Проблемы множественного корреляционно-регрессионного анализа и моделирования обычно подробно изучаются в специальном курсе. В курсе «Общая теория статистики» рассматриваются только самые общие вопросы этой сложной проблемы и дается начальное представление о методике построения уравнения множественной регрессии и показателей связи. Рассмотрим линейную форму многофакторных связей не только как наиболее простую, но и как форму, предусмотренную пакетами прикладных программ для ПЭВМ. Если же связь отдельного фактора с результативным признаком не является линейной, то проводят линеаризацию уравнения путем замены или преобразования величины факторного признака.

Общий вид многофакторного уравнения регрессии следующий:


9.11. Меры тесноты связей в многофакторной системе

Многофакторная система требует уже не одного, а множества показателей тесноты связей, имеющих разный смысл и применение. Основой измерения связей является матри на парных коэффициентов корреляции (табл. 9.9).

По этой матрице можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя все эти показатели относятся к парным связям, все же матрицу молено использовать для предварительного отбора факторов для включения их в уравнение регрессии. Не рекомендуется включать в уравнение факторы, слабо связанные с результативными признаками, но тесно связанные с другими факто-

Вернемся к табл. 9.11. Дисперсионный анализ системы связей предназначен для оценки того, насколько надежно доказывают исходные данные наличие связи результативного признака со всеми факторами, входящими в уравнение. Для этого сравниваются дисперсии у - объясненная и остаточная: суммы соответствующих квадратов отклонений, прнхо-

379

381

9.13. Корреляционно-регрессионные модели и их применение в анализе и прогнозе

Корреляционно-регрессионной моделью (КРМ) системы взаимосвязанных признаков является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака, обладает высоким (не ниже 0,5) коэффициентом детерминации и коэффициентами регрессии, интерпретируемыми в соответствии с теоретическим знанием о природе связей в изучаемой системе.

Приведенное определение КРМ включает достаточно строгие условия: далеко не всякое уравнение регрессии можно считать моделью. В частности, полученное выше по 16 хозяйствам уравнение не отвечает последнему требованию из-за противоречащего экономике сельского хозяйства знака при факторе х2 - доля пашни. Однако в учебных целях будем рассматривать его как модель.

1. Признаки-факторы должны находиться в причинной связи с результативным признаком (следствием). Поэтому недопустимо, например, в модель себестоимости у вводить в качестве одного из факторов xj коэффициент рентабельности, хотя включение такого «фактора» значительно повысит коэффициент детерминации.

2. Признаки-факторы не должны быть составными частями результативного признака или его функциями.

3. Признаки-факторы не должны дублировать друг друга, т.е. быть коллинеарными (с коэффициентом корреляции более 0,8). Так, не следует в модель производительности труда включать энерго- и фондовооруженность рабочих, поскольку эти факторы тесно связаны друг с другом в большинстве объектов.

4. Не следует включать в модель факторы разных уровней иерархии, т.е. фактор ближайшего порядка и его субфакторы. Например, в модель себестоимости зерна не следует включать и урожайность зерновых культур, и дозу удобрений под них или затраты на обработку гектара, показатели качества семян, плодородия почвы, т.е. субфакторы самой урожайности.

5. Желательно, чтобы для результативного признака и факторов соблюдалось единство единицы совокупности, к которой они отнесены. Например, если у - валовой доход предприятия, то и все факторы должны относиться к предприятию: стоимость производственных фондов, уровень специализации, численность работников и т.д. Если же у - средняя зарплата рабочего на предприятии, то факторы должны относиться к рабочему: разряд или классность, стаж работы, возраст, уровень образования, энерговооруженность и т.д. Правило это некатегорическое, в модель заработной платы рабочего можно включить, к примеру, и уровень специализации предприятия. Вместе с тем нельзя забывать о предыдущей рекомендации.

6. Математическая форма уравнения регрессии должна соответствовать логике связи факторов с результатом в реальном объекте. Например, такие факторы урожайности, как дозы разных удобрений, уровень плодородия, число прополок и т.п., создают прибавки величины урожайности, малозавися-Аше друг от друга; урожайность может существовать и без любого из этих факторов. Такому характеру связей отвечает аддитивное уравнение регрессии:

Первое слагаемое в правой части равенства - это отклонение, которое возникает за счет отличия индивидуальных значений факторов у данной единицы совокупности от их средних значений по совокупности. Его можно назвать эффектом факторообеспеченности. Второе слагаемое - отклонение, которое возникает за счет не входящих в модель факторов и отличия индивидуальной эффективности факторов у данной единицы совокупности от средней эффективности факторов в совокупности, измеряемой коэффициентами ус-

Таблица 9.12 Анализ факторообеспеченности и фактороотдачи по регрессионной модели уровня валового дохода

ловно-чистой регрессии. Его можно назвать эффектом фактороотдачи.

Пример. Рассмотрим расчет и анализ отклонений по ранее построенной модели уровня валового дохода в 16 хозяйствах. Знаки тех и других отклонений 8 раз совпадают и 8 раз не совпадают. Коэффициент корреляции рангов отклонений двух видов составил 0,156. Это означает, что связь вариации факторообеспеченности с вариацией фактороотдачи слабая, несущественная (табл. 9.12).

Обратим внимание на хозяйство № 15 с высокой факто-

рообеспеченностью (15-е место) и самой худшей фактороот-

дачей (1-й ранг), из-за которой хозяйство недополучило по

1 22 руб. дохода с 1 га. Напротив, хозяйство № 5 имеет фак-

торообеспеченность ниже средней, но благодаря более эффективному использованию факторов получило на 125 руб. дохода с 1 га больше, чем было бы получено при средней по совокупности эффективности факторов. Более высокая эффективность фактора х\ (затраты труда) может означать более высокую квалификацию работников и большую заинтересованность в качестве выполняемой работы. Более высокая эффективность фактора хз с точки зрения доходности может заключаться в высоком качестве молока (жирность, охлажден-ность), благодаря которому оно реализовано по более высоким ценам. Коэффициент регрессии при х2, как уже отмечено, экономически не обоснован.

Использование регрессионной модели для прогнозирования состоит в подстановке в уравнение регрессии ожидаемых значений факторных признаков для расчета точечного прогноза результативного признака или (и) его доверительного интервала с заданной вероятностью, как уже сказано в 9.6. Сформулированные там же ограничения прогнозирования по уравнению регрессии сохраняют свое значение и для многофакторных моделей. Кроме того, необходимо соблюдать системность между подставляемыми в модель значениями факторных признаков.

Формулы расчета средних ошибок оценки положения гиперплоскости регрессии в заданной многомерной точке и для индивидуальной величины результативного признака весьма сложны, требуют применения матричной алгебры и здесь не рассматриваются. Средняя ошибка оценки значения результативного признака, рассчитанная по программе ПЭВМ «Mi-crostat» и приведенная в табл. 9.7, равна 79,2 руб. на 1 га. Это лишь среднее квадратическое отклонение фактических значений дохода от расчетных по уравнению, не учитывающее ошибки положения самой гиперплоскости регрессии при экстраполяции значений факторных признаков. Поэтому ограничимся точечными прогнозами в нескольких вариантах (табл. 9.13).

Для сравнения прогнозов с базисным уровнем средних по совокупности значений признаков введена первая строка таблицы. Краткосрочный прогноз рассчитан на малые изменения факторов за короткое время и снижение трудообеспечен-ности.

Таблица 9.13 Прогнозы валового дохода по регрессионной модели

Результат неблагоприятен: доход снижается. Долгосрочный прогноз А - «осторожный», он предполагает весьма умеренный прогресс факторов и соответственно небольшое увеличение дохода. Вариант Б - «оптимистический», рассчитан на существенное изменение факторов. Вариант 5 построен по способу, которым Агафья Тихоновна в комедии Н. В. Гоголя «Женитьба» мысленно конструирует портрет «идеального жениха»: нос взять от одного претендента, подбородок от другого, рост от третьего, характер от четвертого; вот если бы соединить все нравящиеся ей качества в одном человеке, она бы не колеблясь вышла замуж. Так и при прогнозировании мы объединяем лучшие (с точки зрения модели дохода) наблюдаемые значения факторов: берем значение Х[ от хозяйства № 10, значение х2 от хозяйства № 2, значение х3 от хозяйства № 16. Все эти значения факторов уже существуют реально в изучаемой совокупности, они не «ожидаемые», не «взятые с потолка». Это хорошо. Однако могут ли эти значения факторов сочетаться в одном предприятии, системны ли эти значения? Решение данного вопроса выходит за рамки статистики, оно требует конкретных знаний об объекте прогнозирования.

Если, кроме количественных факторов, при многофакторном регрессионном анализе в уравнение включается и неколичественный, то применяют следующую методику: наличие неколичественного фактора у единиц совокупности обозначают единицей, его отсутствие - нулем, т.е. вводят так назы-

Число фиктивных переменных должно быть на единицу меньше числа градаций качественного (неколичественного) фактора. С помощью данного приема можно измерять влияние уровня образования, местожительства, типа жилища и других социальных или природных, неизмеряемых количественно факторов, изолируя их от влияния количественных факторов.

РЕЗЮМЕ

Связи, которые проявляются не в каждом отдельном случае, а лишь в совокупности данных, называются статистическими. Они выражаются в том, что при изменении значения фактора х изменяется и условное распределение результативного признака у: разным значениям одной переменной (фактора х) соответствуют разные распределения другой переменной (результата у).

Корреляционная связь - частный случай статистической связи, при котором разным значениям одной переменной х соответствуют разные средние значения переменной у.

Корреляционная связь предполагает, что изучаемые переменные имеют количественное выражение.

Статистическая связь - более широкое понятие, оно не включает ограничений на уровень измерения переменных. Переменные, связь между которыми изучается, могут быть как количественными, так и неколичественными.

Статистические связи отражают сопряженность в изменении признаков х и у, которая может быть вызвана не причинными отношениями, а так называемой ложной корреляцией. Например, в совместных изменениях х и у обнаруживается определенная закономерность, но она вызвана не влиянием

390

Математическое описание корреляционной зависимости результативной переменной от нескольких факторных переменных называется уравнением множественной регрессии. Параметры уравнения регрессии оцениваются методом наименьших квадратов (МНК). Уравнение регрессии должно быть линейным по параметрам.

Если уравнение регрессии отражает нелинейность связи между переменными, то регрессия приводится к линейному виду (линеаризуется) путем замены переменных или их логарифмирования.

Вводя в уравнение регрессии фиктивные переменные, можно учесть влияние неколичественных переменных, изолируя их от влияния количественных факторов.

Если коэффициент детерминации близок к единице, то с помощью уравнения регрессии можно предсказать, каким будет значение зависимой переменной для того или иного ожидаемого значения одной или нескольких независимых переменных.

1. Елисеева И. И. Статистические методы измерения связей. - Л.: Изд-во Ленингр. ун-та, 1982.

2. Елисеева И. И., Рукавишников В. О. Логика прикладного статистического анализа. - М.: Финансы и статистика, 1982.

3. Крастинь О. П. Разработка и интерпретация моделей корреляционных связей в экономике. - Рига: Зинатне, 1983.

4. Кулаичев А. П. Методы и средства анализа данных в среде Windows. Stadia 6.0. - М.: НПО «Информатика и компьютеры», 1996.

5. Статистическое моделирование и прогнозирование: Учеб. пособие / Под ред. А. Г. Гранберга. - М.: Финансы и статистика, 1990.

6. Ферстер Э, Ренц Б. Методы корреляционного и регрессионного анализа. Руководство для экономистов: Пер. с нем. - М.: Финансы и статистика, 1983.


Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный минерально-сырьевой университет «Горный»

Кафедра информатики и компьютерных технологий
Расчетно-графическое задание
Вариант 7
По дисциплине: Эконометрика

Тема: «построение уравнения множественной регрессии»

Выполнил: студент гр. ЭГ-13-2 _________ /Чакир А.Ю./

Проверил: доцент ____________ / Беляев В.В./

Санкт-Петербург

ЦЕЛЬ РАБОТЫ: закрепить и углубить знания, полученные при изучении курса, в области построения моделей множественной регрессии.

ЗАДАНИЕ: изучить влияние факторов, определяющих цену строящегося жилья в Санкт-Петербурге.

ИСХОДНЫЕ ДАННЫЕ

Общая площадь квартиры, кв.м

Жилая площадь квартиры, кв.м

Площадь кухни, кв.м

Наличие балкона

Срок до окончания строительства, мес

Цена квартиры, тыс.долл.

Рис. 1 Фрагмент таблицы исходных данных

ТРЕБУЕТСЯ

1. Определить факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге.

2. Построить уравнение регрессии, характеризующее зависимость цены от всех факторов в линейной форме. Оценить адекватность полученной модели. Составить матрицу парных коэффициентов корреляции исходных переменных и проанализировать ее.

3. Построить модельв линейной форме методом включения. Определить, какие факторы значимо воздействуют на формирование цены квартиры в этой модели.

4. Построить графики остатков, выполнить визуальный анализ. Провести тестирование ошибок (остатков) уравнения множественной регрессии на гетероскедастичность, применив тест Гельфельда-Квандта.

5. Оценить автокорреляцию остатков с помощью статистики Дарбина-Уотсона.

6. Написать уравнение множественной регрессии в стандартизованном масштабе, пояснить экономический смысл его параметров.

7. Вычислить средние частные коэффициенты эластичности для факторов, вошедших в модель. Пояснить их экономический смысл.

8. Пользуясь уравнением регрессии вычислить прогнозные значения стоимости объекта недвижимости, если значения значимых факторов равны, где и максимальное и минимальное значения факторов в таблице исходных данных. Вычислить точечный и интервальный прогноз.

ХОД РАБОТЫ

матрица корреляция уравнение регрессия

Предположим, что на стоимость строящего в Санкт-Петербурге жилья влияют все перечисленные в таблице факторы, т.е. общая и жилая площадь квартиры, площадь кухни, наличие балкона и число месяцев до окончания срока строительства. Наличие балкона - качественная характеристика, поэтому влияние этой характеристики на стоимость жилья учтем с помощью фиктивной переменной, которая будет принимать значение 0, если балкона нет и 1 - если балкон есть.

Введем следующие переменные:

y - цена квартиры, тыс.долл.

x1 - общая площадь квартиры (кв.м)

x2 - жилая площадь квартиры (кв.м)

x3 - площадь кухни (кв.м)

x4 - наличие балкона (1- есть, 0 - нет)

x5 - число месяцев до окончания срока строительства.

Пользуясь надстройкой «Анализ данных - Регрессия» построим уравнение регрессии.

Рис. 2 Регрессионная статистика

Получили уравнение

y=1,062+0,513 x1-0,04 x2+0,08 x3+0,514 x4-0,426 x5

Очевидно, что полученное уравнение противоречит практике, коэффициент при x2 отрицательный, то есть увеличение жилой площади уменьшает общую стоимость квартиры.

Проанализируем межфакторную корреляцию. Для получения матрицы парных линейных коэффициентов корреляции воспользуемся надстройкой «Анализ данных - Корреляция».

Рис. 3 Корреляционный анализ

Значения коэффициентов линейной парной корреляции высоки; , что говорит о взаимозависимости этих факторов, то есть о мультиколлинеарности.

Полученное уравнение множественной регрессии, включающее весь имеющийся набор факторов, не адекватно. Возможная причина - мультиколлинеарность факторов, квлюченных в модель.

Построение модели методом включения - это пошаговый отбор переменных.

На 1-м шаге (k=1) по наибольшему значению коэффициента корреляции с y найдем наиболее информативную переменную - это x1.

Так как при k=1 величина R2 совпадает с квадратом обычного (парного) коэффициента корреляции R2 = r2(y,x), из матрицы корреляций находим наибольший коэффициент детерминации для набора однофакторных регрессионных моделей:

Аналогичный результат можно получить последовательно строя уравнения регрессии для зависимостей y-xj с помощью табличной функции ЛИНЕЙН.

Рис. 4 Нахождение информативное переменной с помощью функции ЛИНЕЙН

Таким образом, в классе однофакторных регрессионных моделей наиболее информативным предиктором (предсказателем) является x1 - общая площадь квартиры. Включим эту переменную в выстраиваемую методом включения модель.

Вычислим скорректированный коэффициент детерминации:

где k-количество факторов.

2-й шаг (k=2). Среди всевозможных пар (х1 , хj), j = 2, 3, 4, 5, выбирается наиболее информативная пара:

Последовательно применяем табличную функцию ЛИНЕЙН к различным парам:

(х1 , х2) = 0.8684, (х1 , х3) = 0.8709,

(х1 , х4) = 0.8681, (х1 , х5) = 0.9147.

Очевидно, что наиболее информативной парой является (х1, х5), которая дает

С включением параметра х5 коэффициент детерминации вырос, следовательно, это правильное решение. Линейное уравнение с учетом факторов х1 и х5 имеет вид:

y (х1, х5) = 1,9787 + 0.4971 х1 - 0,4286 х5

Используя надстройку «Регрессия», проведем анализ значимости найденных коэффициентов.

Рис. 5 Фрагмент отчета регрессии по двум переменным

Столбец t-статистика содержит наблюдаемые значения t-критерия Стьюдента. Столбец «P-значение» используется для проверки гипотезы (о незначимости i-го коэффициента регрессии) с помощью критерия Стьюдента. Столбец содержит вероятности того, что в силу случайных причин принимает это или большее значение, хотя коэффициент регрессии bi =0. «P-значение» сравнивается с выбранным уровнем значимости б, если «P-значение» больше или равно б, то гипотеза подтверждается и коэффициент незначим, в противоположном случае коэффициент существенно отличен от 0, т.е. значим. Рассмотрев столбец «P-значение», приходим к выводу: два коэффициента при независимых переменных (х1 , х5) отличаются от нуля при уровне значимости = 0.05. Коэффициент «Y-пересечение» (1,9787) не значим, и его следует исключить из уравнения. Таким образом, уравнение фактически имеет вид:

3-й шаг (k = 3). Попытаемся добавить третью переменную в наше уравнение регрессии. Среди всевозможных троек (х1 , х5 , хj), j = 2, 3, 4, выбираем аналогично наиболее информативную: (х1, х5, х2), которая дает (3) = 0.9139, что меньше, чем (2) = 0.9147.

Рис. 6 Применение функции ЛИНЕЙН для нахождения третьего фактора

Следовательно, третью переменную в модель включать нецелесообразно, т.к. она понижает значение. Этот же результат получим, применив надстройку «Регрессия» Отметим, что коэффициент при x2 не значим при уровне значимости 0,05.

Рис. 7 Фрагмент отчета регрессии по трем переменным

Уравнение

y (х1, х5) = 0.4971 х1 - 0,4286 х5

адекватно описывает зависимость стоимости квартиры от влияющих на нее факторов, и может быть использовано для анализа и прогноза. Все коэффициенты при неизвестных в нем значимы.

Для применения метода наименьших квадратов требуется, чтобы дисперсия остатков была гомоскедастичнной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.

Рассмотрим графики остатков для переменных x1 и x5, полученные при построении уравнения регрессии с помощью надстройки «Анализ данных - Регрессия» (рис.8).

Визуальный анализ остатков (ошибок аппроксимации) по графикам не может однозначно исключить наличие гетероскедастичности.

Рис. 8 Графики остатков

Нарушение гомоскедастичности может быть выявлено с помощью метода (теста) Гельфельда-Квандта. Предварительно все наблюдения упорядочим по одному из факторов, например, по х1.

Для применения теста Гельфельда-Квандта необходимо определить число исключаемых центральных наблюдений С. Из экспериментальных расчетов, проведенных авторами метода, рекомендовано при n=30 принимать C=8, а при n=60, - соответственно, С=16.

В задании при n= 69 было исключено 17 наблюдений (С=17). Тогда в каждой группе будет по 26 наблюдений

Рис. 9 Организация данных при использовании теста Гельфельда-Квандта (часть строк скрыта). Строки с 27 по 43 (#nn) исключены из рассмотрения

Для первой группы наблюдений строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S1) для первой группы (рис.10)

Рис. 10

Для второй группы наблюдений также строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S2) для этой группы (рис.11)

Рис. 11

Fкрит=FРАСПОБР(0.05;23;23)=2.01. Fнабл > Fкрит, следовательно, гипотеза о гомоскедастичности остатков отвергается. Значит, имеет место гетероскедастичность.

Для решения данной проблемы введем новую величину z равную стоимости квадратного метра общей площади квартиры.

Для первой группы наблюдений строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S1) для первой группы (рис.12)

Рис. 12 Результат работы функции ЛИНЕЙН для первой группы

Для второй группы наблюдений также строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S2) для этой группы (рис.13)

Рис. 13 Результат работы функции ЛИНЕЙН для второй группы

Fкрит=FРАСПОБР(0.05;23;23)=2.01. Fнабл < Fкрит, следовательно, гипотеза о гомоскедастичности остатков подтверждается.

Так как ошибки аппроксимации гомоскедастичны, применение МНК по данному условию корректно.

Для применения МНК требуется, чтобы значения остатков были распределены независимо друг от друга. Если это не так, то говорят, что остатки автокоррелированы.

Тестом на простейшую автокорреляцию ошибок (первого порядка) является тест Дарбина-Уотсона (Durbin-Watson).

Рис. 14 Организация данных для вычисления статистики Дарбина-Уотсона в Excel (часть строк скрыта)

Вычислим значение статистики d по формуле:

По таблице для n = 26 и p=3 находим критические значения DU=1.67 и DL=1.55. Поскольку, остатки не коррелированы.

Так как значения остатков были распределены независимо друг от друга, применение МНК по данному условию корректно.

Рис. 15 Распределение остатков

Выведем уравнение множественной регрессии в стандартизованном масштабе. Определим стандартизованные переменные:

Рис. 16 Отчет "Описательная статистика"

Для определения коэффициентов стандартизованного уравнения множественной регрессии можно использовать МНК или воспользоваться связью стандартизованных коэффициентов с полученными ранее коэффициентами множественной регрессии

Таким образом, уравнение множественной регрессии в стандартизованном масштабе имеет вид:

В силу того, что стандартизованные переменные центрированные и нормированы, стандартизованные коэффициенты можно сравнивать между собой, т.е. сравнивать факторы по силе воздействия. В нашем случае влияние первого фактора на результат более чем в четыре раза (0.95/0.21> 4) превышает влияние пятого фактора.

Рассчитаем средние частные коэффициенты эластичности, воспользовавшись результатами работы надстройки «Описательная статистика».

При изменении фактора х1 на один процент результат возрастет на 1.02%, при неизменных прочих параметрах. Аналогично, при изменении фактора х5 на один процент значение результирующего фактора уменьшится на 0.08%, при неизменных прочих параметрах.

По формуле найдем точки, в которых необходимо построить прогноз.

Вычислим точечный прогноз путем подстановки найденных значений в уравнение:

y (х1, х5) = 0.4971*117,39 - 0,4286 *19,2=50,129

Для получения интервальной оценки необходимо воспользоваться формулой:

где-стандартная ошибка групповой средней

Вектор значений факторов, определяющий точку, в которой строим прогноз;

Матрица, по которой было построено уравнение.

Стандартное отклонение остаточной дисперсии или стандартная ошибка уравнения регрессии.

Рис. 17 Результаты прогнозирования

Интервальной оценкой является доверительный интервал с надежностью 95% тыс.долл.

· Уравнение y (х1, х5) = 0.4971 х1 - 0,4286 х5 адекватно описывает зависимость стоимости квартиры от влияющих на нее факторов и может быть использовано для анализа и прогноза. Все коэффициенты в нем значимы.

· Увеличение общей площади квартиры на 1 м2 приводит к увеличению стоимости квартиры на величину в среднем на 497$, отдаление срока сдачи на 1 месяц снижает стоимость квартиры на 428,6$. Влияние прочих факторов несущественно

· Влияние общей площади квартиры на ее стоимость более чем в четыре раза превышает влияние срока сдачи объекта на стоимость

· При изменении цены общей площади квартиры на 1% стоимость квартиры возрастет на 1.02%, при неизменных прочих параметрах. Аналогично, при изменении срока сдачи квартиры на один процент стоимость квартиры упадет на 0.08%, при неизменных прочих параметрах.

· Проверка корректности применения МНК показала, что ошибки аппроксимации (значения остатков) гомоскедастичны и распределены независимо друг от друга.

· Стоимость квартиры площадью 117,39 кв.м со сроком сдачи через 19.2 мес с вероятностью 95 % будет лежать в пределах тыс.долл.

Подобные документы

    Построение обобщенной линейной модели множественной регрессии, ее суть; теорема Айткена. Понятие гетероскедастичности, ее обнаружение и методы смягчения проблемы: тест ранговой корреляции Спирмена, метод Голдфелда-Квандта, тесты Глейзера, Парка, Уайта.

    контрольная работа , добавлен 28.07.2013

    Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа , добавлен 17.01.2016

    Построение линейной модели и уравнения регрессии зависимости цены на квартиры на вторичном рынке жилья в Москве в 2006 г. от влияющих факторов. Методика составления матрицы парных коэффициентов корреляции. Экономическая интерпретация модели регрессии.

    лабораторная работа , добавлен 25.05.2009

    Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.

    контрольная работа , добавлен 19.04.2013

    Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа , добавлен 10.02.2014

    Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа , добавлен 29.06.2013

    Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа , добавлен 28.07.2012

    Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 01.12.2013

    Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

    лабораторная работа , добавлен 05.12.2010

    Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

Поскольку статистические явления органически связаны между собой, зависят друг от друга и обуславливают друг друга, то необходимы специальные статистические методы анализа, позволяющие изучать форму, тесноту и другие параметры статистических взаимосвязей. Одним из таких методов является корреляционный анализ. В отличие от функциональных зависимостей, при которых изменение какого-либо признака - функции полностью и однозначно определяется изменением другого признака-аргумента, при корреляционных формах связи изменению результирующего признака соответствует изменение среднего значения одного или нескольких факторов. При этом рассматриваемые факторы определяют результирующий признак полностью.

Если исследуется связь между одним фактором и одним признаком, связь называется однофакторной и корреляция является парной, если же исследуется связь между несколькими факторами и одним признаком, связь называется многофакторной и корреляция является множественной.

Силу и направление однофакторной связи между показателями характеризует линейный коэффициент корреляции r, который исчисляется по формуле:

Значение этого коэффициента изменяется от - 1 до +1. Отрицательное значение коэффициента корреляции свидетельствует о том, что связь обратная, положительная - связь прямая. Связь является тем более тесной и близкой к функциональной, чем ближе значение коэффициента к 1. По формуле линейного коэффициента (1.29) рассчитывают также парные коэффициенты корреляции, которые характеризуют тесноту связи между парами рассматриваемых переменных (без учета их взаимодействия с другими переменными). Показателем тесноты связи между результативным и факторным признаками является коэффициент множественной корреляции R. В случае линейной двухфакторной связи он может быть рассчитан по формуле:

где r - линейные (парные) коэффициенты корреляции.

Значение этого коэффициента может изменяться от 0 до 1.

Коэффициент R 2 называется коэффициентом множественной детерминации и показывает, какая доля вариации изучаемого показателя обуславливается линейным влиянием учтенных факторов. Значения коэффициента находятся в пределах от 0 до 1. Чем ближе R 2 к 1, тем большим является влияние отобранных факторов на результирующий признак.

Завершающим этапом корреляционно-регрессионного анализа является построение уравнения множественной регрессии и нахождение неизвестных параметров а 0, а 1 , …, а n выбранной функции. Уравнение двухфакторной линейной регрессии имеет вид:

y x = а 0 +a 1 x 1 +a 2 x 2 (1.30)

где y x - расчетные значения результирующего признака;

x 1 и x 2 - факторные признаки;


Лекция 3. Множественная регрессия

    Условия применения метода и его ограничения

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии:

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Требования к факторам:

    Должны быть количественно измеримы. Если необходимо, включить в модель качественный фактор, не имеющий количественного измерения, ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).

    Не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией, когда

для зависимости

может привести к нежелательным последствиям, повлечь неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель, поэтому параметры уравнения регрессии оказываются неинтерпретированными.

    Мультиколлинеарность

Специфическим для многофакторных систем является условие недопустимости слишком тесной связи между факторными признаками. Это условие часто именуется проблемой коллинеарности факторов. Коллинеарность означает достаточно тесную неслучайную линейную корреляцию одних факторов с другими. Часто рекомендуют исключить фактор, связанный с другим фактором при . Из двух тесно связанных друг с другом факторов рационально исключить фактор, слабее связанный с результативным признаком.

Более сложная методика требуется для нахождения и исключения фактора, не имеющего тесной связи с каким-либо отдельным фактором, но имеющего тесную многофакторную связь с комплексом остальных факторов. Это положение называют мультиколлинеарностью. Для ее измерения следует вычислить последовательно коэффициенты множественной корреляции (или детерминации) каждого фактора (в роли результата) со всеми прочими факторами (в роли объясняющих переменных). Обнаружив мультиколлинеарный фактор либо несколько таковых, следует рассмотреть возможность исключения наиболее зависимого от комплекса остальных фактора, если это не приведет к потере экономического смысла модели.

Коллинеарность и мультиколлинеарность факторов в экономических системах возникают неслучайно. В совокупности однородных предприятий или регионов, как правило, в силу законов экономики возникает параллельная вариация факторных признаков: те предприятия, которые имеют лучшие значения одних факторов, например, лучшие природные условия, одновременно имеют и более высокую фондо- и энерговооруженность, более высокую квалификацию персонала, лучшую технологию и т.п. Отсюда и неизбежная большая или меньшая коллинеарность всех факторов производства либо социально-экономических условий жизни.

Наличие в системе коллинеарности ухудшает математические качества модели, может привести к неустойчивости результативных параметров, резко меняющихся при небольшом изменении значений факторов.

Специфичной проблемой многофакторного анализа является вопрос о возможности замены фактора, по которому отсутствует информация, на другой фактор и последствия такой замены.

Следует по возможности найти другую переменную, значения которой известны и которая находится в достаточно тесной связи с отсутствующим фактором. Например, если нет данных по региону о средней заработной плате, то их можно заменить величиной валового регионального продукта на душу населения, имея в виду, что между этими экономическими признаками должна быть тесная (хотя и неизвестная точно) связь.

Важно учитывать, с какой целью строится модель. Если целью является только прогнозирование результативного признака, то замена фактора другой пременной при ее тесной связи с заменяемым фактором не приведет к существенным ошибкам. Но если целью модели являлось принятие менеджером решений о своей экономической политике, то замена управляемого фактора на тесно с ним связанный, однако неуправляемый заменяющий фактор лишает модель смысла, несмотря на высокую детерминацию.

    Выбор типа многофакторной модели и факторных признаков

Связь результативного признака y с факторами x 1 , x 2 , …, x k выражается уравнением:

(22)

где a – свободный член уравнения;

k – число факторов;

j – номер фактора;

i – номер единицы совокупности;

b j – коэффициент условно-чистой регрессии при факторе x j , измеряющий изменение результата при изменении фактора на его единицу, и при постоянстве прочих факторов, входящих в модель;

ε i – случайная вариация y i , не объясненная моделью.

Модель в форме (22) является аддитивной. Это означает, что в основе модели лежит гипотеза о том, что каждый фактор что-то добавляет или что-то отнимает от значения результативного признака. Такая гипотеза о типе связи причин и следствия вполне отражает ряд экономических систем взаимосвязанных признаков. Например, если y – это урожайность сельскохозяйственной культуры, а x 1 , x 2 , …, x k – агротехнические факторы: дозы разных видов удобрений, число прополок, поливов, доля потерь при уборке, то действительно, каждый из этих факторов либо повышает, либо снижает величину урожайности, причем результат может существовать и без любых из перечисленных факторов.

Однако аддитивная модель пригодна не для любых связей в экономике. Если изучается такая связь как зависимость объема продукции предприятия y от занимаемой площади x 1 , числа работников x 2 , стоимости основных фондов x 3 (или всего капитала), то каждый из факторов является необходимым для существования результата, а не добавлением к нему. В таких ситуациях нужно исходить из гипотезы о мультипликативной форме модели:

(23)

Такая модель по ее первым создателям получила название «модель Кобба-Дугласа».

Возможна и смешанная форма модели, в которой одни факторы будут входить аддитивно, а другие мультипликативно.

При выборе факторных признаков следует исходить из следующих положений.

    Факторы должны являться причинами, а результативный признак – их следствием. Недопустимо в число факторов включать признак, занимающий в реальной экономике место на «выходе» системы, т.е. зависимый от моделируемого. Например, строится модель себестоимости центнера зерна. Факторами взяты урожайность зерновых культур и трудоемкость центнера, но коэффициент детерминации невелик, модель плохая. Для ее «улучшения» в число факторов добавили рентабельность производства зерна. Коэффициент детерминации сразу подскочил до 0,88. Но модель не стала лучше, она стала бессмысленной, так как рентабельность зависит от себестоимости, а не наоборот.

    Факторный признаки не должны быть составными частями результативного признака. В ту же модель себестоимости нельзя вводить факторами зарплату в расчете на центнер зерна, затраты на перевозку центнера зерна и т.п. связь целого с ее структурными частями следует анализировать не с помощью корреляционного анализа, а с помощью систем индексов.

    Следует избегать дублирования факторов. Каждый реальный фактор должен быть представлен одним показателем. Например, трудовой фактор в модели объема продукции может быть представлен либо среднесписочным числом работников, либо затратами человеко-дней (человеко-часов) на производство продукции, но не обоими показателями. Дублирование факторов ведет к раздроблению влияния фактора, и он может оказаться ненадежным из-за такого раздробления.

    Следует по возможности избегать факторов, тесно связанных с другими.

    Следует включать факторы одного уровня иерархии, не следует включать и факторы вышележащего уровня и их субфакторы. Например, в модель себестоимости зерна включаем урожайность, трудоемкость, но не добавляем еще балл плодородия, дозу удобрений, энерговооруженность работников, т.е. субфакторы – причины, влияющие на урожайность и трудоемкость. Включение субфакторов тоже дублирование фактора.

    Есть логика в таком построении модели, при котором все признаки отнесены на одну и ту же единицу совокупности, как результативный признак, так и факторы. Например, если моделируется объем продукции предприятия, то и факторы должны относиться к предприятию: число работников, площадь угодий, основные фонды и т.д. Если строится модель заработной платы работника, то и факторы должны относиться к работнику: его стаж, возраст, образование, разряд тарифной сетки (шкалы), энерговооруженность и т.д.

    Действует принцип простоты модели. Если возможно построить хорошую модель с пятью факторами, то не следует гнаться за идеальной моделью с десятью факторами, обычно лишние факторы ухудшают модель.

    Системы показателей многофакторной корреляции и регрессии

Рассмотрим данную систему показателей на примере связи урожайности зерновых культур в 51 агрофирме Орловской области. Первоначально были отобраны 8 факторных признаков, которые могут влиять на вариацию урожайности:

x 1 – размер посевной площади зерновых, га;

x 2 – удельный вес зерновых в общей площади, %;

x 3 – затраты на 1 га посева зерновых, тыс. руб./га;

x 4 – затраты труда на 1 га, чел.-ч;.

x 5 – уровень оплаты труда, руб./чел.-ч.;

x 6 – энергообеспеченность, л.с./100 га пашни;

x 7 – число комбайнов на 1000 га зерновых, шт.;

x 8 – число трактористов-машинистов на 100 га пашни, чел.

Первоначальное уравнение регрессии имеет вид:

Однако надежно отличными от нуля оказались только коэффициенты при x 3 (t -критерий равен 10,5) и при x 8 (t -критерий равен 2,72). Большую надежность, чем другие факторы имеет и x 5 .

После отсева ненадежных факторов, т.е. исключения их из уравнения, окончательное уравнение регрессии таково:

Таким образом, на различие урожайности в данных 51 агрофирмы сильнее всего и надежно повлияли различия между предприятиями в затратах на 1 га, в уровне оплаты труда и в обеспеченности квалифицированными работниками.

Каждый из коэффициентов, называемых коэффициентами чистой регрессии, интерпретируются как величина изменения урожайности при условии, что данный фактор изменяется на принятую единицу измерения, а два других фактора остаются постоянными на средних уровнях. Например, b 3 означает, что при увеличении затрат на 1 га зерновых и при неизменности оплаты труда и обеспеченности трактористами-машинистами урожайность в среднем увеличивалась в среднем на 4, 6 ц/га. Термин «условно чистая регрессия» означает, что влияние отдельного фактора очищено от сопутствующей вариации только тех факторов, которые входят в уравнение, но не очищено от возможной сопутствующей вариации других факторов.

Величина коэффициентов условно чистой регрессии зависит от принятых единиц измерения. Если бы фактор x 3 измерялся не в тысячах рублей на гектар, а в рублях на гектар, то коэффициент b 3 был бы равен 0,00461 руб./га. Следовательно, сравнивать между собой коэффициенты условно чистой регрессии нельзя. Чтобы получить сравнимые коэффициенты влияния вариации факторов на вариацию результата, следует избавиться от единиц измерения, привести к одной условной единице. Для этого можно применить два способа.

Первый способ называется стандартизацией. Этот термин возник из английского названия среднего квадратического отклонения (Standard deviation). Стандартизированные коэффициенты регрессии выражаются в долях или величинах, если они превышают единицу – в величинах σ y . Стандартизированные коэффициенты обозначают греческой буквой β и называют бета-коэффициентами. Их формула такая:

В нашем примере получаем:

β 3 = 0,772;

β 5 = 0,147;

β 8 = 0,223.

Интерпретация бета-коэффициентов такова: при изменении фактора x 3 на одно его среднее квадратическое отклонение от средней величины и при постоянстве других факторов результативный признак (урожайность) отклонится от своего среднего уровня на 0,772 его среднего квадратического отклонения. Так как все стандартизированные коэффициенты выражены в одинаковых единицах измерения, в σ y , они сравнимы между собой, и можно сделать вывод, что на вариацию урожайности сильнее всего повлияла в изучаемой совокупности предприятий вариация затрат на гектар посева.

Другой способ приведения коэффициентов регрессии к сравнимому виду – их преобразование в коэффициенты эластичности. Формула коэффициента эластичности ℓ j :

(25)

Интерпретируется коэффициент эластичности следующим образом: при изменении фактора x j на его среднюю величину и при постоянстве других входящих в уравнение факторов результативный признак в среднем изменится на ℓ j части его средней величины (или на ℓ j средних, если ℓ j >1, что бывает реже). Часто говорят, «изменится на ℓ j процентов на 1% изменения фактора».

В нашем примере имеем:

Коэффициенты эластичности так же выражены, как и β j , в одинаковых единицах и сравнимы между собой. Ими удобнее, чем β-коэффициентами, пользоваться в планировании и прогнозировании. Вряд ли менеджер станет планировать увеличение фактора, скажем, инвестиций на 0,6 сигмы. Обычно планируют изменение факторов, если они управляемы, на столько-то процентов от достигнутого уровня. Например, если планируем увеличить затраты на гектар зерновых на 10%, оплату труда на 30%, а обеспеченность квалифицированными трактористами-машинистами на 20%, то можно ожидать изменения урожайности на
, где k j – планируемые темпы прироста факторов.

Теперь рассмотрим систему показателей тесноты многофакторных связей. Прежде всего строится матрица парных коэффициентов корреляции (табл. 1).

Таблица 1. Матрица парных коэффициентов корреляции

Признаки

x 3

x 5

x 8

x 3

x 5

x 8

Матрица парных коэффициентов корреляции дает исходные данные для других показателей тесноты связи и для первичной проверки на коллинеарность. В данном случае все связи между факторами слабые, коллинеарность не испортит модель.

Важнейшим показателем тесноты связи в многофакторной системе является коэффициент множественной детерминации R 2 . Он измеряет общую тесноту связи вариации результативного признака y с вариацией всей системы входящих в модель факторов. Величина коэффициента множественной детерминации может быть вычислена несколькими способами.

1.Вычисление на основе матрицы парных коэффициентов корреляции

,

где Δ * - определитель матрицы;

, (26)

а Δ – определитель матрицы, не включающей первой строки Δ * и ее последнего столбца, т.е.:

При двух факторах получается упрощенная формула расчета:

(27)

Из (27) следует, что при независимости факторов друг от друга, т.е. , коэффициент множественной детерминации есть сумма парных коэффициентов детерминации.

Пользуясь формулой (27), можно вычислить три возможных двухфакторных коэффициента детерминации:

2.Вычисление на основе парных коэффициентов корреляции и β-коэффициентов:

В примере: R 2 =0,86·0,772+0,35·0,147+0,433·0,223=0,8119.

3.Вычисление как корреляционное отношение, т.е. отношение вариации результативного признака y , связанной с вариацией системы факторов, входящих в модель (в уравнение регрессии), ко всей, общей, вариации результативного признака:

. (30)

Числитель формулы (30) – это сумма квадратов отклонений индивидуальных расчетных значений результативного признака от его средней, а знаменатель – сумма квадратов фактических значений результативного признака от средней, для всех единиц совокупности.

Частными коэффициентами детерминации называются показатели, измеряющие, на какую долю уменьшается необъясненная вариация уже имеющимися в модели факторами при включении в модель данного фактора x m . Формула частного коэффициента детерминации такова:

В нашем примере:

Интерпретация такова: включение в модель фактора x 3 после x 5 и x 8 y на 74%; включение фактора x 5 после x 3 и x 8 уменьшает необъясненную вариацию y на 10%; включение фактора x 8 после x 3 и x 5 уменьшает необъясненную вариацию y на 20%.

Коэффициенты частной детерминации несравнимы между собой, так как это доли разных величин-знаменателей.

Извлекая корень квадратный из любого коэффициента детерминации, получают коэффициент соответствующей корреляции: множественной, парной или частной.

5. Включение в многофакторную модель неколичественных факторов

Неколичественными являются такие факторы аграрного производства, как природная зона, форма собственности предприятий, преобладающее производственное направление (отрасль) и другие. Предпочтительно не смешивать в исходной совокупности предприятия или регионы, различающиеся по этим качественным признакам. Но может возникнуть и необходимость построения модели с неоднородными единицами совокупности, например, если число единиц, однородных по качественному признаку, слишком мало для надежной связи. Иногда может быть поставлена цель измерения чистого влияния неколичественного фактора, например, формы собственности на результаты производства, а это требует включения качественного фактора в многофакторную модель.

В таких случаях качественные градации признака можно закодировать специальными переменными, часто называемыми «фиктивными» или «структурными» переменными. Они отражают неоднородность качественной структуры совокупности. Предположим, необходимо построить регрессионную модель рентабельности продукции предприятий, причем в регионе имеется 16 государственных предприятий, 28 частных, 13 кооперативной формы собственности.

Если игнорировать различия, связанные с формой собственности, то они или уйдут в остаточную вариацию, ухудшив модель рентабельности, либо в неизвестной пропорции станут смешиваться с влиянием тех или иных качественных факторов, искажая меру их влияния.

Необходимо для m неколичественных факторов или градаций такового фактора ввести m -1 структурную переменную, обозначим которую U j . Данные для расчета будут иметь следующий вид при m =3 (табл. 2).

Таблица 2. Исходные данные со структурными переменными

Форма собственности

Единица совокупности

Количественные признаки

Структурные переменные

X 1

X 2

X k

U 1

U 2

Государственная

Значения этих признаков

Значения этих признаков

Кооперативная

Значения этих признаков

В результате решения будет получена модель вида:

где x k +1 соответствуют переменной U 1 , а x k +2 – переменной U 2 .

Перепишем модель в специальных обозначениях:

Значение коэффициентов при структурных переменных таково: коэффициент c 1 означает, что предприятия частной формы собственности при тех же значениях количественных факторов x 1 x k имеют рентабельность на c 1 больше, чем государственные предприятия, которые приняты за базу сравнения (не имеют структурных переменных U 1 и U 2 ). Предприятия кооперативной формы собственности имеют рентабельность на c 2 большую, чем государственные. Величины c 1 и c 2 могут быть как положительными, так и отрицательными.

Вместо общей модели можно записать три частные модели для предприятий отдельных групп по формам собственности, присоединяя коэффициент при структурной переменной к свободному члену уравнения:

а) для предприятий государственного сектора

б) для предприятий частного сектора

в) для предприятий кооперативного сектора

6.Применение многофакторных регрессионных моделей для анализа деятельности предприятий и прогнозирования

Оценка деятельности на основе регрессионной модели в сравнении с простейшим приемом такой оценки – сравнением результата, достигнутого данным предприятием, со средним результатом по однородной совокупности – дает дополнительные преимущества.

Согласно нашему примеру, средняя урожайность по 51 агрофирме составила 22,9 ц/га зерна.

Агрофирма 1 получила 17,6 ц/га. Следовательно, эта фирма отстающая. Однако возникает вопрос: может быть и условия производства у этой фирме были хуже средних? Сравнение со средней по совокупности полностью игнорирует различие в «факторообеспеченности» предприятий, а на самом деле предприятия всегда находятся не в одинаковых условиях.

Оценка деятельности на основе регрессионной модели предполагает учет неравенства условий производства, например, плодородия почв, финансового положения, наличия квалифицированных кадров и другие. Полностью учесть различие в условиях производства между предприятиями невозможно, так как любая модель учитывает не все факторы вариации урожайности. Оценка на основе модели производится сравнением фактического результата (урожайности) с тем результатом, который был бы достигнут предприятием при фактически имеющихся факторах и средней по совокупности их эффективности, выраженной коэффициентами условно чистой регрессии. Рассмотрим результаты расчета урожайности двух фирм (табл. 3).

Таблица 3. Фактический и расчетный результат производства

Агрофирма

Факторные признаки

Урожайность, ц/га

x 3

x 5

x 8

фактическая

расчетная

Средняя по выборке

Обе фирмы имеют худшие, чем в среднем в выборке, значения основных факторов x 3 и x 8 , а соответственно и значения расчетной урожайности ниже, чем средняя. Но при этом фирма 1 практически имеет ту же расчетную урожайность, что и фактически полученную. Нет основания считать эту фирму отстающей. Фирма 2 имеет фактическую урожайность ниже, чем расчетная по имеющимся факторам. Это означает, что либо у этой фирмы оказались хуже среднего неизвестные, не входящие в модель факторы, либо степень использования основных факторов – затрат на гектар и обеспеченность квалифицированными работниками ниже, чем в среднем.

Прогнозирование на основе регрессионной модели исходит из предположения, что факторы управляемы и могут принять то или иное плановое, ожидаемое значение, а прочие неизвестные условия сохранятся на среднем по совокупности уровне. Управляемость факторов не означает, что при прогнозе в модель можно подставлять любые их значения. Уравнение регрессии отражает те условия, которые существовали в совокупности, по данным которой уравнение получено. Если бы значения факторных признаков были в 2-3 раза более высокими, то нельзя утверждать, что коэффициенты условно чистой регрессии остались бы теми же.

Поэтому рекомендуется при прогнозировании по уравнению регрессии не выходить за пределы реально наблюдаемых значений факторов в совокупности или выходить за эти границы не более чем на 10-15% средних величин. Не менее важным требованием при прогнозировании является требование о соблюдении системности прогнозируемых значений факторов. Необходимо учитывать знак и тесноту связи между факторами. Например, если прогнозируется повысить степень обеспеченности квалифицированными работниками, то нельзя оставить без изменения, тем более снижать, прогнозируемую величину уровня оплаты труда. Планируя рост энерговооруженности, необходимо примерно в той же пропорции увеличить и фондовооруженность.

Ориентируясь на указанные в таблице 3 значения факторов, предположим, что прогнозируя урожайность, планируем затраты на гектар (x 3 ) на уровне 3 тыс. руб., наличие трактористов-машинистов на 100 га пашни 0,8; оплату часа труда в размере 20 руб. в час. Подставляя эти значения в регрессионную модель получим точечный прогноз урожайности зерновых культур:

Точечный прогноз представляет собой математическое ожидание (среднюю) возможных с разной вероятностью значений прогнозируемого признака. Необходимо дополнить точечный прогноз расчетом доверительных границ с достаточно большой вероятностью. Для этого следует использовать величину средней квадратической ошибки аппроксимации, которая вычисляется по формуле:

(33)

Числитель подкоренного выражения – это остаточная, не объясненная моделью сумма квадратов отклонений результативного признака, а знаменатель – число степеней свободы остаточной вариации. В нашем примере остаточная сумма квадратов отклонений равна 814,3. Имеем:

Следовательно, с надежностью 0,95 прогнозируемая урожайность составит 25,4±4,16·2, или от 17,8 до 33,72 ц/га. Все эти расчеты относятся к прогнозам урожайности для отдельных агрофирм. Если речь идет о средней урожайности по совокупности 51 агрофирмы, то средняя ошибка средней арифметической величины равна среднему квадратическому отклонению, деленному на корень квадратный из объема выборки n , т.е. составит:

Интерпретация этого значения ошибки прогноза средней величины такова: если обеспечить 51 агрофирму факторами x 3 , x 5 , x 8 на уровнях соответственно 3, 20, 0,8, то будет получена средняя по совокупности урожайность 25,4±0,583 ц/га. С вероятностью 0,95 средняя по совокупности ожидаемая урожайность составит 25,4±0,583·2, или от 23,7 до 27,1 ц/га.

Эконометрической корреляционно-регрессионной моделью системы взаимосвязанных признаков изучаемой совокупности является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака в совокупности, обладает высоким значением коэффициента детерминации (не ниже 0,5), надежными и правильно интерпретируемыми в соответствии (по знаку и по порядку величины) с теорией изучаемой системы коэффициентами регрессии, и в силу данных свойств пригодное для оценки деятельности единиц совокупности и для прогнозирования.

Множественной регрессии (2)Реферат >> Маркетинг

Вводя их в модель, т.е, построить уравнение множественной регрессии . Множественная регрессия широко используется в решении проблем спроса...

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.