При изучении русского языка в школе многие задавались вопросом: почему слово равнина пишется через а , ведь проверочное слово ровный пишется через о ? На самом деле ответ прост. Ведь равнина так называется потому, что все ее точки находятся на равном расстоянии (от уровня моря) и проверочное слово для неё — равно .

Определение: Уравнением с переменной x называется равенство вида A(x)=B(x), где A(x) и B(x) — выражения от x. Множество T значений x при подстановке которых в уравнение получается истинное числовое равенство, называют множеством истинности данного уравнения или решением данного уравнения, а каждое такое значение переменной — корнем уравнения .

Таким образом становится понятно, что основа любого уравнения это равенств о двух его частей. И когда при решении уравнений производятся над его частями это равенство всегда должно соблюдаться.

Методы решения уравнений с одной переменной

Существует огромное количество самых разнообразных видов уравнений для решения которых используются разные способы. Но для того чтобы легко решать уравнения вам необходимо знать три основных метода:

Тождественное преобразование уравнений

Разложение выражения на множители

Введение новой переменной

Тождественные преобразования уравнений

Наиболее простым и в то же время одним из самых распространенных способов решения уравнений является метод тождественных преобразований. В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными. Рассмотрим основные способы тождественных преобразований алгебраических выражений.

Примеры и формулы тождественных преобразований:

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Пример: 9x 2 + 12x + 10 = 15x + 10 → отнимем десять из обоих частей → 9x 2 + 12x = 15x

Второе тождественное преобразование : перенос членов уравнения из одной стороны в другую с обратными знаками.

Пример: 9x 2 + 12x = 15x → перенесем 15х влево → 9x 2 + 12x — 15x =0. После упрощения получаем: 9x 2 - 3x =0

Третье тождественное преобразование: обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя.

Пример: 9x 2 - 3x =0 → разделим обе части уравнения на три3x 2 - x =0

Четвертое тождественное преобразование: можно возвести обе части уравнения в нечётную степень или извлечь из обеих частей уравнения корень нечётной степени . Необходимо помнить, что:

а) возведение в чётную может привести к приобретению посторонних корней ;
б) неправильное извлечение корня чётной степени может привести к потере корней .

Пример: 49x 2 = 1225 → извлечем корень квадратный из обеих частей → | 7x | = 35

Разложение выражения на множители

Перечислим теперь некоторые наиболее распространённые приёмы разложения многочленов, как наиболее простых алгебраических , на множители.

Вынесение общего множителя за скобку

В том случае, когда все члены многочлена имеют один и тот же общий множитель, его можно вынести за скобку, получая тем самым разложение многочлена.
Пример: Разложить на множители многочлен х 5 – 2х 3 +х 2 .
Решение: Каждое слагаемое этого многочлена содержит множитель х 2 . Вынесем его за скобку и получим ответ:

х 5 – 2х 3 +х 2 = х 2 (х 3 – 2x + 1).

Применение формул сокращённого умножения

Сокращения довольно эффективно применяются при разложении многочлена на множители. Полезно помнить следующие формулы:

1.Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй.

(a+b) 2 =a 2 +2ab+b 2

2.Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй.

(a-b) 2 =a 2 -2ab+b 2

3.Произведение суммы двух величин на их разность равно разности их квадратов.

(a+b)(a-b)=a 2 -b 2

4.Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй.

(a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

5.Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй.

(a-b) 3 =a 3 -3a 2 b+3ab 2 -b 3

6. Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.

(a+b)(a 2 -ab+b 2)=a 3 +b 3

7. Произведение разности двух величин на неполный квадрат суммы равно разности их кубов.

(a-b)(a 2 +ab+b 2)=a 3 -b 3

Пример: (3х+5) 2 =9х 2 +30х+25=0

Решение: используя формулу (1) 9х 2 +30х+25= (3х+5) 2

Применение выделения полного квадрата

Без преувеличения можно сказать, что метод выделения полного квадрата является одним из наиболее эффективных методов разложения на множители, применяемых при сдаче и

Лекция 26. Уравнения с одной переменной

1. Понятие уравнения с одной переменной

2. Равносильные уравнения. Теоремы о равносильности уравнений

3. Решение уравнений с одной переменной

Уравнения с одной переменной

Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х : если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Лекция 26. Уравнения с одной переменной

1. Понятие уравнения с одной переменной

2. Равносильные уравнения. Теоремы о равносильности уравнений

3. Решение уравнений с одной переменной

Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х : если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имееткорней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

х и областью определения Х . Тогда высказывательная форма вида f(x) = g(x) называется уравнением с одной переменной.

Значение переменной х из множества Х , при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней.


Множество значений переменной, при которых выражения f(x) и g(x) имеют смысл, называется областью определения уравнения
f(x) = g(x) . Множество решений уравнения является подмножеством области его определения.


Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называются равносильными.


Замена уравнения равносильным ему уравнением называется преобразованием.


Преобразования, позволяющие получать равносильные уравнения, могут быть следующими:


1. Если к обеим частям уравнения f(x) = g(x) , определенного на множестве Х , прибавить одно и то же выражение h(x) , имеющее смысл на множестве Х , то получится уравнение f(x) + h(x) = g(x) + h(x) , равносильное данному.


Из данного утверждения вытекают следствия , которые используются при решении уравнений:


1) Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.


2) Если какое-либо слагаемое ( или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.


2. Если обе части уравнения f(x) = g(x) , определенного на множестве Х , умножить на одно и то же выражение h(x) , имеющее смысл на множестве Х и не обращающееся на нем в нуль, то получится уравнение f(x) × h(x) = g(x)× h(x) , равносильное данному.


Из этого утверждения вытекает следствие:


Если обе части уравнения умножить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.


Задача. Установить, какие из следующих пар уравнений равносильны на множестве действительных чисел:


а) х 2 - 9 = 0 и (2х + 6)(х - 3) = 0;


б) (3х + 1) × 2 = 6х + 1 и х 2 + 1 = 0;


в) х 2 - х - 2 = 0 и (х - 1)(х + 2) = 0;


Решение. а) уравнения равносильны, так как оба имеют своими корнями числа 3 и -3; б) уравнения равносильны, так как оба не имеют корней, т.е. множества их решений совпадают; в) уравнения не являются равносильными, так как корнями первого уравнения являются числа -1 и 2, а второго - числа 1 и -2.


Задача. Решить уравнение и обосновать все преобразования, которые будут выполняться в процессе решения.


Решение.






























Преобразования



Обоснование преобразований



1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: .



Выполнили тождественное преобра-зование выражения в левой части уравнения.



2. Отбросим общий знаменатель:


6 - 2х = х .



Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.



3. Выражение --2х переносим в правую часть уравнения с противоположным знаком:


6 = х + 2х .



Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.



4. Приводим подобные члены в правой части уравнения: 6 = 3х .



Выполнили тождественное преобра-зование выражения.



5. Разделим обе части уравнения на 3: х = 2.



Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному.


Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - корень этого уравнения.


Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.


Рассмотрим, например, уравнение х (х - 1) = 2х , х Î R . Разделим обе части на х , получим уравнение х - 1 = 2, откуда х = 3, т.е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Нетрудно видеть, что если в данное уравнение вместо переменной
х подставить 0, оно обратится в истинное числовое равенство
0 × (0 - 1) = 2 × 0. А это означает, что 0 - корень данного уравнения, который мы потеряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х , то есть умножили на выражение , но при х = 0 оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.


Чтобы убедиться в том, что множество корней данного уравнения состоит из двух чисел 0 и 3, приведем другое решение. Перенесем выражение 2х из правой части в левую: х (х - 1) - 2х = 0. Вынесем в левой части уравнения за скобки х и приведем подобные члены:
х (х - 3) = 0. Произведение двух множителей равно нулю в том и только в том случае, когда хотя бы один из них равен нулю, поэтому х = 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.


В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий.


Задача. Решить уравнение (х × 9) : 24 = 3, используя взаимосвязь между компонентами и результатами действий.


Решение. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х × 9 = 24 × 3, или х × 9 = 72. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72: 9, или х = 8, следовательно, корнем данного уравнения является число 8.


Упражнения для самостоятельной работы


1. Уравнение 2х 4 + 4х 2 - 6 = 0 задано на множестве натуральных чисел. Объясните, почему число 1 является корнем этого уравнение, а 2 и -1 не являются его корнями.


2. Установите, какие из следующих пар уравнений равносильны на множестве R :


а) 3 + 7х = -4 и 2(3 + 7х ) = -8; в) 3 + 7х = -4 и х + 2 = 0.


б) 3 + 7х = -4 и 6 + 7х = -1;


3. Решите уравнения и обоснуйте все преобразования, выполняемые в процессе их упрощения:


а) ; б) ; в) (2 - х ) × 2 - х (х + 1,5) = 4.


4. Решите уравнения, используя взаимосвязь между компонентами и результатами действий:


а) (х + 70) × 4 = 328; в) (85х + 765) : 170 = 98;


б) 560: (х + 9) = 56; г) (х - 13581) : 709 = 306.

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.