В этой статье описывается волновая функция и ее физический смысл. Также рассматривается применение этого понятия в рамках уравнения Шредингера.

Наука на пороге открытия квантовой физики

В конце девятнадцатого века молодых людей, которые хотели связать свою жизнь с наукой, отговаривали становиться физиками. Бытовало мнение, что все явления уже открыты и великих прорывов в этой области уже не может быть. Сейчас, несмотря на кажущуюся полноту знаний человечества, подобным образом говорить никто не решится. Потому что так бывает часто: явление или эффект предсказаны теоретически, но людям не хватает технической и технологической мощи, чтобы доказать или опровергнуть их. К примеру, Эйнштейн предсказал более ста лет назад, но доказать их существование стало возможным лишь год назад. Это касается и мира (а именно к ним применимо такое понятие, как волновая функция): пока ученые не поняли, что строение атома сложное, у них не было необходимости изучать поведение таких маленьких объектов.

Спектры и фотография

Толчком к развитию квантовой физики стало развитие техники фотографии. До начала двадцатого века запечатление изображений было делом громоздким, долгим и дорогостоящим: фотоаппарат весил десятки килограммов, а моделям приходилось стоять по полчаса в одной позе. К тому же малейшая ошибка при обращении с хрупкими стеклянными пластинами, покрытыми светочувствительной эмульсией, приводила к необратимой потере информации. Но постепенно аппараты становились все легче, выдержка - все меньше, а получение отпечатков - все совершеннее. И наконец, стало возможно получить спектр разных веществ. Вопросы и несоответствия, которые возникали в первых теориях о природе спектров, и породили целую новую науку. Основой для математического описания поведения микромира стали волновая функция частицы и её уравнение Шредингера.

Корпускулярно-волновой дуализм

После определения строения атома, возник вопрос: почему электрон не падает на ядро? Ведь, согласно уравнениям Максвелла, любая движущаяся заряженная частица излучает, следовательно, теряет энергию. Если бы это было так для электронов в ядре, известная нам вселенная просуществовала бы недолго. Напомним, нашей целью является волновая функция и ее статистический смысл.

На выручку пришла гениальная догадка ученых: элементарные частицы одновременно и волны, и частицы (корпускулы). Их свойствами являются и масса с импульсом, и длина волны с частотой. Кроме того, благодаря наличию двух ранее несовместимых свойств элементарные частицы приобрели новые характеристики.

Одной из них является трудно представимый спин. В мире более мелких частиц, кварков, этих свойств настолько много, что им дают совершенно невероятные названия: аромат, цвет. Если читатель встретит их в книге по квантовой механике, пусть помнит: они совсем не то, чем кажутся на первый взгляд. Однако как же описать поведение такой системы, где все элементы обладают странным набором свойств? Ответ - в следующем разделе.

Уравнение Шредингера

Найти состояние, в котором находится элементарная частица (а в обобщенном виде и квантовая система), позволяет уравнение :

i ħ[(d/dt) Ψ]= Ĥ ψ.

Обозначения в этом соотношении следующие:

  • ħ=h/2 π, где h - постоянная Планка.
  • Ĥ - Гамильтониан, оператор полной энергии системы.

Изменяя координаты, в которых решается эта функция, и условия в соответствии с типом частицы и поля, в котором она находится, можно получить закон поведения рассматриваемой системы.

Понятия квантовой физики

Пусть читатель не обольщается кажущейся простотой использованных терминов. Такие слова и выражения, как «оператор», «полная энергия», «элементарная ячейка», - это физические термины. Их значения стоит уточнять отдельно, причем лучше использовать учебники. Далее мы дадим описание и вид волновой функции, но эта статья носит обзорный характер. Для более глубокого понимания этого понятия необходимо изучить математический аппарат на определенном уровне.

Волновая функция

Ее математическое выражение имеет вид

|ψ(t)> = ʃ Ψ(x, t)|x> dx.

Волновая функция электрона или любой другой элементарной частицы всегда описывается греческой буквой Ψ, поэтому иногда ее еще называют пси-функцией.

Для начала надо понять, что функция зависит от всех координат и времени. То есть Ψ(x, t) - это фактически Ψ(x 1 , x 2 … x n , t). Важное замечание, так как от координат зависит решение уравнения Шредингера.

Далее необходимо пояснить, что под |x> подразумевается базисный вектор выбранной системы координат. То есть в зависимости от того, что именно надо получить, импульс или вероятность |x> будет иметь вид | x 1 , x 2 , …, x n >. Очевидно, что n будет также зависеть от минимального векторного базиса выбранной системы. То есть в обычном трехмерном пространстве n=3. Для неискушенного читателя поясним, что все эти значки около показателя x - это не просто прихоть, а конкретное математическое действие. Понять его без сложнейших математических выкладок не удастся, поэтому мы искренне надеемся, что интересующиеся сами выяснят его смысл.

И наконец, необходимо объяснить, что Ψ(x, t)=.

Физическая сущность волновой функции

Несмотря на базовое значение этой величины, она сама не имеет в основании явления или понятия. Физический смысл волновой функции заключается в квадрате ее полного модуля. Формула выглядит так:

|Ψ (x 1 , x 2 , …, x n , t)| 2 = ω,

где ω имеет значение плотности вероятности. В случае дискретных спектров (а не непрерывных) эта величина приобретает значение просто вероятности.

Следствие физического смысла волновой функции

Такой физический смысл имеет далеко идущие последствия для всего квантового мира. Как становится понятно из значения величины ω, все состояния элементарных частиц приобретают вероятностный оттенок. Самый наглядный пример - это пространственное распределение электронных облаков на орбиталях вокруг атомного ядра.

Возьмем два вида гибридизации электронов в атомах с наиболее простыми формами облаков: s и p. Облака первого типа имеют форму шара. Но если читатель помнит из учебников по физике, эти электронные облака всегда изображаются как некое расплывчатое скопление точек, а не как гладкая сфера. Это означает, что на определенном расстоянии от ядра находится зона с наибольшей вероятностью встретить s-электрон. Однако чуть ближе и чуть дальше эта вероятность не нулевая, просто она меньше. При этом для p-электронов форма электронного облака изображается в виде несколько расплывчатой гантели. То есть существует достаточно сложная поверхность, на которой вероятность найти электрон самая высокая. Но и вблизи от этой «гантели» как дальше, так и ближе к ядру такая вероятность не равна нулю.

Нормировка волновой функции

Из последнего следует необходимость нормировать волновую функцию. Под нормировкой подразумевается такая «подгонка» некоторых параметров, при которой верно некоторое соотношение. Если рассматривать пространственные координаты, то вероятность найти данную частицу (электрон, например) в существующей Вселенной должна быть равна 1. Формула выгладит так:

ʃ V Ψ* Ψ dV=1.

Таким образом, выполняется закон сохранения энергии: если мы ищем конкретный электрон, он должен быть целиком в заданном пространстве. Иначе решать уравнение Шредингера просто не имеет смысла. И неважно, находится эта частица внутри звезды или в гигантском космическом войде, она должна где-то быть.

Чуть выше мы упоминали, что переменными, от которых зависит функция, могут быть и непространственные координаты. В таком случае нормировка проводится по всем параметрам, от которых функция зависит.

Мгновенное передвижение: прием или реальность?

В квантовой механике отделить математику от физического смысла невероятно сложно. Например, квант был введен Планком для удобства математического выражения одного из уравнений. Теперь принцип дискретности многих величин и понятий (энергии, момента импульса, поля) лежит в основе современного подхода к изучению микромира. У Ψ тоже есть такой парадокс. Согласно одному из решений уравнения Шредингера, возможно, что при измерении квантовое состояние системы изменяется мгновенно. Это явление обычно обозначается как редукция или коллапс волновой функции. Если такое возможно в реальности, квантовые системы способны перемещаться с бесконечной скоростью. Но ограничение скоростей для вещественных объектов нашей Вселенной непреложно: ничто не может двигаться быстрее света. Явление это зафиксировано ни разу не было, но и опровергнуть его теоретически пока не удалось. Со временем, возможно, этот парадокс разрешится: либо у человечества появится инструмент, который зафиксирует такое явление, либо найдется математическое ухищрение, которое докажет несостоятельность этого предположения. Есть и третий вариант: люди создадут такой феномен, но при этом Солнечная система свалится в искусственную черную дыру.

Волновая функция многочастичной системы (атома водорода)

Как мы утверждали на протяжении всей статьи, пси-функция описывает одну элементарную частицу. Но при ближайшем рассмотрении атом водорода похож на систему из всего лишь двух частиц (одного отрицательного электрона и одного положительного протона). Волновые функции атома водорода могут быть описаны как двухчастичные или оператором типа матрицы плотности. Эти матрицы не совсем точно являются продолжением пси-функции. Они скорее показывают соответствие вероятностей найти частицу в одном и другом состоянии. При этом важно помнить, что задача решена только для двух тел одновременно. Матрицы плотности применимы к парам частиц, но невозможны для более сложных систем, например при взаимодействии трех и более тел. В этом факте прослеживается невероятное подобие между наиболее «грубой» механикой и очень «тонкой» квантовой физикой. Поэтому не стоит думать, что раз существует квантовая механика, в обычной физике новых идей не может возникнуть. Интересное скрывается за любым поворотом математических манипуляций.

Волновая функция
Wave function

Волновая функция (или вектор состояния) – комплексная функция, описывающая состояние квантовомеханической системы. Её знание позволяет получить максимально полные сведения о системе, принципиально достижимые в микромире. Так с её помощью можно рассчитать все измеряемые физические характеристики системы, вероятность пребывания её в определенном месте пространства и эволюцию во времени. Волновая функция может быть найдена в результате решения волнового уравнения Шредингера.
Волновая функция ψ (x, y, z, t) ≡ ψ (x,t) точечной бесструктурной частицы является комплексной функцией координат этой частицы и времени. Простейшим примером такой функции является волновая функция свободной частицы с импульсом и полной энергией Е (плоская волна)

.

Волновая функция системы А частиц содержит координаты всех частиц: ψ ( 1 , 2 ,..., A ,t).
Квадрат модуля волновой функции отдельной частицы | ψ (,t)| 2 = ψ *(,t) ψ (,t) дает вероятность обнаружить частицу в момент времени t в точке пространства, описываемой координатами , а именно, | ψ (,t)| 2 dv ≡ | ψ (x, y, z, t)| 2 dxdydz это вероятность найти частицу в области пространства объемом dv = dxdydz вокруг точки x, y, z. Аналогично, вероятность найти в момент времени t систему А частиц с координатами 1 , 2 ,..., A в элементе объема многомерного пространства дается величиной | ψ ( 1 , 2 ,..., A ,t)| 2 dv 1 dv 2 ...dv A .
Волновая функция полностью определяет все физические характеристики квантовой системы. Так среднее наблюдаемое значение физической величины F у системы дается выражением

,

где - оператор этой величины и интегрирование проводится по всей области многомерного пространства.
В качестве независимых переменных волновой функции вместо координат частиц x, y, z могут быть выбраны их импульсы p x , p y , p z или другие наборы физических величин. Этот выбор зависит от представления (координатного, импульсного или другого).
Волновая функция ψ (,t) частицы не учитывает ее внутренних характеристик и степеней свободы, т. е. описывает ее движение как целого бесструктурного (точечного) объекта по некой траектории (орбите) в пространстве. Этими внутренними характеристиками частицы могут быть её спин, спиральность, изоспин (для сильновзаимодействующих частиц), цвет (для кварков и глюонов) и некоторые другие. Внутренние характеристики частицы задаются специальной волновой функцией её внутреннего состояния φ. При этом полная волновая функция частицы Ψ может быть представлена в виде произведения функции орбитального движения ψ и внутренней функции φ:

поскольку обычно внутренние характеристики частицы и её степени свободы, описывающие орбитальное движение, не зависят друг от друга.
В качестве примера ограничимся случаем, когда единственной внутренней характеристикой, учитываемой функцией , является спин частицы, причем этот спин равен 1/2. Частица с таким спином может пребывать в одном из двух состояний − с проекцией спина на ось z, равной +1/2 (спин вверх), и с проекцией спина на ось z, равной -1/2 (спин вниз). Эту двойственность описывают спиновой функцией взятой в виде двухкомпонентного спинора:

Тогда волновая функция Ψ +1/2 = χ +1/2 ψ будет описывать движение частицы со спином 1/2, направленным вверх, по траектории, определяемой функцией ψ , а волновая функция Ψ -1/2 = χ -1/2 ψ будет описывать движение по той же траектории этой же частицы, но со спином, направленным вниз.
В заключении отметим, что в квантовой механике возможны такие состояния, которые нельзя описать с помощью волновой функции. Такие состояния называют смешанными и их описывают в рамках более сложного подхода, использующего понятие матрицы плотности. Состояния квантовой системы, описываемые волновой функцией, называют чистыми.

· Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Волнова́я фу́нкция , или пси-фу́нкция \psi - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle - координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle - волновая функция в координатном представлении .

Нормированность волновой функции

Волновая функция \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

{\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \Psi_1 и \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных c_1 и c_2.

Очевидно, что можно говорить и о суперпозиции (наложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента {c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией {\Psi}_n.

Поэтому для нормированных волновых функций \sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл (1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией, т.е принадлежала гильбертовому пространству L^2. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial y}, \frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода .

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции , представляет собой полную систему коммутирующих наблюдаемых . В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении , то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении , то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс .

Матричная и векторная формулировки

Волновая функция одного и того же состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности . То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, - это проблема самой сути научного метода познания мира.

См. также

Напишите отзыв о статье "Волновая функция"

Литература

  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. Энциклопедия, 1984. - 944 с.

Ссылки

  • Квантовая механика - статья из Большой советской энциклопедии .

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 882 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…