховке составит долл.

Средняя геометрическая это величина, используемая как средняя из отношений или в рядах распределения, представленных в виде геометрической прогрессии, когда z = 0. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел.

Формулы для расчета следующие

где – варианты осредняемого признака; – произведение вариантов; f – частота вариантов.

Средняя геометрическая используется в расчетах среднегодовых темпов роста.

Средняя квадратическая. Формула средней квадратической используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения. Так, при расчете показателей вариации среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины.

Средняя квадратическая величина рассчитывается по формуле

В экономических исследованиях средняя квадратическая в измененном виде широко используется при расчете показателей вариации признака, таких как дисперсия, среднее квадратическое отклонение.

Правило мажорантности. Между степенными средними существует следующая зависимость – чем больше показатель степени, тем больше значение средней, табл.5.4:

Таблица 5.4

Соотношение между средними величинами

Значение z

Соотношение между средними

Это соотношение называется правилом мажорантности.

Структурные средние величины. Для характеристики структуры совокупности применяются особые показатели, которые можно назвать структурными средними. К таким показателям относятся мода, медиана, квартили и децили.

Мода. Модой (Мо) называется наиболее часто встречающееся значение признака у единиц совокупности. Модой называется то значение признака, которое соответствует максимальной точке теоретической кривой распределения.

Мода широко используется в коммерческой практике при изучении покупательского спроса (при определении размеров одежды и обуви, которые пользуются широким спросом), регистрации цен. Мод в совокупности может быть несколько.

Расчет моды в дискретном ряду. В дискретном ряду мода – это варианта с наибольшей частотой. Рассмотрим нахождение моды в дискретном ряду.

Расчет моды в интервальном ряду. В интервальном вариационном ряду модой приближенно считают центральный вариант модального интервала, т.е. того интервала, который имеет наибольшую частоту (частость). В пределах интервала надо найти то значение признака, которое является модой. Для интервального ряда мода будет определяться формулой

где – нижняя граница модального интервала; – величина модального интервала; – частота, соответствующая модальному интервалу; – частота, предшествующая модальному интервалу; – частота интервала, следующего за модальным.

Медиана. Медианой () называется значение признака у средней единицы ранжированного ряда. Ранжированный ряд – это ряд, у которого значения признака записаны в порядке возрастания или убывания. Или медиана это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значение варьирующего признака меньшие, чем средний вариант, а другая – большие.

Чтобы найти медиану, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица и все делится на два. При четном числе единиц медиана отыскивается как значение признака у единицы, порядковый номер который определяется по общей сумме частот, деленной на два. Зная порядковый номер медианы, легко по накопленным частотам найти ее значение.

Расчет медианы в дискретном ряду. По данным выборочного обследования получены данные о распределении семей по числу детей, табл. 5.5. Для определения медианы сначала определим ее порядковый номер

В этих семьях количество детей равно 2, следовательно, = 2. Таким образом, в 50% семей число детей не превышает 2.

–частота накопленная, предшествующая медианному интервалу;

С одной стороны, это весьма положительное свойство т.к. в этом случае учитывается действие всех причин, воздействующих на все единицы изучаемой совокупности. С другой стороны, даже одно наблюдение, попавшее в исходные данные случайно, может существенным образом исказить представление об уровне развития изучаемого признака в рассматриваемой совокупности (особенно в коротких рядах).

Квартили и децили. По аналогии с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, в частности, можно найти значение признака у единиц, делящих ряд на 4 равные части, на 10 и т.п.

Квартили. Варианты, которые делят ранжированный ряд на четыре равные части, называют квартилями.

При этом различают: нижний (или первый) квартиль (Q1) – значение признака у единицы ранжированного ряда, делящей совокупность в соотношении ¼ к ¾ и верхний (или третий) квартиль(Q3) – значение признака у единицы ранжированного ряда, делящий совокупность в соотношении ¾ к ¼.

– частоты квартильных интервалов (нижнего и верхнего)

Интервалы, в которых содержатся Q1 и Q3 определяют по накопленным частотам (или частостям).

Децили. Кроме квартилей рассчитывают децили – варианты, делящие ранжированный ряд на 10 равных частей.

Обозначаются они через D, первый дециль D1 делит ряд в соотношении 1/10 и 9/10, второй D2 – 2/10 и 8/10 и т.д. Вычисляются они по той же схеме, что и медиана и квартили.

И медиана, и квартили, и децили принадлежат к так называемым порядковым статистикам, под которым понимают вариант, занимающий определенное порядковое место в ранжированном ряду.