Гидроокись алюминия

Химические свойства

Химическая формула Гидроксида Алюминия: Al(OH)3 . Это химическое соединение оксида алюминия с водой. Синтезируют в виде белого желеобразного вещества, которое плохо растворимо в воде. У гидроксида имеются 4 кристаллические модификации: нордстрандит (β) , моноклинный (γ) гиббсит , байерит (γ) и гидрагилит . Также существует аморфное вещество, состав которого варьируется: Al2O3 nH2O.

Химические свойства. Соединение проявляет амфотерные свойства. Гидроксид Алюминия реагирует с щелочами: при реакции с гидроксидом натрия в растворе получается Na(Al(OH)4) ; при сплавлении веществ образуется вода и NaAlO2 .При нагревании наблюдается разложение Гидроксида Алюминия до воды и оксида алюминия . Вещество не реагирует с раствором аммиака . Реакция алюминий плюс гидроксид натрия : 2Al + 2NaOH + 6H2O = 2Na + 3H2 .

Получение Гидроксида Алюминия. Химическое соединение получают из солей Al при их взаимодействии с водным раствором щелочи в недостатке, избегая избытка. К хлориду алюминия AlCl3 прибавляют натрия гидроксид – в результате требуемое вещество выпадает в виде белого осадка и дополнительно образуется хлорид натрия .

Также средство можно получить с помощью реакции водорастворимой соли алюминия с карбонатом щелочного металла. Например, к хлориду алюминия прибавить карбонат натрия и воду – в результате получим хлорид натрия , углекислый газ и гидроксид Al .

Применение:

  • используют для очистки воды в качестве адсорбента;
  • можно синтезировать сульфат алюминия при взаимодействии гидроксида Al и серной кислоты ;
  • в качестве адъюванта при изготовлении вакцины;
  • в медицине в виде антацида ;
  • при изготовлении пластика и прочих материалов в виде подавителя процессов горения.

Фармакологическое действие

Антацидное, адсорбирующее, обволакивающее.

Фармакодинамика и фармакокинетика

Гидроксид Алюминия нейтрализует соляную кислоту, разлагая ее на хлорид алюминия и воду. Вещество постепенно повышает рН желудочного сока до 3-4,5 и удерживает на этом уровне в течение нескольких часов. Кислотность желудочного сока значительно снижается, угнетается его протеолитическая активность. При проникновении в щелочную среду кишечника средство образует ионы хлора и фосфаты, которые не всасываются, ионы Cl подвергаются реабсорбции.

Показания к применению

Лекарство используют:

  • для лечения 12-перстной кишки и желудка;
  • при хроническом при нормальной и повышенной секреторной функции желудка во время обострения;
  • во время терапии грыжи пищеводного отверстия диафрагмы;
  • для устранения дискомфорта и болезненных ощущений в области желудка;
  • при после употребления алкоголя, кофе или никотина, некоторых лекарств;
  • при несоблюдении диеты.

Противопоказания

Средство нельзя принимать:

  • пациентам с ;
  • при серьезных заболеваниях почек.

Побочные действия

После приема Гидроксида Алюминия побочные реакции развиваются редко. Наиболее вероятно возникновение . Вероятность развития побочного действия можно снизить, если дополнительно принять .

Инструкция по применению (Способ и дозировка)

Гидроксид Алюминия назначают для приема внутрь. Лекарство чаще всего принимают в виде суспензии, с концентрацией активного компонента 4%. Как правило, принимают по 1 или 2 чайным ложкам препарата, 4 или 6 раз в сутки. Продолжительность лечения зависит от болезни и рекомендаций врача.

Передозировка

Данные о передозировке средством отсутствуют.

Взаимодействие

При сочетании препарата с трисиликатом магния наблюдается оптимизация антацидного действия и снижается констипационное действие лекарства от изжоги.

Особые указания

Особую осторожность соблюдают при лечении пациентов с нарушениями фосфорного обмена.

Неорганическое вещество, щелочь алюминия, формула Al(OH) 3 . Встречается в природе, входит в состав бокситов.

Свойства

Существует в четырех кристаллических модификациях и в виде коллоидного раствора, гелеобразного вещества. Реактив почти не водорастворим. Не горит, не взрывается, не ядовит.

В твердом виде - мелкокристаллический рыхлый порошок, белый или прозрачный, иногда с легким серым или розовым оттенком. Гелеобразный гидроксид тоже белый.

Химические свойства у твердой и гелеобразной модификации отличаются. Твердое вещество достаточно инертно, не вступает в реакции с кислотами, щелочами, другими элементами, но может образовывать метаалюминаты в результате сплавления с твердыми щелочами или карбонатами.

Гелеобразное вещество проявляет амфотерные свойства, то есть реагирует и с кислотами, и со щелочами. В реакции с кислотами образуются соли алюминия соответствующей кислоты, со щелочами - соли другого типа, алюминаты. Не вступает в реакции с раствором аммиака.

При нагревании гидроксид разлагается на оксид и воду.

Меры предосторожности

Реактив относится к четвертому классу опасности, считается пожаробезопасным и практически безопасным для человека и окружающей среды. Осторожность нужно проявлять только с аэрозольными частицами в воздухе: пыль оказывает раздражающее воздействие на органы дыхания, кожу, слизистые оболочки.

Поэтому на рабочих местах, где возможно образование большого количества пыли гидроксида алюминия, сотрудники должны использовать средства защиты для органов дыхания, глаз и кожи. Следует наладить контроль содержания в воздухе рабочей зоны вредных веществ по методике, утвержденной ГОСТом.

Помещение должно быть оборудовано приточно-вытяжной вентиляцией, а при необходимости - местными аспирационными отсосами.

Хранят твердую гидроокись алюминия в многослойных бумажных мешках или другой таре для сыпучих продуктов.

Применение

В промышленности реактив используется для получения чистого алюминия и производных алюминия, например, оксида алюминия, сернокислого и фтористого алюминия .
- Оксид алюминия, получаемый из гидроксида, применяется для получения искусственных рубинов для нужд лазерной техники, корундов - для сушки воздуха, очистки минеральных масел, для производства наждака.
- В медицине используется как обволакивающее средство и антацид длительного действия для нормализации кислотно-щелочного баланса ЖКТ человека, для лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и некоторых других заболеваний.
- В фармакологии входит в состав вакцин для усиления иммунной реакции организма на воздействие введенной инфекции.
- В водоочистке - как адсорбент, помогающий удалять из воды различные загрязнения. Гидроксид активно вступает в реакции с веществами, которые нужно удалить, образуя нерастворимые соединения.
- В химпроме используется как экологичный антипирен для полимеров, силиконов, каучуков, лакокрасочных материалов - чтобы ухудшить их горючесть, способность к возгоранию, подавить выделение дыма и токсичных газов.
- В производстве зубной пасты, минеральных удобрений, бумаги, красителей, криолита.

Внешний вид вещества гидроксид алюминия следующий. Как правило, это вещество белого, студневидного вида, хотя встречаются варианты присутствия в кристаллическом или аморфном состоянии. Например, в высушенном виде оно кристаллизуется в белые кристаллы, которые не растворяются ни в кислотах, ни в щелочах.

Гидроокись алюминия может быть представлена и мелкокристаллическим порошком белого цвета. Допустимо присутствие розового и серого оттенков.

Химическая формула соединения - Al(OH)3. Соединение и воды образуют гидроксид которого также определяются во многом элементами, входящими в его состав. Получают это соединение посредством проведения реакции взаимодействия соли алюминия и разбавленной щелочи, при этом следует не допускать их переизбытка. Получаемый в ходе данной реакции осадок гидроксида алюминия затем может взаимодействовать с кислотами.

Гидроокись алюминия взаимодействует с водным раствором гидрооксида рубидия, сплавом этого вещества, гидроокисью цезия, карбонатом цезия. Во всех случаях выделяется вода.

Гидроокись алюминия обладает равной 78,00, практически не растворяется в воде. Плотность вещества составляет 3,97 грамм/см3. Будучи амфотерным веществом, гидроксид алюминия взаимодействует с кислотами, при этом, в результате реакций получаются средние соли и выделяется вода. При вступлении в реакции со щелочами появляются комплексные соли - гидроксоалюминаты, например, К. Метаалюминаты образуются, если гидроксид алюминия сплавлять с безводными щелочами.

Как и все амфотерные вещества, кислотные и основные свойства одновременно гидроокись алюминия показывает при взаимодействии с а также со щелочами. В этих реакциях при растворении гидроксида в кислотах происходит отщепление ионов самого гидроксида, а при взаимодействии со щелочью - отщепляется ион водорода. Чтобы увидеть это, можно, например, провести реакцию, в которой участвуют гидроксид алюминия, Для ее проведения необходимо в пробирку засыпать немного опилок алюминия и залить небольшим количеством гидроксида натрия, не больше 3 миллилитров. Пробирку следует плотно закрыть пробкой, и начать медленный подогрев. После этого, закрепив пробирку на штативе, надо собрать выделенный водород в другую пробирку, предварительно надев ее на капиллярное приспособление. Примерно через минуту пробирку следует снять с капилляра и поднести к пламени. Если в пробирке собран чистый водород - горение будет происходить спокойно, в том же случае, если в нее попал воздух - произойдет хлопок.

Получают гидроксид алюминия в лабораториях несколькими способами:

Путем реакции взаимодействия солей алюминия и щелочных растворов;

Способом разложения нитрида алюминия под воздействием воды;

Путем пропускания углерода через специальный гидрокомплекс, содержащий Al(ОН)4;

Воздействием гидрата аммиака на соли алюминия.

Промышленное получение связано с переработкой бокситов. Используются также технологии воздействия на алюминатные растворы карбонатами.

Применяется гидроокись алюминия в изготовлении минеральных удобрений, криолита, различных медицинских и фармакологических препаратов. В химическом производстве вещество используют для получения фтористого и сернистого алюминия. Незаменимо соединение при производстве бумаги, пластмасс, красок и много другого.

Медицинское применение обусловлено позитивным действием препаратов, содержащих данный элемент в лечении желудочных расстройств, повышенной кислотности организма, язвенных заболеваний.

При обращении с веществом, следует остерегаться вдыхания его паров, так как они вызывают сильное поражение легких. Будучи слабодействующим слабительным, опасно в больших дозах. При коррозии вызывает алюминоз.

Само вещество достаточно безопасно, так как не вступает в реакции с окислителями.

Оксид алюминия – Al2O3. Физические свойства: оксид алюминия – белый аморфный порошок или очень твердые белые кристаллы. Молекулярная масса = 101,96, плотность – 3,97 г/см3, температура плавления – 2053 °C, температура кипения – 3000 °C.

Химические свойства: оксид алюминия проявляет амфотерные свойства – свойства кислотных оксидов и основных оксидов и реагирует и с кислотами, и с основаниями. Кристаллический Аl2О3 химически пассивен, аморфный – более активен. Взаимодействие с растворами кислот дает средние соли алюминия, а с растворами оснований – комплексные соли – гидроксоалюминаты металлов:

При сплавлении оксида алюминия с твердыми щелочами металлов образуются двойные соли – метаалюминаты (безводные алюминаты):

Оксид алюминия не взаимодействует с водой и не растворяется в ней.

Получение: оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома, молибдена, вольфрама, ванадия и др. – металлотермия , открытый Бекетовым :

Применение: оксид алюминия применяется для производства алюминия, в виде порошка – для огнеупорных, химически стойких и аб-разивных материалов, в виде кристаллов – для изготовления лазеров и синтетических драгоценных камней (рубины, сапфиры и др.), окрашенных примесями оксидов других металлов – Сr2О3 (красный цвет), Тi2О3 и Fe2О3 (голубой цвет).

Гидроксид алюминия – А1(ОН)3 . Физические свойства: гидроксид алюминия – белый аморфный (гелеобразный) или кристаллический. Почти не растворим в воде; молекулярная масса – 78,00, плотность – 3,97 г/см3.

Химические свойства: типичный амфотерный гидроксид реагирует:

1) с кислотами, образуя средние соли: Al(ОН)3 + 3НNO3 = Al(NO3)3 + 3Н2О;

2) с растворами щелочей, образуя комплексные соли – гидроксоалюминаты: Al(ОН)3 + КОН + 2Н2О = К.

При сплавлении Al(ОН)3 с сухими щелочами образуются метаалюминаты: Al(ОН)3 + КОН = КAlO2 + 2Н2О.

Получение:

1) из солей алюминия под действием раствора щелочей: AlСl3 + 3NaOH = Al(ОН)3 + 3Н2О;

2) разложением нитрида алюминия водой: AlN + 3Н2О = Аl(ОН)3 + NН3?;

3) пропусканием СО2 через раствор гидроксокомплекса: [Аl(ОН)4]-+ СО2 = Аl(ОН)3 + НСО3-;

4) действием на соли Аl гидратом аммиака; при комнатной температуре образуется Аl(ОН)3.

62. Общая характеристика подгруппы хрома

Элементы подгруппы хрома занимают промежуточное положение в ряду переходных металлов. Имеют высокие температуры плавления и кипения, свободные места на электронных орбиталях. Элементы хром и молибден обладают нетипичной электронной структурой – на внешней s-орбитали имеют один электрон (как у Nb из подгруппы VB). У этих элементов на внешних d– и s-орбиталях находится 6 электронов, поэтому все орбитали заполнены наполовину, т. е. на каждой находится по одному электрону. Имея подобную электронную конфигурацию, элемент обладает особенной стабильностью и устойчивостью к окислению. Вольфрам имеет более сильную металлическая связь, нежели молибден . Степень окисления у элементов подгруппы хрома сильно варьирует. В надлежащих условиях все элементы проявляют положительную степень окисления от 2 до 6, максимальная степень окисления соответствует номеру группы. Не все степени окисления у элементов стабильны, у хрома самая стабильная – +3.

Все элементы образуют оксид MVIO3, известны также оксиды с низшими степенями окисления. Все элементы данной подгруппы амфотерны – образуют комплексные соединения и кислоты.

Хром, молибден и вольфрам востребованы в металлургии и электротехнике. Все рассматриваемые металлы покрываются пассивирующей оксидной пленкой при хранении на воздухе или в среде кислоты-окислителя. Удалив пленку химическим или механическим способом, можно повысить химическую активность металлов.

Хром. Элемент получают из хромитной руды Fe(CrO2)2, восстанавливая углем: Fe(CrO2)2 + 4C = (Fe + 2Cr) + 4CO?.

Чистый хром получают восстановлением Cr2O3 с помощью алюминия или электролиза раствора, содержащего ионы хрома. Выделяя хром с помощью электролиза, можно получить хромовое покрытие, используемое в качестве декоративных и защитных пленок.

Из хрома получают феррохром, применяемый при производстве стали.

Молибден. Получают из сульфидной руды. Его соединения используют при производстве стали. Сам металл получают при восстановлении его оксида. Прокаливая оксид молибдена с железом, можно получить ферромолибден. Используют для изготовления нитей и трубок для обмотки печей и электроконтактов. Сталь с добавлением молибдена используют в автомобильном производстве.

Вольфрам. Получают из оксида, добываемого из обогащенной руды. В качестве восстановителя используют алюминий или водород. Получившийся вольфрам в идее порошка впоследствии формуют при высоком давлении и термической обработке (порошковая металлургия). В таком виде вольфрам используют для изготовления нитей накаливания, добавляют к стали.