Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Треугольник – простейшая из плоских многоугольных фигур. Если величина какого-нибудь угла в его вершинах равна 90°, то треугольник именуется прямоугольным. Около такого многоугольника дозволено начертить круг таким методом, дабы всякая из 3 вершин имела одну всеобщую точку с его рубежом (окружностью). Эта окружность будет именоваться описанной, а присутствие прямого угла гораздо упрощает задачу ее построения.

Вам понадобится

  • Линейка, циркуль, калькулятор.

Инструкция

1. Начните с определения радиуса окружности, которую нужно будет возвести. Если есть вероятность измерить длины сторон треугольника, то обратите внимание на его гипотенузу – сторону, лежащую наоборот прямого угла. Измерьте ее и поделите полученное значение напополам – это и будет радиус описываемой около прямоугольного треугольника окружности.

2. Если длина гипотенузы неведома, но есть длины (a и b) катетов (2-х сторон, прилегающих к прямому углу), то радиус (R) обнаружьте с применением теоремы Пифагора. Из нее вытекает, что данный параметр будет равен половине квадратного корня, извлеченного из суммы возведенных в квадрат длин катетов: R=?*?(a?+b?).

3. Если вестима длина лишь одного из катетов (a) и величина прилегающего к нему острого угла (?), то для определения радиуса описанной окружности (R) используйте тригонометрическую функцию – косинус. В прямоугольном треугольнике она определяет соотношение длин гипотенузы и этого катета. Рассчитайте половину частного от деления длины катета на косинус знаменитого угла: R=?*a/cos(?).

4. Если помимо длины одного из катетов (a) вестима величина острого угла (?), лежащего наоборот него, то для вычисления радиуса (R) воспользуйтесь иной тригонометрической функцией – синусом. Помимо замены функции и стороны в формуле ничего не изменится – поделите длину катета на синус вестимого острого угла, а итог поделите напополам: R=?*b/sin(?).

5. Позже нахождения радиуса любым из перечисленных методов определите центр описываемой окружности. Для этого отложите на циркуле полученное значение и установите его в всякую вершину треугольника. Описывать полный круг нет необходимости, легко подметьте место его пресечения с гипотенузой – эта точка и будет центром окружности. Таково качество прямоугольного треугольника – центр описанной около него окружности неизменно находится в середине его самой длинной стороны. Начертите круг отложенного на циркуле радиуса с центром в обнаруженной точке. На этом построение будет закончено.

Изредка около выпуклого многоугольника дозволено начертить окружность таким образом, дабы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику нужно называть описанной. Ее центр не непременно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности , обнаружить эту точку, как водится, не дюже сложно.

Вам понадобится

  • Линейка, карандаш, транспортир либо угольник, циркуль.

Инструкция

1. Если многоугольник, около которого необходимо описать окружность, начерчен на бумаге, для нахождения центр а круга довольно линейки, карандаша и транспортира либо угольника. Измерьте длину всякий из сторон фигуры, определите ее середину и поставьте в этом месте чертежа вспомогательную точку. С поддержкой угольника либо транспортира проведите внутри многоугольника перпендикулярный этой стороне отрезок до пересечения с противоположной стороной.

2. Проделайте эту же операцию с всякий иной стороной многоугольника. Пересечение 2-х построенных отрезков и будет желанной точкой. Это вытекает из основного свойства описанной окружности – ее центр в выпуклом многоугольнике с любым числом сторон неизменно лежит в точке пересечения серединных перпендикуляров, проведенных к этим сторонам.

3. Для верных многоугольников определение центр а вписанной окружности может быть гораздо проще. Скажем, если это квадрат, то начертите две диагонали – их пересечение и будет центр ом вписанной окружности . В положительном многоугольнике с любым четным числом сторон довольно объединить вспомогательными отрезками две пары лежащих друг наоборот друга углов – центр описанной окружности должен совпадать с точкой их пересечения. В прямоугольном треугольнике для решения задачи легко определите середину самой длинной стороны фигуры – гипотенузы.

4. Если из условий незнакомо, дозволено ли в тезисе начертить описанную окружность для данного многоугольника, позже определения полагаемой точки центр а любым из описанных методов вы можете это узнать. Отложите на циркуле расстояние между обнаруженной точкой и всякий из вершин, установите циркуль в полагаемый центр окружности и начертите круг – вся вершина должна лежать на этой окружности . Если это не так, значит, не выполняется одно из основных свойств и описать окружность около данного многоугольника невозможно.

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом идеально неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция либо что-то иное. Также не играет роли, верный либо неверный это многоугольник. Нужно лишь рассматривать, что существуют многоугольники, вокруг которых окружность описать невозможно. Неизменно дозволено описать окружность вокруг треугольника. Что касается четырехугольников, то окружность дозволено описать около квадрата либо прямоугольника либо равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические представления и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

1. Постройте многоугольник с заданными параметрами и определите, дозволено ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Всякая из них должна равняться 180°.

2. Для того, дабы описать окружность , необходимо вычислить ее радиус. Припомните, где лежит центр описанной окружности в различных многоугольниках. В треугольнике он находится в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для всякого иного выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

3. Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Поделив диаметр на 2, получаете радиус.

4. Вычислите радиус описанной окружности для треугольника. От того что параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Взамен этой стороны дозволено взять всякую иную сторону и противолежащий ей угол.

5. Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - вестимые по условиям задания основания трапеции, h – высота, d – диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту дозволено вычислить по теореме синусов либо косинусов, от того что длины сторон трапеции и углы заданы в условиях задачи. Зная высоту и рассматривая знаки подобия треугольников, вычислите диагональ. Позже этого останется только вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет
Дабы вычислить радиус окружности, описанной вокруг иного многоугольника, исполните ряд дополнительных построений. Получите больше примитивные фигуры, параметры которых вам знамениты.

Совет 4: Как начертить прямоугольный треугольник по острому углу и гипотенузе

Прямоугольным называют треугольник, угол в одной из вершин которого равен 90°. Сторону, лежащую наоборот этого угла, называют гипотенузой, а стороны, противолежащие двум острым углам треугольника, именуются катетами. Если знаменита длина гипотенузы и величина одного из острых углов, то этих данных довольно, чтоб возвести треугольник, как минимум, двумя методами.

Вам понадобится

  • Лист бумаги, карандаш, линейка, циркуль, калькулятор.

Инструкция

1. 1-й метод требует наличия помимо карандаша и бумаги еще и линейки, транспортира и угольника. Вначале начертите ту сторону, которая является гипотенузой – поставьте точку A, отложите от нее вестимую длину гипотенузы, поставьте точку С и объедините точки.

2. Приложите транспортир к проведенному отрезку таким образом, дабы нулевая отметка совпала с точкой A, отмерьте величину вестимого острого угла и поставьте вспомогательную точку. Проведите линию, которая будет начинаться в точке A и проходить через вспомогательную точку.

3. Приложите угольник к отрезку AC таким образом, дабы прямой угол начинался от точки C. Точку пересечения угольником линии, проведенной на предыдущем шаге, обозначьте буквой B и объедините ее с точкой C. На этом построение прямоугольного треугольника с знаменитой длиной стороны AC (гипотенузы) и острым углом в вершине A будет завершено.

4. Иной метод помимо карандаша и бумаги затребует наличия линейки, циркуля и калькулятора. Начните с вычисления длин катетов – умения величины одного острого угла и длины гипотенузы для этого абсолютно довольно.

5. Рассчитайте длину того катета (AB), тот, что лежит наоборот угла вестимой величины (β) – он будет равен произведению длины гипотенузы (AC) на синус знаменитого угла AB=AC*sin(β).

6. Определите длину иного катета (BC) – она будет равна произведению длины гипотенузы на косинус вестимого угла BC=AC*cos(β).

7. Поставьте точку A, отмерьте от нее длину гипотенузы, поставьте точку C и проведите между ними линию.

8. Отложите на циркуле длину катета AB, рассчитанную в пятом шаге и начертите вспомогательный полукруг с центром в точке A.

9. Отложите на циркуле длину катета BC, рассчитанную в шестом шаге и начертите вспомогательный полукруг с центром в точке С.

10. Подметьте точку пересечения 2-х полукругов буквой B и проведите отрезки между точками A и B, C и B. На этом построение прямоугольного треугольника будет закончено.

Совет 5: Как именуются стороны прямоугольного треугольника

Ошеломительными свойствами прямоугольных треугольников люди заинтересовались еще во времена древности. Многие из этих свойств были описаны древнегреческим ученым Пифагором. В Старинной Греции возникли и наименования сторон прямоугольного треугольника.

Какой треугольник называют прямоугольным?

Есть несколько типов треугольников. У одних все углы острые, у других – один тупой и два острых, у третьих – два острых и прямой. По этому знаку всякий тип этих геометрических фигур и получил наименование: остроугольные, тупоугольные и прямоугольные. То есть, прямоугольным именуется такой треугольник, у которого один из углов составляет 90°. Есть и другое определение, аналогичное с первым. Прямоугольным именуется треугольник, у которого две стороны перпендикулярны.

Гипотенуза и катеты

У остроугольного и тупоугольного треугольников отрезки, соединяющие вершины углов, именуются примитивно сторонами. У треугольника прямоугольного стороны имеют и другие наименования. Те, которые прилегают к прямому углу, именуются катетами. Сторона, противолежащая прямому углу, именуется гипотенузой. В переводе с греческого слово «гипотенуза» обозначает «натянутая», а «катет» – «перпендикуляр».

Соотношения между гипотенузой и катетами

Стороны прямоугольного треугольника связаны между собой определенными соотношениями, которые гораздо облегчают вычисления. Скажем, зная размеры катетов, дозволено вычислить длину гипотенузы. Это соотношение по имени открывшего его математика получило наименование теоремы Пифагора и выглядит оно так:c2=a2+b2, где с – гипотенуза, a и b – катеты. То есть, гипотенуза будет равна квадратному корню из суммы квадратов катетов. Дабы обнаружить всякий из катетов, довольно из квадрата гипотенузы вычесть квадрат иного катета и извлечь из полученной разности квадратный корень.

Прилежащий и противолежащий катет

Начертите прямоугольный треугольник АСВ. Буквой С принято обозначать вершину прямого угла, А и В – вершины острых углов. Стороны, противолежащие всему углу, комфортно назвать а, b и с, по наименованиям лежащих наоборот них углов. Разглядите угол А. Катет а для него будет противолежащим, катет b – прилежащим. Отношение противолежащего катета к гипотенузе именуется синусом. Вычислить эту тригонометрическую функцию дозволено по формуле: sinA=a/c. Отношение прилежащего катета к гипотенузе именуется косинусом. Вычисляется он по формуле: cosA=b/c. Таким образом, зная угол и одну из сторон, дозволено по этим формулам вычислить иную сторону. Тригонометрическими соотношениями связаны и оба катета. Отношение противолежащего к прилежащему именуется тангенсом, а прилежащего к противолежащему – котангенсом. Выразить эти соотношения дозволено формулами tgA=a/b либо ctgA=b/a.

Окружность описанная около прямоугольного треугольника. В этой публикации мы с вами рассмотрим доказательство одного «математического факта», который широко используется при решении задач по геометрии. В одних источниках сей факт обозначается как теорема, в других как свойство, формулировки имеются разные, но суть их одна:

Любой треугольник построенный на диаметре окружности, третья вершина которого лежит на этой окружности является прямоугольным!

То есть закономерность в этом геометрическом узоре состоит в том, что, куда бы вы ни поместили вершину треугольника, угол при этой вершине всегда будет прямым:

Заданий присутствующих с составе экзамена по математике, в ходе решений которых используется это свойство, достаточно много.

Стандартное доказательство считаю весьма путанным и перегруженным математическими символами, его вы найдёте в учебнике. Мы же рассмотрим простое и интуитивно понятное. Его я обнаружил в одном замечательном эссе под названием "Плач математика ", рекомендую к прочтению учителям и ученикам.

Сначала вспомним некоторые теоретические моменты:

Признак параллелограмма. У параллелограмма противолежащие стороны равны. То есть если у четырехугольника обе пары противолежащих сторон равны, то этот четырехугольник – параллелограмм.

Признак прямоугольника. Прямоугольник является параллелограммом, и его диагонали равны. То есть если у параллелограмма диагонали равны, то он является прямоугольником.

*Прямоугольник является параллелограммом, это его частный случай.

Итак, приступим:

Возьмем треугольник и относительно центра окружности повернем его на 180 0 (перевернём его). У нас получится четырехугольник, вписанный в окружность:

Поскольку мы просто повернули треугольник, то противолежащие стороны четырехугольника равны, значит это параллелограмм. Поскольку треугольник повернут ровно на 180 градусов, значит его вершина диаметрально противоположна вершине «исходного» треугольника.

Получается, что диагонали четырёхугольника равны, так они являются диаметрами. Имеем четырёхугольник у которого противолежащие стороны равны и диагонали равны, следовательно это есть прямоугольник, а у него все углы прямые.

Вот и всё доказательство!

Можно рассмотреть и такое, тоже простое и понятное:

Посмотреть ещё одно доказательство =>>

Из точки С построим отрезок проходящий через центр окружности, другой конец которого будет лежать на противоположной точке окружности (точка D). Точку D соединим с вершинами А и В: Получили четырёхугольник. Треугольник АОD равен треугольнику СОВ по двум сторонам и углу между ними:

Из равенства треугольников следует, что AD = CB.

Аналогично и АС = DB.

Можем сделать вывод, что четырёхугольник является параллелограммом. Кроме того, его диагонали равны – АВ изначально дан как диаметр, СD также диаметр (проходит через точку О).

Таким образом, АСВD прямоугольник, значит все его углы прямые. Доказано!

Ещё один примечательный подход, который ярко и «красиво» говорит нам о том, что рассматриваемый угол всегда прямой.

Посмотрите и вспомните информацию про . А теперь посмотрите на эскиз:

Угол АОВ не что иное как центральный угол опирающийся на дугу АDB, и равен он 180 градусам. Да, АВ это диаметр окружности, но ничто нам не мешает считать АОВ центральным углом (это развёрнутый угол). Угол же АСВ является вписанным для него, он опирается также же дугу на АDB.

А мы знаем, что вписанный угол равен половине центрального, то есть как бы мы не разместили точку С на окружности, угол АСВ всегда будет равен 90 градусам, то является прямым.

Какие выводы можно сделать применительно к решению задач, в частности включённых в экзамен?

Если в условии речь идёт о треугольнике вписанном в окружность и построенном на диаметре этой окружности, то однозначно этот треугольник является прямоугольным.

Если сказано, что прямоугольный треугольник вписан в окружность, то это означает, что его гипотенуза является совпадает с её диаметром (равна ему) и центр гипотенузы совпадает с центром окружности.

На этом всё. Успеха вам!

С уважением, Александр Крутицких.

Угловой коэффициент прямой. В этой статье мы с вами рассмотрим задачи связанные с координатной плоскостью включённые в ЕГЭ по математике. Это задания на:

— определение углового коэффициента прямой, когда известны две точки через которые она проходит;
— определение абсциссы или ординаты точки пересечения двух прямых на плоскости.

Что такое абсцисса и ордината точки было описано в данной рубрики. В ней мы уже рассмотрели несколько задач связанных с координатной плоскостью. Что необходимо понимать для рассматриваемого типа задач? Немного теории.

Уравнение прямой на координатной плоскости имеет вид:

где k это и есть угловой коэффициент прямой.

Следующий момент! Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.



Он лежит в пределах от 0 до 180 градусов.

То есть, если мы приведём уравнение прямой к виду y = kx + b , то далее всегда сможем определить коэффициент k (угловой коэффициент).

Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.

Следующий теоретический момент! Уравнение прямой походящей через две данные точки. Формула имеет вид:


Рассмотрим задачи (аналогичные задачам из открытого банка заданий):

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–6;0) и (0;6).


В данной задаче самый рациональный путь решения это найти тангенс угла между осью ох и данной прямой. Известно, что он равен угловому коэффициенту. Рассмотрим прямоугольный треугольник образованный прямой и осями ох и оу:


Тангенсом угла в прямоугольном треугольнике является отношение противолежащего катета к прилежащему:

*Оба катета равны шести (это их длины).

Конечно, данную задачу можно решить используя формулу нахождения уравнения прямой проходящей через две данные точки. Но это будет более длительный путь решения.

Ответ: 1

Найдите угловой коэффициент прямой, проходящей через точки с координатами (5;0) и (0;5).


Наши точки имеют координаты (5;0) и (0;5). Значит,

Приведём формулу к виду y = kx + b

Получили, что угловой коэффициент k = – 1.

Ответ: –1

Прямая a проходит через точки с координатами (0;6) и (8;0). Прямая b проходит через точку с координатами (0;10) и параллельна прямой a b с осью оx.


В данной задаче можно найти уравнение прямой a , определить угловой коэффициент для неё. У прямой b угловой коэффициент будет такой же, так как они параллельны. Далее можно найти уравнение прямой b . А затем, подставив в него значение y = 0, найти абсциссу. НО!

В данном случае, проще использовать свойство подобия треугольников.

Прямоугольные треугольники, образованные данными (параллельными) прямыми о осями координат подобны, а это значит, что отношения их соответствующих сторон равны.


Искомая абсцисса равна 40/3.

Ответ: 40/3

Прямая a проходит через точки с координатами (0;8) и (–12;0). Прямая b проходит через точку с координатами (0; –12) и параллельна прямой a . Найдите абсциссу точки пересечения прямой b с осью оx .


Для данной задачи самый рациональный путь решения — это применение свойства подобия треугольников. Но мы решим её другим путём.

Нам известны точки, через которые проходит прямая а . Можем составить уравнение прямой. Формула уравнения прямой походящей через две данные точки имеет вид:


По условию точки имеют координаты (0;8) и (–12;0). Значит,

Приведём к виду y = kx + b :

Получили, что угловой k = 2/3.

*Угловой коэффициент можно было найти через тангенс угла в прямоугольном треугольнике с катетами 8 и 12.

Известно, у параллельных прямых угловые коэффициенты равны. Значит уравнение прямой проходящей через точку (0;-12) имеет вид:

Найти величину b мы можем подставив абсциссу и ординату в уравнение:

Таким образом, прямая имеет вид:

Теперь чтобы найти искомую абсциссу точки пересечения прямой с осью ох, необходимо подставить у = 0:

Ответ: 18

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку В(10;12) и параллельной прямой, проходящей через начало координат и точку А(10;24).


Найдём уравнение прямой проходящей через точки с координатами (0;0) и (10;24).

Формула уравнения прямой походящей через две данные точки имеет вид:

Наши точки имеют координаты (0;0) и (10;24). Значит,

Приведём к виду y = kx + b

Угловые коэффициенты параллельных прямых равны. Значит, уравнение прямой, проходящей через точку В(10;12) имеет вид:

Значение b найдём подставив в это уравнение координаты точки В(10;12):

Получили уравнение прямой:

Чтобы найти ординату точки пересечения этой прямой с осью оу нужно подставить в найденное уравнение х = 0:

*Самый простой способ решения. При помощи параллельного переноса сдвигаем данную прямую вниз вдоль оси оу до точки (10;12). Сдвиг происходит на 12 единиц, то есть точка А(10;24) «перешла» в точку В(10;12), а точка О(0;0) «перешла» в точку (0;–12). Значит, полученная прямая будет пересекать ось оу в точке (0;–12).

Искомая ордината равна –12.

Ответ: –12

Найдите ординату точки пересечения прямой, заданной уравнением

+ 2у = 6 , с осью Oy .

Координата точки пересечения заданной прямой с осью оу имеет вид (0;у ). Подставим в уравнение абсциссу х = 0, и найдём ординату:

Ордината точки пересечения прямой с осью оу равна 3.

*Решается система:

Ответ: 3

Найдите ординату точки пересечения прямых, заданных уравнениями

3х + 2у = 6 и у = – х .

Когда заданны две прямые, и стоит вопрос о нахождении координат точки пересечения этих прямых, решается система из данных уравнений:

В первом уравнении подставляем – х вместо у :

Ордината равна минус шести.

Ответ: 6

Найдите угловой коэффициент прямой, проходящей через точки с координатами (–2;0) и (0;2).

Найдите угловой коэффициент прямой, проходящей через точки с координатами (2;0) и (0;2).

Прямая a проходит через точки с координатами (0;4) и (6;0). Прямая b проходит через точку с координатами (0;8) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.

Найдите ординату точки пересечения оси оy и прямой, проходящей через точку B (6;4) и параллельной прямой, проходящей через начало координат и точку A (6;8).

1. Необходимо чётко усвоить, что угловой коэффициент прямой равен тангенсу угла наклона прямой. Это поможет вам при решении многих задач данного типа.

2. Формулу нахождения прямой проходящей через две данные точки нужно понимать обязательно. С её помощью всегда найдёте уравнение прямой, если даны координаты двух её точек.

3. Помните о том, что угловые коэффициенты параллельных прямых равны.

4. Как вы поняли, в некоторых задачах удобно использовать признак подобия треугольников. Задачи решаются практически устно.

5. Задачи в которых даны две прямые и требуется найти абсциссу или ординату точки их пересечения можно решить графическим способом. То есть, построить их на координатной плоскости (на листе в клетку) и определить точку пересечения визуально. *Но этот способ применим не всегда.

6. И последнее. Если дана прямая и координаты точек её пересечения с осями координат, то в таких задачах удобно находить угловой коэффициент через нахождение тангенса угла в образованном прямоугольном треугольнике. Как «увидеть» этот треугольник при различных расположениях прямых на плоскости схематично показано ниже:

>> Угол наклона прямой от 0 до 90 градусов <<


>> Угол наклона прямой от 90 до 180 градусов <<

На этом всё. Успеха Вам!

С уважением, Александр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол ; с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол ; с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задачи . Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется