Для живой природы нашей планеты характерно сложное, иерархическое соотношение уровней организации . Весь органический мир и окружающая среда образует биосферу, которая, в свою очередь состоит из биогеоценозов (экосистем) - территорий с характерными природными условиями и определёнными растительными и животными комплексами (биоценозами). Биоценозы образованы популяциями - группами растительных и животных организмов одного вида, живущими на определённой территории и способнымы к произведению. Популяции состоят из представителей конкретных видов (особей), способных свободно скрещиваться и давать плодовитое потомство. Многоклеточные организмы состоят из органов и тканей, образованных клетками. Одноклеточные организмы и клетки образованы внутриклеточными структурами, которые состоят из молекул.

Исходя из этого, выделяют несколько уровней организации живой материи .

Для каждого уровня организации живых организмов характерны свои закономерности, связанные со своими конкретными принципами организации, особенностями взаимоотношения с другими уровнями.

Общая биология изучает основные закономерности жизненных явлений, которые происходят на различных уровнях организации живого. Рассмотрение организации живой материи начинается из выяснения строения и свойств сложных органических молекул. Клетки многоклеточных организмов входят в состав тканей, две или несколько тканей формируют орган. Многоклеточный организм имеет сложное строение, который состоит из тканей и органов, в то же время есть элементарной единицей биологического вида. Взаимодействуя между собой виды составляют сообщество, или экологическую систему, которая, в свою очередь, является одним из компонентов биосферы.

Каждый уровень организации организмов изучают соответствующие отрасли биологии.

Молекулярный уровень

Замечание 1

Любая живая система, как бы сложно она не была организована,определяется на уровне функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, а так же иных важных органических веществ. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и т. п.

Молекулярная биология, молекулярная генетика, физиология, цитохимия, биохимия, биофизика, определённые разделы вирусологии, микробиологии изучают физико-химические процессы, происходящие в живом организме (синтез, разложение и взаимные преобразования белков, нуклеиновых кислот, полисахариды, липидов и других веществ в клетке; обмен веществ, энергии и информации, которые регулируют эти процессы).

Такие исследования живых систем показали, что они состоят из низко- и высокомолекулярных органических соединений, которые в неживой природе практически невозможно обнаружить. Для живых организмов наиболее характерны такие биополимеры, как белки, нуклеиновые кислоты, полисахариды, липиды (жироподобные соединения) и составляющие их молекул (аминокислоты, нуклеотиды, моносахариды, жирные кислоты). Так же, на этом уровне изучается синтез, распад и взаимные преобразования этих соединений в клетках, обмен веществ, энергии и информации, регуляция данных процессов.

В результате подобных исследований было выяснено, что важнейшая особенность основных путей обмена - действие биологических катализаторов - ферментов (соединений белковой природы), которые строго избирательно влияют на скорость химических реакций. Так же изучено строение некоторых аминокислот, ряда белков и многих простых органических соединений. Установлено, что химическая энергия, которая освобождается в ходе биологического окисления (процессы дыхания, гликолиза), запасается в виде богатых на энергию соединений (в основном - аденозинфосфорные кислоты АТФ, АДФ и др.), а потом используется в процессах, которые требуют поступления энергии (мышечные сокращения, синтез и транспорт веществ). Крупным успехом стало открытие генетического кода. Выяснено, что закодированная в ДНК наследственность через белки-ферменты контролирует как структурные белки, так и все основные свойства клеток и организма в целом.

Исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, раскрытия их взаимосвязи между собой.

Используемые методы исследования на молекулярном уровне:

  • электрофорез (для разделения макромолекул с использованием их различия в зарядах);
  • ультрацентрифугирование (для разделения макромолекул с использованием их различия в плотности и размерах);
  • хроматография (для разделения макромолекул с использованием их различия в адсорбционных свойствах);
  • рентгеноструктурный анализ (изучают взаимное пространственное расположение атомов в сложных молекулах);
  • радиоизотопы (исследование путей превращения веществ, скорости их синтеза и распада);
  • искусственное моделирование систем из выделенных клеточных элементов (воспроизведение процессов, идущих в клетке - все биохимические процессы в клетке происходят не в однородной смеси веществ, а на определённых клеточных структурах).

Клеточный уровень

На клеточном уровне цитология, гистология, и их отделы (кариология, цито- и гистохимия, цитофизиология, цитогенетика), многие разделы физиологии, микробиологии и вирусологии изучают строение клетки и внутренних клеточных компонентов, а также связи и отношения между клетками в тканях и органах организма. Свободноживущих неклеточных форм жизни не существует.

Клетка - основная самостоятельная функциональная и структурная единица многоклеточного организма. Существуют одноклеточные организмы (водоросли, грибы, простейшие, бактерии). Также клетка есть единицей развития всех живых организмов, которые существуют на Земле. Свойства клетки определяются её компонентами, осуществляющими различные функции.

Благодаря исследованиям на клеточном уровне изучены основные компоненты клетки, строение клеток и тканей, их изменения в процессе развития.

Методы исследования на клеточном уровне:

  • микроскопия (световой микроскоп позволяет видеть объекты до 1 мкм);
  • цветные гистохимические реакции (выявление локализации в клетке различных химических веществ и ферментов);
  • авторадиография (выявление в клетке мест синтеза макромолекул);
  • электронная микроскопия (различение структур вплоть до макромолекул, хотя описание их строения часто затруднительно из-за недостаточной контрастности изображения);
  • центрифугирование (изучение функций внутриклеточных компонентов - их выделяют из разрушенных (гомогенизированных) клеток);
  • культура тканей (исследование свойств клеток);
  • микрохирургия (обмен ядрами между клетками, слияние (гибридизация) клеток.

Тканевый уровень

Ткань есть совокупностью сходных за строением клеток, объединённых исполнением общей функции. Сотни разнообразных клеток входят в составляют тело разнообразных многоклеточных организмов. Разнообразные клетки животных образуют $4$ типа тканей: нервную, соединительную, эпителиальную и мышечную. У растений различают образующие и постоянные ткани. К постоянным тканям относятся покровные, проводящие, механические и основная ткань.

Органный уровень

Определение 2

Органы - это высокодефференциированные части тела, которые размещены в определённом месте и исполняют специальные функции. Это структурно - функциональные объединения нескольких типов тканей. Они образуются в процессе развития из клеток различных тканей.

Группы разных органов коллективно функционируют для исполнения общей для организма функции. У человека есть такие системы органов: пищеварительная, дыхательная, сердечно - сосудистая, нервная, секреторная, выделительная, репродуктивная, Эндокринная, мышечная, скелетная и система покровных тканей. Каждый отдельный орган системы исполняет конкретную функцию, но все вместе работают как одна «команда», обеспечивая максимальную эффективность всей системы. Все системы органов функционируют во взаимосвязи и регулируются нервной и эндокринной системами. Нарушение функционирования любого органа приводит к патологии всей системы и даже организма.

Организменный уровень

Физиология (растений и животных, высшей нервной деятельности), экспериментальная морфология, эндокринология, эмбриология, иммунология, а также ещё рад других биологических отраслей изучают процессы и явления, происходящие в особи, и согласованное функционирование её органов и систем.

На этом уровне для создания общей теории онтогенеза проводятся исследования, направленные на раскрытие причинных механизмов становления биологической организации, её дифференцировки и интеграции, реализации генетической информации в онтогенезе. Также изучаются механизмы работы органов и их систем, их роль в жизнедеятельности организма, взаимные влияния органов, нервную и гуморальную регуляцию их функций, поведение животных, приспособительные изменения и др.

На этом уровне изучаются также механизм работы органов и систем, их роль в жизнедеятельности организма, взаимоотношения органов, поведение организмов, приспособительные изменения.

В данный момент применяются методы исследования:

  • электрофизиологические (состоят в отведении, усилении и регистрации биоэлектрических потенциалов);
  • биохимические (проводится изучение эндокринной регуляции - выделение и очистка гормонов, синтез их аналогов, изучение биосинтеза и механизмов действия гормонов);
  • кибернетические (исследование ВНД животных и человека методом моделирования);
  • экспериментальные (выработка условных рефлексов, постановка задач).

Популяционно - видовой уровень

Определение 3

Определённые отрасли биологии (морфология, физиология, генетика, экология) изучают элементарную единицу эволюционного процесса - популяцию - совокупность особей одного вида, населяющих определённую территорию, более или менее изолированную от соседних групп.

Изучение состава и динамики популяции неразрывно связано с молекулярным, клеточным и организменным уровнями.

Методами исследования являются методы тех наук, которые изучают конкретно поставленные на этом уровне вопросы:

  • генетические методы - характер распределения наследственных особенностей в популяциях;
  • морфологические
  • физиологические
  • экологические.

Популяция и вид как целое могут служить объектами исследования самых разных биологических отраслей.

Биогеоценотический, или биосферный, уровень

Определение 4

Биогеоценология, экология, биогеохимия и другие отрасли биологии изучают процессы, происходящие в биогеоценозах (экосистемах) - элементарных структурных и функциональных единицах биосферы.

На этом уровне ведутся комплексные исследования, охватывающие взаимоотношения биотических и абиотических компонентов, которые входят в состав биогеоценоза; изучается движение живого вещества в биосфере, пути и закономерности протекания энергетических кругооборотов. Такой подход даёт возможность предвидеть последствия хозяйственной деятельности человека и в форме международной программы «Человек и биосфера» координировать усилия биологов многих стран.

Важное практическое значение имеет изучение биологической продуктивности биогеоценозов (утилизации энергии солнечной радиации путём фотосинтеза и использования гетеротрофными организмами энергии, запасённой автотрофами).

Замечание 2

Необходимость детального изучения биосферного уровня организации живого обусловливается тем, что биогеоценозы - среда, в которой протекают любые жизненные процессы на нашей планете.

Свойства живых организмов

1. Обмен веществ и энергии с окружающей средой (главный признак живого).


2. Раздражимость (способность реагировать на воздействия).


3. Размножение (самовоспроизведение).

Уровни организации живой материи

1. Молекулярный - это уровень сложных органических веществ - белков и нуклеиновых кислот. На этом уровне происходят химические реакции обмена веществ (гликолиз, кроссинговер и т.п.), но молекулы сами по себе еще не могут считаться живыми.


2. Клеточный . На этом уровне возникает жизнь , потому что клетка - минимальная единица, обладающая всеми свойствами живого.


3. Органно-тканевой - характерен только для многоклеточных организмов.


4. Организменный - за счет нервно-гуморальной регуляции и обмена веществ на этом уровне осуществляется гомеостаз , т.е. сохранение постоянства внутренней среды организма.


5. Популяционно-видовой . На этом уровне происходит эволюция , т.е. изменение организмов, связанное с приспособлением их к среде обитания под действием естественного отбора. Наименьшей единицей эволюции является популяция.


6. Биогеоценотический (совокупность популяций разных видов, связанных между собой и окружающей неживой природой). На этом уровне происходит

  • круговорот веществ и превращение энергии , а так же
  • саморегуляция , за счет которой поддерживается устойчивость экосистем и биогеоценозов.

7. Биосферный . На этом уровне происходит

  • глобальный круговорот веществ и превращение энергии , а так же
  • взаимодействие живого и неживого вещества планеты.

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают значение фотосинтеза в природе?
1) биосферном
2) клеточном
3) биогеоценотическом
4) молекулярном
5) тканево-органном

Ответ


Выберите один, наиболее правильный вариант. Какой уровень организации живой природы представляет собой совокупность популяций разных видов, связанных между собой и окружающей неживой природой
1) организменный
2) популяционно-видовой
3) биогеоценотический
4) биосферный

Ответ


Выберите один, наиболее правильный вариант. Генные мутации происходят на уровне организации живого
1) организменном
2) клеточном
3) видовом
4) молекулярном

Ответ


Выберите один, наиболее правильный вариант. Элементарная структура, на уровне которой проявляется в природе действие естественного отбора
1) организм
2) биоценоз
3) вид
4) популяция

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки служат сходными для живых и неживых объектов природы?
1) клеточное строение
2) изменение температуры тела
3) наследственность
4) раздражимость
5) перемещение в пространстве

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают особенности реакций фотосинтеза у высших растений?
1) биосферном
2) клеточном
3) популяционно-видовом
4) молекулярном
5) экосистемном

Ответ


Ниже приведен перечень понятий. Все они, кроме двух, являются уровнями организации живого. Найдите два понятия, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) биосферный
2) генный
3) популяционно-видовой
4) биогеоценотический
5) биогенный

Ответ


1. Установите, в какой последовательности располагаются уровни организации живого. Запишите соответствующую последовательность цифр.
1) популяционный
2) клеточный
3) видовой
4) биогеоценотический
5) молекулярно-генетический
6) организменный

Ответ


2. Установите последовательность усложнения уровней организации живого. Запишите соответствующую последовательность цифр.
1) биосферный
2) клеточный
3) биогеоценотический
4) организменный
5) популяционно-видовой

Ответ


3. Расположите в правильном порядке уровни организации жизни, начиная с наименьшего.
1) биоценоз
2) популяция
3) нейрон
4) многоклеточный организм
5) биосфера

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточный уровень организации совпадает с организменным у
1) бактериофагов
2) амёбы дизентерийной
3) вирус полиомиелита
4) кролика дикого
5) эвглены зелёной

Ответ


2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Клеточному и организменному уровням организации жизни одновременно соответствуют.
1) гидра пресноводная
2) спирогира
3) улотрикс
4) амеба дизентерийная
5) цианобактерия

Ответ


3. Выберите два верных ответа. У каких организмов совпадают клеточный и организменный уровни жизни?
1) серобактерия
2) пеницилл
3) хламидомонада
4) пшеница
5) гидра

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Одна амеба обыкновенная одновременно находится на:
1) Молекулярном уровне организации жизни
2) Популяционно-видовом уровне организации жизни
3) Клеточном уровне организации жизни
4) Тканевом уровне организации жизни
5) Организменном уровне организации жизни

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Живое от неживого отличается
1) способностью изменять свойства объекта под воздействием среды
2) способностью участвовать в круговороте веществ
3) способностью воспроизводить себе подобных
4) изменять размеры объекта под воздействием среды
5) способность изменять свойства других объектов

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки присущи только живому веществу?
1) рост
2) движение
3) самовоспроизведение
4) ритмичность
5) наследственность

Ответ


3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для всех живых организмов характерно
1) образование органических веществ из неорганических
2) поглощение из почвы растворённых в воде минеральных веществ
3) активное передвижение в пространстве
4) дыхание, питание, размножение
5) раздражимость

Ответ


4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки характерны только для живых систем?
1) способность к передвижению
2) обмен веществ и энергии
3) зависимость от температурных колебаний
4) рост, развитие и способность к самовоспроизведению
5) устойчивость и относительно слабая изменчивость

Ответ


Установите соответствие между уровнями организации живого и их характеристиками и явлениями: 1) биоценотический, 2) биосферный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) процессы охватывают всю планету
Б) симбиоз
В) межвидовая борьба за существование
Г) передача энергии от продуцентов консументам
Д) испарение воды
Е) сукцессия (смена природных сообществ)

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Онтогенез, метаболизм, гомеостаз, размножение происходят на … уровнях организации.
1) клеточном
2) молекулярном
3) организменном
4) органном
5) тканевом

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. На популяционно-видовом уровне организации жизни находятся
1) рыбы озера Байкал
2) птицы Арктики
3) Амурские тигры Приморского края России
4) городские воробьи Парка культуры и отдыха
5) синицы Европы

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Какие из уровней организации жизни являются надвидовыми?
1) популяционно-видовой
2) органоидно-клеточный
3) биогеоценотический
4) биосферный
5) молекулярно-генетический

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточному уровню организации жизни соответствует
1) хламидомонада
2) серобактерия
3) бактериофаг
4) ламинария
5) лишайник

Ответ


Выберите два варианта. Энергетический обмен у обыкновенной амёбы происходит на уровне организации живого
1) клеточном
2) биосферном
3) организменном
4) биогеоценотическом
5) популяционно-видовом

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каком уровне организации происходят такие процессы, как раздражимость и обмен веществ?
1) популяционно-видовой
2) организменный
3) молекулярно-генетический
4) биогеоценотический
5) клеточный

Ответ

© Д.В.Поздняков, 2009-2019

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов - молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Рис. 1. Молекулярно-генетический уровень

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.


Рис. 2. Клеточный уровень

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных - амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.


Рис. 3. Тканевый уровень

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.


Рис. 4. Органный уровень

4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.


Рис. 5. Организменный уровень

5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, - питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.


Рис. 6. Популяционно-видовой уровень

6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).


Рис. 7 Биогеоценотический уровень

7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).


Рис. 8. Биосферный уровень

8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

  1. В настоящее время выделяют несколько уровней организации живых организмов: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный.
  2. На популяционно-видовом уровне осуществляются элементарные эволюционные преобразования.
  3. Клетка - самая элементарная структурная и функциональная единица всех живых организмов.
  4. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань.
  5. Совокупность всех живых организмов на планете и общей природной среды их обитания составляет биосферный уровень.
    1. Назовите по порядку уровни организации жизни.
    2. Что такое ткань?
    3. Из каких основных частей состоит клетка?
      1. Для каких организмов характерен тканевый уровень?
      2. Дайте характеристику органного уровня.
      3. Что такое популяция?
        1. Дайте характеристику организменному уровню.
        2. Назовите особенности биогеоценотического уровня.
        3. Приведите примеры взаимосвязанности уровней организованности жизни.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Порядковый номер

Уровни организации

Особенности

1.2. Уровни организации живой системы

Организм человека сложная саморегулирующаяся система взаимосвязанных между собой структурных элементов, объединенных
в несколько уровней организации. Различают следующие уровни: клеточный, тканевый, органный, системный и организменный.
Между собой эти уровни организации находятся в иерархических (соподчиненных) отношениях.

1. Клеточный уровень. Клетка – структурно-функциональная единица живого организма. Она является биологической системой и для нее характерны обмен веществ, рост, развитие и размножение.

2. Тканевый уровень. Совокупность клеток, имеющая общее происхождение, сходное строение и выполняющая одинаковые функции образует ткань. Различают четыре основных типа ткани:
эпителиальную, соединительную, мышечную и нервную. Каждая ткань имеет специфические особенности строения и выполняет определенные функции.

· Эпителиальные ткани – это пограничные ткани, покрывающие снаружи органы и выстилающие изнутри полости внутренних органов и образующие железы внешней и внутренней секреции. Эти ткани выполняют защитную, всасывательную (эпителий кишечника), секреторную функции.

· Соединительные ткани, включающие несколько разновидностей: собственно соединительные ткани (волокнистые,
ткани со специальными свойствами – жировая, ретикулярная, слизистая и пигментная ткань), скелетные ткани (хрящевая, костная). К соединительным тканям также относятся кровь и лимфа (жидкая соединительная ткань). Основные функции видов соединительной ткани – опорная, трофическая (питательная), защитная, поддержание постоянства внутренней среды организма (гомеостаза).

· Мышечные ткани (поперечно-полосатые скелетные, поперечно-полосатая сердечная и гладкие мышцы) обеспечивают сокращение мышц и двигательные реакции человека: перемещение тела или его отдельных частей в пространстве, ритмическую деятельность миокарда, передвижение крови по сосудам (гемоциркуляцию), пищи – по пищеварительному тракту и др.

· Нервная ткань обеспечивает восприятие раздражений
из внешней и внутренней среды организма, проведение нервных импульсов в центральную нервную систему (ЦНС), где в ее высших отделах происходит анализ и синтез полученной информации, и осуществление быстрых ответных адаптивных реакций. Нервная система регулирует деятельностьотдельных органов и организма в целом.

Слои ткани, которые покрывают, выстилают и разделяют внутренние органы называются оболочками. В организме человека различают следующие основные типы оболочек:

1. Слизистые оболочки обычно выстилают внутреннюю поверхность полых органов. Они включают три слоя тканей: эпителиальную (с секреторными клетками, выделяющими слизь), рыхлую соединительную с железами и лимфоидными образованиями и гладкую мышечную.

2. Синовиальные оболочки покрывают поверхности суставов и сухожилий. Они образованы соединительной тканью и выстланы эндотелием.

3. Серозные оболочки окружают наружную поверхность всех внутренних органов. Они образованы соединительно тканной мембраной, покрытой эпителиальным слоем.

4. Мозговые оболочки (твердая, паутинная, мягкая) покрывают головной и спинной мозг. Они образованы соединительной тканью.

3. Органный уровень. Несколько тканей, объединяясь в единый комплекс, образуют орган, но какая-то из тканей в нем преобладает и определяет его главную функцию. Органы занимают определенное положение в теле, имеют определенное строение и форму и выполняют определенную функцию, необходимую для существования целостного организма.

4. Системный уровень. Несколько органов, совместно выполняющих определенную функцию, образуют физиологическую систему (сердечнососудистая, дыхательная, пищеварительная, нервная
и др. системы). Среди всех физиологических систем организма особое место занимает нервная система, потому что она регулирует и согласует между собой деятельность всех систем, обеспечивает приспособление организма к меняющимся условиям среды.

5. Организменный уровень. Живой организм, состоящий из отдельных клеток, тканей, органов, систем представляет собой единое целое («систему систем» по И. П. Павлову), в котором деятельность всех этих структур строго согласована, подчинена единому целому и обеспечивает нормальную жизнедеятельность
в условиях непрерывно изменяющейся внешней среды.

Системы органов в организме функционируют не изолированно друг от друга, а в определенный период объединяются между собой для достижения полезного организму результата. Такое временное объединение органов и систем, принадлежащих к различным физиологическим системам, П. К. Анохин (академик, нейрофизиолог)
назвал функциональной системой .

Лекция 1. Химический состав клеток. Вода, соли

Общая биология (греч. bios – жизнь, logos – наука ) – наука, изучающая общие закономерности строения, обмена веществ, размножения и развития живых организмов, законы наследственности и изменчивости, многообразие живых организмов и закономерности их совместной эволюции и существования в сообществах.

Уровни организации жизни на Земле.

Жизнь изучается на различных уровнях, самый простой из которых – молекулярный . На этом уровне изучаются неорганические и органические молекулы, входящие в состав живых организмов – их строение и функции в живом организме.

На клеточном уровне изучается строение клеток, строение и функции клеточных органоидов. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение.

У многоклеточных организмов клетки специализируются, начинают гораздо более эффективно выполнять различные функции, появляется тканевый уровень.

Дальнейшее усложнение организмов связано с появлением органного уровня. Орган выполняет более конкретную функцию и еще более эффективно, чем просто ткань. Обычно орган содержит все ткани, но в связи с выполняемыми функциями в нем преобладает одна или две ткани, например, в сердце преобладает мышечная ткань, в щитовидной железе – железистая.

Органы приспосабливаются к совместной работе, такие совместно выполняющие определенные функции органы образуют системный уровень – за пищеварение отвечает целый ряд органов, образующих пищеварительную систему.

Таким образом, большинство многоклеточных организмов включают в себя все предыдущие уровни, которые формируют организменный уровень. Правда существуют и одноклеточные организмы.

Для существования во времени необходимо воспроизведение себе подобных, и группы живых организмов образуют виды, состоящие из популяций – это уже популяционно -видовой уровень.

Но виды существуют не изолированно, а в природном сообществе, взаимодействуют с другими видами живых организмов и приспосабливаются к факторам неживой природы, формируется биогеоценотический уровень.

Самый сложный уровень жизни на Земле – биосферный , это земная оболочка, заселенная живыми организмами.

Свойства живых организмов .

1. Отличительным свойством живых организмов от неживой природы является в первую очередь обмен веществ . Внешними проявлениями этого процесса является потребление и выделение организмом веществ и энергии. Вещества, поглощенные организмом, используются как строительный материал в реакциях пластического обмена и как источник энергии в реакциях энергетического обмена. И если горящая свеча тоже потребляет кислород и выделяет углекислый газ, то уж пластического обмена при этом не происходит.

2. Важнейшее свойство живых организмов – раздражимость . В ответ на внешнее воздействие происходит возбуждение и ответная реакция на раздражитель, позволяющая приспособиться к изменившимся условиям внешней среды.

3. Движение . У растений движение проявляется в форме тропизмов , ростовых движений, у животных без нервной системы – таксисы , у многоклеточных животных с нервной системой – рефлексы . Кроме того, движение проявляется в движении внутренних сред организма, движении цитоплазмы и органоидов, даже в движении молекул.

4. Рост организмов, который осуществляется за счет образования новых клеток и внеклеточных структур.

5. Развитие – неотъемлемое свойство живых организмов, в результате которого происходит постепенное усложнение организмов, заканчивается развитие старением организма и его смертью.

6. Размножение – свойство живых организмов, благодаря которому виды существуют не только в пространстве, но и во времени. Известно два основных типа размножения – бесполое и половое. При бесполом размножении организм наследует признаки одного организма и не происходит слияния генетического материала, при половом – новый организм образуется всегда после слияния генетического материала и всегда отличается по набору генов от родительских организмов.

7, 8. Для живых организмов характерна высокая степень организации и адаптированность , которая проявляется в сложном строении биологических молекул, органоидов, клеток, органов, их специализации к выполнению определенных функций. В результате естественного отбора организмы удивительным образом адаптировались к конкретным условиям обитания. Эта адаптация началась с эволюции на уровне молекул, затем на уровне органоидов клетки – на клеточном уровне, затем на уровне многоклеточного организма.

Многообразие жизни.

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными . По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы , элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K, Na, Ca, Mg, S, P, Cl, Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.