Под средней величиной в статистике понимается обобщенная количественная характеристика признака в статистической совокупности, выражающая его типичный уровень в конкретных условиях места и времени.

Средняя величина исчисляется по качественно однороднойсовокупности единиц. Различают степенные и структурные средние.

Средняя арифметическаявеличина определяется в случае, когда общий объем изучаемого признака может быть получен, путем суммирования его индивидуальных значений. Средняя арифметическая представляет собой частное от деления общего объема данного признака в изучаемом явлении на число единиц совокупности.

Средняя гармоническая используется, когда имеются индивидуальные значения признака, общий объем явления (w=xf ), но неизвестны веса (f ).

Средняя геометрическая применяется при расчете средних темпов роста.

Средняяквадратическая применяется в тех случаях, когда в исходной информации осредняемые величины представлены квадратичными мерами (например, при расчете средних диаметров труб, стволов деревьев).

Средняя хронологическая применяется для определения среднего уровня в моментном ряду динамики.

Модой дискретного вариационного ряда называется вариант, имеющий наибольшую частоту. Ряды могут быть одно и многомодальными.

Медианой дискретного вариационного ряда называется вариант, делящий ряд на две равные части.

Таблица 3.1 – Формулы расчета средних величин

Наименование средней Простая форма Взвешеннаяформа
Средняя арифметическая = (3.1) = (3.2)
Средняя гармоническая = (3.3) = (3.4)
Средняя квадратическая = (3.5) = (3.6)
Средняя геометрическая = (3.7) = (3.8)
Средняя хронологическая

(3.9)

Мода

(3.10)

Начало модального интервала;

h- длина модального интервала;

Частота модального интервала;

Частота предмодального интервала;

Частота послемодального интервала.

Медиана

(3.11)

Начало медианного интервала;

h - длина медианного интервала;

n - объем совокупности;

Накопленная частота интервала, предшествующего

медианному;

Частота медианного интервала.

Для характеристики колеблемости или рассеяния значений признака применяются абсолютные и относительные показатели вариации.

Размах вариации (R ) представляет собой разность между максимальным и минимальным значениями признака.

Среднее линейное отклонение (L) - это средняя арифметическая из абсолютных значений отклонений отдельных вариант признака от среднего значения.


Дисперсия (σ 2) представляет собой средний квадрат отклонений вариант признака от их средней величины.

Среднее квадратическое отклонение (σ) определяется как корень квадратный из дисперсии.

Относительным показателем колеблемости служит коэффициент вариации , который позволяет судить об интенсивности вариации признака, а, следовательно, и об однородности состава изучаемой совокупности.

Таблица 3.2 – Формулы расчета показателей вариации

Наименование показателя Простая форма Взвешеннаяформа
Размах вариации

R=х max - х min (3.12)

Среднее линейное отклонение L = (3.13) L = (3.14)
Дисперсия = (3.15) (3.16)
Среднее квадратическое отклонение (3.17) (3.18)
Коэффициент вариации

V = или V = (3.19)

Задача 3.1. По данным пяти сельскохозяйственных организаций (приложение А)определить среднюю численность работников, среднегодовую заработную плату на одного работника и показатели вариации численности работников и среднегодовой заработной платы. Сделать вывод.

Методические указания:

Среднюю численность работников на одну организацию и показатели вариации рассчитать как простые формы показателей по формулам, приведенным в таблицах 3.1 и 3.2. Все вспомогательные вычисления провести с использованием макета таблицы3.3.


Таблица 3.3 - Вспомогательная таблица для расчета показателей вариации

численности работников

Организация

Среднегодовая численность работников, чел. Отклонение от средней, чел. Квадрат отклонения
х
1
2
3
4
5
Итого -

Среднегодовую оплату труда работников и показатели вариации оплаты труда определить с использованием взвешенной формы показателей по формулам, приведенным в таблицах 3.1 и 3.2. Расчеты представить в таблице 3.4.

Таблица 3.4 - Вспомогательная таблица для расчета показателей вариации

среднегодовой заработной платы

Организация

Среднегодовая оплата труда работника, тыс. руб. Среднегодовая численность работников, чел Фонд заработной платы, тыс. руб. Отклонение от средней, тыс. руб. Отклонения Общий размер квадрата отклонений
х f х f f f
1
2
3
4
5
Итого - -

Задача 3.3. Поданным таблицы 3.5 определить средний процент рентабельности продаж в организациях за каждый год, абсолютный прирост прибыли и рентабельности по каждойорганизации и в целом по всей совокупности.Сделать вывод.

Таблица 3.5 – Финансовые результаты реализации продукции

Задача 3.4. По даннымтаблицы 3.6 определить среднюю урожайность озимой пшеницы,модальное и медианное значения, показатели вариации. Сделать вывод.

Таблица 3.6 – Распределение организаций по урожайности озимой пшеницы

Группа организаций по урожайности озимой пшеницы, ц/га Число организаций в группе () Среднее значение интервала ()
20,01 – 26,7 6
26,71 – 33,4 9
33,41 – 40,1 11
40,11 – 46,8 13
46,81 – 53,5 6
53,51 – 60,2 5
Итого 50

Задача 3.5. По данным таблицы 3.7 определить среднее число детей на одну семью, модальное и медианное значения. Ряд распределения изобразить графически. Сделать вывод.

Таблица 3.7 – Распределение семей по числу детей


Вопросы для самоподготовки

1. Что понимается под средней величиной в статистике?

2. Условия правильного применения средних величин.

3. Назовите виды и формы средних величин.

4. Что характеризует вариация признака?

5. Показатели вариации и способы их расчета.

РЯДЫ ДИНАМИКИ

Одной из важнейших задач статистики является изучение изменения экономических явлений во времени, путем построения и анализа рядов динамики. Ряд динамики представляет собой численные значения статистического показателя в последовательные моменты или периоды времени.

Графически ряды динамики изображаются линейными, либо столбиковыми диаграммами. По оси абсцисс откладываются показатели времени, а по оси ординат - уровни ряда (либо базисные темпы роста).

Введем условные обозначения:

у i – текущий (сравниваемый) уровень, i =1,2,3,…,n;

у 1 – уровень, принятый за постоянную базу сравнения (обычно начальный);

у п – конечный уровень.

Для характеристики развития явления во времени определяют показатели: абсолютный прирост, темп роста, темп прироста базисным и цепным способом, значение одного процента прироста (таблица 4.1).

Таблица 4.1- Расчет текущих показателей ряда динамики

Показатель

Метод расчета

базисный (с постоянной базой) цепной (с переменной базой)
Абсолютный прирост (А) (4.1) (4.2)
Коэффициент роста (К р) (4.3) (4.4)
Темп роста (Т р) (4.5) (4.6)
Темп прироста (Т пр) (4.7) (4.8)
Абсолютное значение 1 % прироста (Зн.1%)

Зн.1% = 0,01 у i-1 или Зн.1%= (4.9)

Для характеристики интенсивности развития явления за длительный период времени рассчитываются средние показатели динамики (таблица4.2).

Средние показатели динамики исчисляются одинаково для интервальных и моментных рядов, исключение составляет лишь расчет среднего уровня ряда.

Таблица 4.2 – Расчет средних показателей ряда динамики

Показатель Метод расчета
Средний уровень () а) интервального ряда (4.10)
б) моментного ряда с равными интервалами (4.11)
в) моментного ряда с неравными интервалами (4.12)
Средний абсолютный прирост () или (4.13)
Средний коэффициент роста () = или (4.14)
Средний темп роста (), % = · 100 % (4.15)
Средний темп прироста (), % = -100 % или =( -1)·100% (4.16)
Среднее значение 1% прироста, (4.17)

Для выявления тенденции развития в рядах динамики применяют различные методы: укрупнения временных интервалов (периодов); скользящих средних; аналитического выравнивания.

Основным условием построения и анализа ряда динамики является сопоставимость уровней во времени.

К несопоставимости приводит изменение состава или территориальных границ изучаемой совокупности, переход к другим единицам измерения, инфляционные процессы. Несопоставимыми ряды динамики являются и в том случае, если они составлены из неодинаковых по продолжительности времени периодов.

При обнаружении несопоставимости уровней ряда должна применяться процедура смыкания, если невозможен их прямой пересчет.

Смыкание может быть произведено двумя способами.

1 способ. Данные за предшествующие периоды умножаются на коэффициент перехода, который определяется как отношение показателей на тот момент времени, когда произошло изменение условий формирования уровней ряда.

2 способ. Уровень переходного периода принимается для второй части ряда за 100% и от этого уровня определяются соответствующие показатели. При этом получается сопоставимый ряд относительных величин.

Иногда в динамических рядах отсутствуют промежуточные или последующие уровни. Их можно исчислить с помощью методов интерполяции (нахождение промежуточного неизвестного уровня, при наличии известных соседних уровней) и экстраполяции (нахождение уровней за пределами изучаемого ряда, т.е. продление в будущее тенденции, наблюдавшейся в прошлом, или в прошлое на основании текущих уровней).

Пример 4.1 . По имеющимся данным о цене производителей на автомобильный бензин рассчитать показатели ряда динамики. Сделать вывод.

Таблица 4.3 - Расчет показателей ряда динамики

Цена производителей автомобильного бензина, руб./т

Абсолютный прирост, руб.

Коэффициент роста

прироста, %

Значение 1% прироста, руб.

базисный цепной базисный цепной базисный цепной базисный цепной
А б А ц К р б К р ц Т р б Т р ц Т пр б Т пр ц Зн.1%
2006 9159,0 - - - - 100,0 100,0 - - -
2007 10965,0 1806,0 1806,0 1,197 1,197 119,7 119,7 19,7 19,7 91,59
2008 14268,0 5109,0 3303,0 1,558 1,301 155,8 130,1 55,8 30,1 109,65
2009 8963,0 -196,0 -5305,0 0,979 0,628 97,9 62,8 -2,1 -37,2 142,68
2010 13831,0 4672,0 4868,0 1,510 1,543 151,0 154,3 51,0 54,3 89,63
Средние показатели 11437,2 107,16

Вывод: расчеты показали, что средняя цена бензина в динамике за 5 лет составила11437,2 руб. за 1 т. При этом ежегодно наблюдался рост цены в среднем на 1168,0 руб. или на 10,9%.Один процент прироста соответствовал107,16 руб.

Пример 4.2 . Методом аналитического выравнивания определить тенденцию изменения средней цены производителей лука репчатого. Сделать вывод.

Методические указания:

Метод аналитического выравнивания состоит в подборе для данного ряда динамики такой теоретической линии, которая выражает основные черты или закономерности изменения уровней явления. Чаще всего при выравнивании используют линейное уравнение:

= а + bt, (4.18)

где а – свободный член уравнения;

b – коэффициент;

t – порядковый номер года.

Параметры а и b определяют способом наименьших квадратов, решая систему двух нормальных уравнений:

(4.19)

Систему можно упростить, перенеся начало отсчета времени t (начало координат) в середину ряда динамики. Тогда∑t = 0 и система примет вид:

Отсюда получаем:

(4.20)

Заполним вспомогательную таблицу 4.4.

По имеющимся данным найдем параметры «а» и «b» следующим образом:

а = ;b = .

Уравнение прямой примет вид: = 6,53 + 0,49t.

Подставим значения t в уравнение и найдем теоретические (выравненные) уровни средней цены производителей репчатого лука (последний столбец таблицы 4.4).

Таблица 4.4 - Вспомогательная таблица

Год Средняя цена производителей лука репчатого, руб./кг у Номер года t Квадрат номера года t 2 Произведение параметров уt Выравненные значения =а+bt
2002 4,40 -4 16 -17,59 4,57
2003 5,46 -3 9 -16,38 5,06
2004 5,48 -2 4 -10,96 5,55
2005 4,87 -1 1 -4,87 6,04
2006 7,56 0 0 0,00 6,53
2007 8,36 1 1 8,36 7,02
2008 6,70 2 4 13,40 7,51
2009 6,19 3 9 18,58 8,00
2010 9,72 4 16 38,88 8,49
Итого 58,73 0 60 29,41 58,73

Фактические и теоретические уровни цен изобразим на рисунке 4.1.

t =6,53+0,49t

Рисунок 4.1-Динамика средней цены производителей

репчатого лука, руб./кг

Вывод: расчеты показали, что средняя цена лука репчатого за 2002-2010 гг. составила 6,53 руб. за 1 кг. В среднем она ежегодно повышалась на 0,49 руб. На графике наглядно видна четко выраженная тенденция к росту цены исследуемогопродукта.

Пример 4.3. В 2007 г. на предприятии была произведена смена оборудования, что привело к несопоставимости ряда динамики (таблица 4.5). Привести его к сопоставимому виду, применив смыкание динамического ряда. Сделать вывод.

Таблица 4.5 – Динамика объемов производства продукции предприятия

а) 19,7 ∙ 1,0755 = 21,2;

б)

.

Вывод: расчеты показали, что смена оборудования на данном предприятии привела к росту объема производства продукции. При этом в динамике за 6 лет он увеличился на 4,9 млн. руб. или на 23,1 %.

Задача 4.1. Численность работников предприятия на 1.03 составила 315 чел. 6.03 уволилось 4 чел., 12.03 принято 5 чел., 19.03 принято 3 чел., 24.03 уволилось 8 чел., 28.03 принято 2 чел. Определить среднюю численность работников за март месяц.

Задача 4.2. Поголовье коров в сельскохозяйственнойорганизации на 1.01 составляло 800 гол.,15.01 было выбраковано 30 гол., 5.02 переведено из нетелей в основное стадо 55 гол., 24.02 куплено 10 гол., 12.03 продано 15 гол., 21.03 выбраковано 25 гол. Определить среднее поголовье коров за первый квартал.

Задача 4.3. По данным приложенияВ о средней цене производителей на отдельные виды товаров за последние пять лет определить базисные и цепные показатели ряда динамики, показатели динамики в среднем за период. Расчеты представить в табличной форме. Сделать вывод.

Задача 4.4. Выявить общую тенденцию средней цены производителей на отдельные товары по данным приложенияВ, используя прием аналитического выравнивания.Фактические и выравненные (теоретические) уровни динамического ряда изобразить графически. Сделать вывод.

Задача 4.5. Используя взаимосвязь показателей, определить уровни ряда динамики и недостающие в таблице 4.6 базисные показатели динамики по имеющимся данным об урожайности озимой пшеницы.

Таблица 4.6 –Вспомогательная таблица для определения урожайности озимой

пшеницы и недостающих базисных показателей динамики

Урожайность озимой

пшеницы, ц/га

Базисные показатели динамики

Значение 1% прироста, ц/га

абсолютный прирост, ц темп роста, % темп прироста, %
2002 55,1 - - -
2003 - 2,8
2004 110,3
2005
2006 17,1 0,633
2007 121,1
2008 13,5
2009
2010 20,4 0,691

Задача 4.6. Используя взаимосвязь показателей, определить уровни ряда динамики и недостающие в таблице 4.7 цепные показатели динамики среднегодового удоя молока от одной коровы в Краснодарском крае.

Таблица 4.7 - Вспомогательная таблица для определения среднегодового

удоя молока и недостающих цепных показателей динамики

Среднегодовой удой молока от одной коровы, кг

Цепные показатели динамики

Значение 1% прироста,

абсолютный прирост, кг темп роста, % темп прироста, %
2004 2784 - - -
2005 405
2006 110,5
2007
2008 152 37,65
2009 4,2
2010 -1,1

Задача4.7. До 2007 г. в состав производственного объединения входили 20 организаций. В 2007 г. в него влились еще 4 организации, и оно стало объединять 24 организации. Провести смыкание ряда динамики, используя данные таблицы 4.8. Сделать вывод.

Таблица 4.8 –Динамика объема реализации продукции объединения, млн. руб.

Вопросы для самоподготовки

1. Ряды динамики, их элементы, правила построения.Виды рядов динамики.

2. Показатели ряда динамики и порядок их расчета.

3. Приемы выявления основной тенденции развития в рядах динамики.

4. Что понимается под интерполяцией и экстраполяцией ряда динамики?

5. Как проводится смыкание рядов динамики?

В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего - один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п -» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п -> оо можно записать х ~ М[Х], здесь х - средняя величина. То есть средняя величина - это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х - среднее значение;

х { - текущее значение изучаемого признака;

т - показатель степени средней;

п - количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

  • - среднюю гармоническую х гар, если т = -1;
  • - среднюю геометрическую эс геом, если т = 0;
  • - среднюю арифметическую х ар, если т = 1;
  • - среднюю квадратическую х квад, если т = 2;
  • - среднюю кубическую х куб., если т = 3,
  • - ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

В табл. 6.1 х. - результаты, принятые некоторой случайной величиной X в г-м опыте; р. - частота события - показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

Относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая - наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) - значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Мо нижн - нижняя граница модального интервала;

г Мо - длина модального интервала;

Рмо - частота модального интервала;

М-мо_, - частота интервала, предшествующего модальному;

М-мо +1 -- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике - варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где - нижняя граница медианного интервала;

Длина медианного интервала;

Полусумма частот;

Сумма частот, накопленная до начала медианного интервала;

Частота медианного интервала.

Вариация -- это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д.

Вариация возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна.

Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно обоснованных управленческих решений.

Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом -- эти отличия велики, т.е. в одном случае вариация признака мала, а в другом -- велика, это имеет весьма важное значение для характеристики надежности средней величины.

Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своем средней, и наоборот, -- чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в тан ком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.

Это можно показать на таком примере. Предположим, что одинаковую работу выполняют две бригады, каждая -- из трех человек. Пусть количество деталей, шт., изготовленных за смену отдельными рабочими, составляло:

в первой бригаде -- 95, 100, 105 (= 100 шт.);

во второй бригаде -- 75, 100, 125 (= 100 шт.).

Средняя выработка на одного рабочего в обеих бригадах одинакова и составляет= = 100 шт., однако колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.

Поэтому возникает необходимость измерять вариацию признака в совокупностях. Для этой цели в статистике применяют ряд обобщающих показателей.

  • Ш К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, коэффициент вариации.
  • Ш Самым элементарным показателем вариации признака является размах вариации R, представляющий собой разность между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки деталей составляет: в первой бригаде -- R1= 10 шт. (т.е. 105 -- 95); во второй бригаде -- R2= 50 шт. (т.е. 125 -- 75), что в 5 раз больше.

Это свидетельствует о том, что при численном равенстве средняя выработка первой бригады более «устойчива». Размах вариации может служить базой расчета возможных резервов роста выработки. Таких резервов больше у второй бригады, поскольку в случае достижения всеми рабочими максимальной для этой бригады выработки деталей, ею может быть изготовлено 375 шт., т.е. (3x125), а в первой - только 315 шт., т.е. (3 х 105).

Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и даёт обобщённую характеристику. Простейший показатель такого типа - среднее линейное отклонение

Ш Среднее линейное отклонение d представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ().

Среднее линейное отклонение:

Для несгруппированных данных

где n - число членов ряда;

Для сгруппированных данных

где -- сумма частот вариационного ряда.

В формулах (5.18) и (5,19) разности в числителе взяты по модулю, (иначе в числителе всегда будет ноль -- алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью, например, анализируется состав работающих, ритмичность производства, оборот внешней торговли.

Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

§ простая дисперсия для несгруппированных данных

§ взвешенная дисперсия для вариационного ряда

Формула (5.21) применяется при наличии у вариантов своих весов (или частот вариационного ряда).

Формулу для расчета дисперсии (5.20) можно преобразовать, учитывая, что


т.е. дисперсия равна разности средней из квадратов вариантов и квадрата их средней.

Техника вычисления дисперсии по формулам (5.20), (5.21) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой.

Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике). Приведем два из них:

первое -- если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

второе -- если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 раз. Используя второе свойство дисперсии, разделив все варианты на величину интервала, получим следующую формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где -- дисперсия, исчисленная по способу моментов;

i - величина интервала;

новые (преобразованные) значения вариантов (А -- условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой);

Момент второго порядка;

Квадрат момента первого порядка.

Расчет дисперсии по формуле (5.23) менее трудоемок.

Дисперсия имеет большое значение в экономическом анализе. В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы, позволяющие оценить влияние различных факторов, обуславливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений.

  • Ш Среднее квадратическое отклонение равно корню квадратному из дисперсии:
    • § для несгруппированных данных

§ для вариационного ряда

Среднее квадратическое отклонение -- это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Обозначим: 1 -- наличие интересующего нас признака; 0 -- его отсутствие; р -- доля единиц, обладающих данным признаком; q -- доля единиц, не обладающих данным признаком; p + q =1. Исчислим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака

вариация средний величина квадратический

так как р + q = 1.

Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1- р, получим

Таким образом, = pq -- дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком.

Например, если на 10 000 человек населения района приходится 4500 мужчин и 5500 женщин, то

Дисперсия альтернативного признака = pq = 0,45*0,55 = 0,2475.

Предельное значение дисперсии альтернативного признака равно 0,25. Оно получается при р = 0,5.

Среднее квадратическое отклонение альтернативного признака

Если, например, 2% всех деталей бракованные (р = 0,02), то 98% -- годные (q = 0,98), тогда дисперсия доли брака

0,02- 0,98 = 0,0196.

Среднее квадратическое отклонение доли брака составит:

0,14, т.е. = 14%.

При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф.Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (т.е. i2/12) как в сторону занижения, так и в сторону завышения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n>500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположных направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее (количественно) совокупность и тем более типичной будет средняя величина.

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим используют относительный показатель вариации -- коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %.

Покажем расчет различными способами показателей вариации на примере данных о сменной выработке рабочих бригады, представленных интервальным рядом распределения (табл. 5.7).

Исчислим среднесменную выработку, шт.:

Рассчитаем дисперсию выработки по (5.21):

Найдем среднее квадратическое отклонение, шт.:

Определим коэффициент вариации, %:

Таким образом, данная бригада рабочих достаточно однородна по выработке, поскольку вариация признака составляет лишь 8%.

Теперь выполним расчет дисперсии по формуле (5.22) и по способу моментов по формуле (5.23), для расчета воспользуемся данными табл. 5.7, графы 8-11.

Расчет дисперсии по формуле (5.20):


Расчет дисперсии по способу моментов, см. формулу (5.21):

где А = 50 -- центральный вариант с наибольшей частотой;

i = 20 -- величина интервала данного ряда;

Таблица 5.7

Распределение рабочих по сменной выработке изделия А и расчетные значения для исчисления показателей вариации

Группы рабочих по сменной выработке изделий, шт.

Число рабочих

Середина интервала x

Расчетные значения

Как видим, наименее трудоемким является метод исчисления дисперсии способом моментов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Статистика - это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороны.

Статистическое исследование независимо от его масштабов и целей всегда завершается расчетом и анализом различных по виду и форме выражения статистических показателей.

Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности.

Как правило, изучаемый статистикой процесс и явления достаточно сложны, и их сущность не может быть отражена посредством одного отдельно взятого показателя. В таких случаях используется система показателей.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности. Средняя величина дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Она отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их независимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает от общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызнанные действием основных факторов. Это позволяет средней абстрагировать от индивидуальных особенностей, присуще отдельным единицам.

Информации о средних уровнях исследуемых показателей обычно бывает недостаточно для глубокого анализа изучаемого процесса или явления. Необходимо также учитывать и вариацию значений отдельных единиц относительно средней, которая является важной характеристикой изучаемой совокупности. Значительной вариации, например, подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды.

Основными показателями, характеризующим вариацию, является размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

1 . Средние величины

1.1 Понятие средней величины

Средняя величина - это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего - один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

1.2 Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качествеструктурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i - варианта (значение) усредняемого признака;

n - число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

где X i - варианта (значение) усредняемого признака или серединное значение интервала, в котором измеряется варианта;

m - показатель степени средней;

f i - частота, показывающая, сколько раз встречается i-e значение усредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:

В результате группировки получаем новый показатель - частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

средняя гармоническая, если m = -1;

средняя геометрическая, если m -> 0;

средняя арифметическая, если m = 1;

средняя квадратическая, если m = 2;

средняя кубическая, если m = 3.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 1. Виды степенных средних

Вид степенной

Показатель

степени (m)

Формула расчета

Взвешенная

Гармоническая

Геометрическая

Арифметическая

Квадратическая

Кубическая

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 Ч i 1 Ч i 2 Ч...Чi n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

1.3 Структурные средние

Особый вид средних величин - структурные средние - применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды - наиболее часто повторяющегося значения признака - и медианы - величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой - не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

где X Me - нижняя граница медианного интервала;

h Me - его величина;

(Sum m)/2 - половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);

S Me-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

m Me - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo - нижнее значение модального интервала;

m Mo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);

m Mo-1 - то же для интервала, предшествующего модальному;

m Mo+1 - то же для интервала, следующего за модальным;

h - величина интервала изменения признака в группах.

2 . Показатели вариации

2.1 Общее понятие о вариации

средний величина мода вариация

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае. Средняя величина - это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность. В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность. Колеблемость отдельных значений характеризуют показатели вариации. Термин "вариация" произошел от латинского variatio -“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую. Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.

Вариацией называется различие значений признака у отдельных единиц совокупности.

Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности.

Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.

Вариации в пространстве показывают различие статистических показателей относящихся к различным административно-территориальным единицам.

Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.

2. 2 Сущность и значение показателей вариации

2. 2 .1 Абсолютные показатели вариации (=42, без коэффициен та)

К примерам вариаций относятся следующие показатели:

1. размах вариаций

2. среднее линейное отклонение

3. среднее квадратическое отклонение

4. дисперсия

5. коэффициент

1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблемость внутри совокупности.

2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.

3. Среднее квадратическое отклонение определяется как корень из дисперсии.

4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблемости.

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака.

5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах.

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.

Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины.

Свойства дисперсии:

1. Дисперсия постоянной величины равна нулю.

2. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии. Значит средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

3. Уменьшение всех значений признака в k раз уменьшает дисперсию в k2 раз, а среднее квадратическое отклонение - к раз. Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.

4. Если исчислить средний квадрат отклонений от любой величины А, то в той или иной степени отличающейся от средней арифметической (X~), то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Выделяют дисперсию общую, межгрупповую и внутригрупповую.

Общая дисперсия (2 измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Межгрупповая дисперсия ((2x) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки.

Внутригрупповая дисперсия ((2i) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки.

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий.

Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

Правило сложения дисперсий широко применяется при исчислении показателей тесноты связей, в дисперсионном анализе, при оценке точности типической выборки и в ряде других случаев.

2. 2 .2 Относительные показатели вариации

Для сравнения вариации в разных совокупностях рассчитываются относительные показатели вариации. К ним относятся коэффициент вариации, коэффициент осцилляции и линейный коэффициент вариации (относительное линейное отклонение).

Коэффициент вариации - это отношение среднеквадратического отклонения к среднеарифметическому, рассчитывается в процентах:

Коэффициент вариации позволяет судить об однородности совокупности:

17% - абсолютно однородная;

17-33%% - достаточно однородная;

35-40%% - недостаточно однородная;

40-60%% - это говорит о большой колеблемости совокупности.

Отсюда, отношения каждой из перечисленных абсолютных оценок вариации к среднему значению, являются оценками относительных показателей вариации:

Относительный размах

Относительное отклонение

Относительное среднее квадратическое отклонение

Относительный межквартальный полуразмах

Интенсивность вариации показывает, какая степень вариации приходится на единицу среднего значения случайной величины.

Коэффициент осцилляции - это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины. При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической используются относительные показатели вариации. Они вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане) и чаще всего выражаются в процентах. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной. Его применяют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности.

3 . Практическ ая работ а

3.1 Задача №1

Условие: Определить снижение себестоимости в отчетном году по сравнению с базисным по всем видам продукции, для чего рассчитайте общий индекс себестоимости, укажите сумму экономии от снижения себестоимости продукции.

1) Найдем общие затраты на производство в отчетном году по каждому виду продукции:

Себестоимость продукции №1 по сравнению с прошлым годом увеличилась на 2 единицы за каждую штуку, следовательно 780тыс.руб. х 2 = 1560тыс.руб.

Себестоимость продукции №2 = 690тыс.руб./ |-13| = 53,08тыс.руб.

Себестоимость продукции №3 = 745тыс.руб./ |-4| = 186,25тыс.руб.

2)Отсюда мы узнаем рентабельность продукции:

Продукция №1=780тыс.руб.-1560тыс.руб.= -780тыс.руб. составил перерасход в отчетном году на производство продукции №1

Продукция №2 =690тыс.руб.-53,08=636,92тыс.руб. составила экономия от производства продукции №2 в отчетном году

Продукция №3=745тыс.руб.-186,25=558,75тыс.руб. было сэкономлено в отчетном году от производства продукции №3

3)Полученные данные необходимо отразить в таблице.

Продукция

Общие затраты на производство в прошлым году, тыс.руб. С0

Изменение себестоимости 1шт.в отчетном году

Общие затраты на производство в отчетном году, тыс.руб. С1

Индекс себестоимости iс/с

iс/с продукции №1= С 1 / С 0 = 1560,0тыс.руб. / 780тыс.руб.= 2,0

iс/с продукции №2=53,08тыс.руб / 690тыс.руб.= 0,08

iс/с продукции №3=186,25тыс.руб/ 745тыс.руб.= 0,25.

3.2 Задача №2

Условие: Имеется данные среднемесячной заработной платы на одного занятого в экономике и объеме оборота общественного питания на одного жителя в городах Удмуртии в 2004г.:

Сравните вариацию показателей каждой совокупности, для этого по каждой совокупности отдельно рассчитайте средний квадрат отклонений (дисперсию) и квадратичное отклонение, коэффициент вариации. Сделайте вывод. Постройте график вариационных рядов. Как он называется?

1)Исследуем среднемесячную заработную плату:

R=x max -x min =6587.2-4415.7=2171.5руб.

=(6587,2+4519+6530,2+4415,7+4748)/5=5360,02

2)Исследуем объем оборота общественного питания на 1 жителя

R=x max -x min =1724,2-298,8=1425,4руб

(887,1+608,2+1724,2+510,4+ 298,8)/5805,74рублей

Пределы вероятности ошибок:

заработная плата

общественное питание

Границы генеральной средней:

заработная плата

общественное питание

Вывод: У жителей городов Ижевск и Глазов средняя заработная плата и обороты от общественного питания выше, чем у остальных исследуемых городов. В городах Воткинск, Сарапул и Можга экономическая ситуации примерно одинаковы.

Заключение

Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.

Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.

По смыслу определения вариация измеряется степенью колеблемости вариантов признака от уровня их средней величины, т.е. как разность х-х. На использовании отклонений от средней построено большинство показателей применяемых в статистике для измерения вариаций значений признака в совокупности.

Самым простейшим абсолютным показателем вариации является размах вариации

Размах вариации выражается в тех же единицах измерения, что и Х. Он зависит только от двух крайних значений признака и, поэтому, недостаточно характеризует колеблемость признака.

Среднее линейное отклонение является средней величиной из абсолютных значений отклонений от средней арифметической величины.

Среднее линейное отклонение имеет единицы измерения как у признака.

Дисперсия (средний квадрат отклонения) - это средняя арифметическая из квадратов отклонений значений варьирующего признака от средней арифметической.

Дисперсию в отдельных случаях удобнее рассчитывать по другой формуле, представляющей собой алгебраическое преобразование предыдущих формул.

Наиболее удобным и широко распространенным на практике показателем является среднее квадратическое отклонение (s). Оно определяется как квадратный корень из дисперсии.

Абсолютные показатели вариации зависят от единиц измерения признака и затрудняют сравнение двух или нескольких различных вариационных рядов.

Относительные показатели вариации вычисляются как отношение различных абсолютных показателей вариации к средней арифметической. Наиболее распространённым из них является коэффициент вариации. Его формула:

Коэффициент вариации характеризует колеблемость признака внутри средней. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.

Размещено на Allbest.ru

Подобные документы

    Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция , добавлен 13.02.2011

    Сущность и разновидности средних величин в статистике. Определение и особенности однородной статистической совокупности. Расчет показателей математической статистики. Что такое мода и медиана. Основные показатели вариации и их значение в статистике.

    реферат , добавлен 04.06.2010

    Абсолютные и относительные статистические величины. Понятие и принципы применения средних величин и показателей вариации. Правила применения средней арифметической и гармонической взвешенных. Коэффициенты вариации. Определение дисперсии методом моментов.

    учебное пособие , добавлен 23.11.2010

    Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа , добавлен 24.09.2012

    Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция , добавлен 25.09.2011

    Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.

    контрольная работа , добавлен 01.03.2012

    Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа , добавлен 20.05.2010

    Порядок группировки территорий с определенным уровнем фондовооруженности, расчет доли занятых. Расчёт средних значений каждого показателя с указанием вида и формы использованных средних гармонических, абсолютных и относительных показателей вариации.

    контрольная работа , добавлен 10.11.2010

    Абсолютная величина как объем или размер изучаемого события. Виды абсолютных величин: абсолютная и суммарная. Группы величин: моментная и интервальная единицы измерения. Виды относительных величин. Виды средних величин: степенные и структурные.

    презентация , добавлен 22.03.2012

    Понятие и свойства средних величин. Характеристика и расчет их видов (средних арифметической, гармонической, геометрической, квадратической, кубической и структурных). Сфера их применения в экономическом анализе хозяйственной деятельности отраслей.

Вариация – это изменение (колеблемость) значений признака в пределах изучаемой совокупности при переходе от одного объекта (группы объектов), или от одного случая к другому. Абсолютные и относительные показатели вариации, характеризующие колеблемость значений варьирующего признака, позволяют, в частности, измерить степень связи и взаимозависимости между признаками, определить степень однородности совокупности, типичности и устойчивости средней, определить величину погрешности выборочного наблюдения, статистически оценить закон распределения совокупности и т. п.

В этой теме необходимо уяснить сущность (смысл), назначение и способы вычисления каждого показателя вариации, рассматриваемого в курсе теории статистики: размах вариации, среднее линейное отклонение, средний квадрат отклонений (дисперсию), среднее квадратическое отклонение, относительные коэффициенты вариации (коэффициент осцилляции, коэффициент среднего линейного отклонения, коэффициент вариации).

Размах вариации (R ) представляет собой разность между максимальным (х max) и минимальным (х min) значениями признака в совокупности (в ряду распределения):

R = х max - х min. (5.1)

Мерой других показателей вариации является разность не между крайними значениями признака, а средняя разность между каждым значением признака и средней величиной этих признаков. Разность между отдельным значением признака и средней называют отклонением.

Среднее линейное отклонение вычисляется по следующим формулам:

по индивидуальным (несгруппированным) данным

; (5.2)

по вариационным рядам (сгруппированным данным)

. (5.3)

Так как алгебраическая сумма отклонений индивидуальных значений признака от средней (согласно нулевому свойству) всегда равна нулю, то при расчете среднего линейного отклонения используется арифметическая сумма отклонений, взятая по модулю, т.е.
.

Среднее линейное отклонение имеет ту же размерность, что и признак, для которого оно исчисляется.

Дисперсия и среднее квадратическое отклонение. Среднее линейное отклонение относительно редко применяется для оценки вариации признака. Поэтому обычно вычисляются дисперсия ( 2) и среднее квадратическое отклонение (). Эти показатели применяются не только для оценки вариации признака, но и для измерения связи между ними, для оценки величины ошибки выборочного наблюдения и других целей.

Дисперсия признака рассчитывается по формулам:

по первичным данным

; (5.4)

по вариационным рядам

. (5.5)

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии:

по первичным данным

; (5.6)

по вариационным рядам

. (5.7)

Среднее квадратическое отклонение так же, как и среднее линейное отклонение, имеет ту же размерность, что и сам исходный признак.

Дисперсию можно определить и как разность между средним квадратом вариантов и квадратом их средней величины, т. е.
. (5.8)

В этом случае по первичным данным дисперсия равна:

(5.9)

Применительно к сгруппированным данным, расчет дисперсии этим способом в развернутом виде представим в таком виде:

. (5.10)

Для рядов распределения с равными интервалами значение дисперсии можно вычислить, применяя способ условных моментов, т. е.

, (5.11)

где
- первый условный момент; (5.12)

- второй условный момент. (5.13)

Среднее квадратическое отклонение по способу условных моментов определяется по формуле:

(5.14)

Преобразуя выражение расчета дисперсии по способу условных моментов, получим формулу вида:
(5.15)

На основе одних и тех же исходных данных получим одинаковое значение дисперсии.

Относительные показатели вариации вычисляются как отношение ряда абсолютных показателей вариации к их средней арифметической и выражаются в процентах:

коэффициент осцилляции -
; (5.16)

коэффициент относительного линейного отклонения -
; (5.17)

коэффициент вариации -
. (5.18)

Задача 1 . Рассмотрим способы расчета показателей вариации на основе данных табл. 5.1.

Таблица 5.1. Исходные данные для расчета показателей вариации

Затраты времени на производство деталей мин

Количество деталей, шт. (f)

Середина интервала (х)

; к = 2

Приведенный ряд распределения ранжированный, поэтому здесь легко найти минимальное значение признака, оно равно 8 мин. (10 - 2), и максимальное, равное 18 мин. (16 + 2). Значит, размах вариации признака в этом ряду составит 10 мин., т. е.

R = x max – x min = 18 – 8 = 10 мин.

Вычислим среднее линейное отклонение. Прежде всего необходимо вычислить среднюю величину . Все вычисления будем вести в табличной форме (табл. 5.1.), отводя для каждой вычислительной операции графу в таблице.

Поскольку исходные данные представлены рядом распределения, то

мин.

мин.

Покажем способы расчета дисперсии:

а) обычным способом (по определению):

;

б) как разность между средним квадратом и квадратом средней величины:

Для определения величины дисперсии по этой формуле необходимо вычислить средний квадрат вариантов признака по формуле:

;

 2 =178,6 – (13,2) 2 =4,36;

в) по способу условных моментов:

;

;

г) на основе преобразования формулы расчета дисперсии по способу условных моментов имеем:

Дисперсия – число отвлеченное, не имеющее единиц измерения.

Среднее квадратическое отклонение вычислим путем извлечения корня квадратного из дисперсии:

мин.

По способу условных моментов величину среднего квадратического отклонения определим так:

Вычислим относительные показатели вариации:

%;

%;

%.

Основным относительным показателем вариации является коэффициент вариации (V). Он используется для сравнительной оценки меры колеблемости признаков, выраженных в различных единицах измерения.

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков (в частности альтернативной изменчивости качественных признаков). В этом случае каждая единица изучаемой совокупности либо обладает каким-то свойством, либо нет (например, каждый взрослый человек либо работает, либо нет). Наличие признака у единиц совокупности обозначают 1, а отсутствие –0; долю же единиц совокупности, обладающих изучаемым признаком, обозначают p, а не обладающих им – q. Дисперсия альтернативного признака определяется по формуле:

; (5.19)

p + q = 1 (5.20)

Если, например, доля поступивших в университет равна 30%, а не поступивших – 70%, то дисперсия равна 0,21(0,3 · 0,7). максимальное значение произведения pq равно 0,25 (при условии, когда одна половина единиц обладает данным признаком, а другая половина нет: (0,5 · 0,5 = 0,25).

Способ разложения общей дисперсии. Для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, воспользуемся разложением общей дисперсии на составляющие: на так называемую групповую дисперсию и среднюю из внутригрупповых дисперсий:

, (5.21)

где
– общая дисперсия, характеризующая вариацию признака как результат влияния всех факторов, определяющих индивидуальные различия единиц совокупности.

Вариацию признака, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия  2 , которая является мерой колеблемости частных средних по группам
вокруг общей средней и исчисляется по формуле:

, (5.22)

где n j – число единиц совокупности в каждой группе;

j – порядковый номер группы.

Вариацию признака, обусловленную влиянием всех прочих факторов, кроме группировочного (факторного), характеризует в каждой группе внутригрупповая дисперсия:

, (5.23)

где i – порядковый номер x и f в пределах каждой группы.

По совокупности в целом средняя из внутригрупповых дисперсий определяется по формуле:

(5.24)

Отношение межгрупповой дисперсии  2 к общей
даст коэффициент детерминации:

(5.25)

который характеризует долю вариации результативного признака, обусловленную вариацией факторного признака, положенного в основание группировки.

Показатель, полученный как корень квадратный из коэффициента детерминации, называется коэффициентом эмпирического корреляционного отношения, т.е.:

(5.26)

Он характеризует тесноту связи между результативным и факторным (положенным в основу группировки) признаками. Численное значение коэффициента эмпирического корреляционного отношения имеет два знака: . При решении вопроса о том, с каким знаком его следует брать, необходимо иметь ввиду: если вариация факторного и результативного признаков идет синхронно в одном и том же направлении (возрастает или убывает), то корреляционные отношение берется со знаком плюс; если же изменение этих признаков идет в противоположных направлениях, то оно берется со знаком минус.

Для вычисления групповых и межгрупповых дисперсий можно применять любой из описанных выше способов исчисления среднего квадрата отклонений.

Задача 2. Вычислим все названные дисперсии по исходным данным табл. 5.2.

Таблица 5.2. Распределение посевной площади озимой пшеницы по урожайности

Номер участка

Урожайность, ц/га

Посевная площадь, га

Вычислим среднюю урожайность озимой пшеницы по всем участкам (общая средняя):

ц/га.

Общую дисперсию найдем по формуле:

В гр. 6 табл. 5.2. вычислим значения для расчета среднего квадрата вариантов признака:

.

Находим общую дисперсию:

Урожайность зависит от многих факторов (качество почвы, размер внесения органических и минеральных удобрений, качество семян, сроки сева, уход за посевами и др.) Общая дисперсия в данном случае измеряет колеблемость урожайности за счет всех факторов.

Задача 3. Разобьем совокупность участков на две группы: I группа – посевные площади, на которых не вносились органические удобрения; II – площади, на которых они вносились. К первой группе отнесем участки 1-4, а ко второй – 4-8. По данным этих групп рассчитаем остальные из необходимых нам дисперсий, используя уже произведенные в табл. 5.2. вычисления.

Таблица 5.3. Расчетные данные для вычисления межгрупповой и групповых дисперсий

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Номер участка

Урожайность, ц/га (х)

Посевная площадь, га (f)

Определяем:

для I группы:

для II группы:

а) групповую среднюю

а) групповую среднюю

ц/га;

ц/га;

б) средний квадрат вариантов признака

;

;

в) групповую дисперсию

в) групповую дисперсию

Определяем среднюю из групповых дисперсий:

.

Находим межгрупповую дисперсию:

Средняя из групповых дисперсий измеряет колеблемость признака за счет всех прочих факторов, кроме положенного в основание группировки (разграничения на группы), а межгрупповая – за счет именно этого фактора. Сумма этих дисперсий должна дать общую дисперсию, а именно:

Отношение межгрупповой дисперсии к общей в нашем примере даст следующее значение коэффициента детерминации:

, или 71,8%,

т. е. вариация урожайности озимой пшеницы на 71,8% зависит от вариации размеров внесения органических удобрений. Остальные же 28,2% вариации урожайности зависит от влияния всех остальных факторов, кроме размеров внесения органических удобрений.

Коэффициент эмпирического корреляционного отношения составит:

.

Это говорит о том, что внесение органических удобрений оказывает весьма существенное влияние на урожайность.