• Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Пример 1 . Найти общее решение и какое–нибудь частное решение системы

Решение выполняем с помощью калькулятора . Выпишем расширенную и основную матрицы:

Пунктиром отделена основная матрица A. Сверху пишем неизвестные системы, имея в виду возможную перестановку слагаемых в уравнениях системы. Определяя ранг расширенной матрицы, одновременно найдем ранг и основной. В матрице B первый и второй столбцы пропорциональны. Из двух пропорциональных столбцов в базисный минор может попасть только один, поэтому перенесем, например, первый столбец за пунктирную черту с обратным знаком. Для системы это означает перенос членов с x 1 в правую часть уравнений.

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы. Работаем с первой строкой: умножим первую строку матрицы на (-3) и прибавим ко второй и третьей строкам по очереди. Затем первую строку умножим на (-2) и прибавим к четвертой.

Вторая и третья строки пропорциональны, следовательно, одну из них, например вторую, можно вычеркнуть. Это равносильно вычеркиванию второго уравнения системы, так как оно является следствием третьего.

Теперь работаем со второй строкой: умножим ее на (-1) и прибавим к третьей.

Минор, обведенный пунктиром, имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на главной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rangA = rangB = 3 .
Минор является базисным. В него вошли коэффициенты при неизвестных x 2 , x 3 , x 4 , значит, неизвестные x 2 , x 3 , x 4 – зависимые, а x 1 , x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор (что соответствует пункту 4 приведенного выше алгоритма решения).

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид

Методом исключения неизвестных находим:
x 4 =3-4x 5 , x 3 =3-4x 5 -2x 4 =3-4x 5 -6+8x 5 =-3+4x 5
x 2 =x 3 +2x 4 -2+2x 1 +3x 5 = -3+4x 5 +6-8x 5 -2+2x 1 +3x 5 = 1+2x 1 -x 5
Получили соотношения, выражающие зависимые переменные x 2 , x 3 , x 4 через свободные x 1 и x 5 , то есть нашли общее решение:

Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Найдем два частных решения:
1) пусть x 1 = x 5 = 0, тогда x 2 = 1, x 3 = -3, x 4 = 3;
2) положим x 1 = 1, x 5 = -1, тогда x 2 = 4, x 3 = -7, x 4 = 7.
Таким образом, нашли два решения: (0,1,-3,3,0) – одно решение, (1,4,-7,7,-1) – другое решение.

Пример 2 . Исследовать совместность, найти общее и одно частное решение системы

Решение . Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.

Получим нули в четвертом столбце, оперируя первой строкой:

Теперь получим нули в третьем столбце с помощью второй строки:

Третья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:

Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
-x 1 =-3 → x 1 =3; x 2 =3-x 1 → x 2 =0; x 3 =1-2x 1 → x 3 =5.
x 4 = 10- 3x 1 – 3x 2 – 2x 3 = 11.

Пример 3 . Исследовать систему на совместность и найти решение, если оно существует.

Решение . Составляем расширенную матрицу системы.

Переставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:

Умножим вторую строку на (-2) и прибавим к третьей:

Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть r B > r A .

Задание . Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления .
Решение

Пример . Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса ; 2) методом Крамера . (ответ ввести в виде: x1,x2,x3)
Решение :doc :doc :xls
Ответ: 2,-1,3.

Пример . Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ: x 3 = - 1 + x 4 + x 5 ; x 2 = 1 - x 4 ; x 1 = 2 + x 4 - 3x 5

Задание . Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1 1 14 0 2 0
3 4 2 3 0 1
2 3 -3 3 -2 1
x 1 x 2 x 3 x 4 x 5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 -1 40 -3 6 -1
3 4 2 3 0 1
2 3 -3 3 -2 1

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0 -1 40 -3 6 -1
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0 0 27 0 0 0
0 -1 13 -3 6 -1
2 3 -3 3 -2 1

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной .
Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 ,x 3 , значит, неизвестные x 1 ,x 2 ,x 3 – зависимые (базисные), а x 4 ,x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0 0 27 0 0 0
0 -1 13 -1 3 -6
2 3 -3 1 -3 2
x 1 x 2 x 3 x 4 x 5
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x 3 =
- x 2 + 13x 3 = - 1 + 3x 4 - 6x 5
2x 1 + 3x 2 - 3x 3 = 1 - 3x 4 + 2x 5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 ,x 3 через свободные x 4 ,x 5 , то есть нашли общее решение :
x 3 = 0
x 2 = 1 - 3x 4 + 6x 5
x 1 = - 1 + 3x 4 - 8x 5
неопределенной , т.к. имеет более одного решения.

Задание . Решить систему уравнений.
Ответ :x 2 = 2 - 1.67x 3 + 0.67x 4
x 1 = 5 - 3.67x 3 + 0.67x 4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

Продолжаем разбираться с системами линейных уравнений. До сих пор мы рассматривали системы, которые имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом , методом Гаусса . Однако на практике широко распространены еще два случая, когда:

1) система несовместна (не имеет решений);

2) система имеет бесконечно много решений.

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Есть такая теорема, которая утверждает:«Если количество уравнений в системе меньше количества переменных , то система либо несовместна, либо имеет бесконечно много решений». И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). На левой верхней ступеньке нам нужно получить (+1) или (–1). Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Мы поступили так. К первой строке прибавляем третью строку, умноженную на (–1).

(2). Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую, умноженную на 5.

(3). После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную (–1) на второй ступеньке. Третью строку делим на (–3).



(4). К третьей строке прибавляем вторую строку. Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований:

. Ясно, что так быть не может.

Действительно, перепишем полученную матрицу

обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида, где λ – число, отличное от нуля, то система несовместна (не имеет решений).

Как записать концовку задания? Необходимо записать фразу:

«В результате элементарных преобразований получена строка вида , где λ 0 ». Ответ: «Система не имеет решений (несовместна)».

Обратите внимание, что в этом случае нет никакого обратного хода алгоритма Гаусса, решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Снова напоминаем, что Ваш ход решения может отличаться от нашего хода решения, метод Гаусса не задаёт однозначного алгоритма, о порядке действий и о самих действиях надо догадываться в каждом случае самостоятельно.

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где λ 0 . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица

.

Эта матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет необходимости, так как появилась строка вида , где λ 0 . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок студенту, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия. Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3:

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом и его универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1). Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на (–4). К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–1).

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: к четвертой строке прибавляем первую строку, умноженную на (–1) – именно так!

(2). Последние три строки пропорциональны, две из них можно удалить. Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки не лишним будет вторую строку умножить на (–1), а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них. В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки , где λ 0, тоже нет. Значит, это и есть третий оставшийся случай – система имеет бесконечно много решений.

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса. Для систем уравнений с бесконечным множеством решений появляются новые понятия: «базисные переменные» и «свободные переменные» . Сначала определим, какие переменные у нас являются базисными , а какие переменные - свободными . Не обязательно подробно разъяснять термины линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы . В данном примере базисными переменными являются x 1 и x 3 .

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: x 2 и x 4 – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные . Обратный ход алгоритма Гаусса традиционно работает снизу вверх. Из второго уравнения системы выражаем базисную переменную x 3:

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную x 1 через свободные переменные x 2 и x 4:

В итоге получилось то, что нужно – все базисные переменные (x 1 и x 3) выражены только через свободные переменные (x 2 и x 4):

Собственно, общее решение готово:

.

Как правильно записать общее решение? Прежде всего, свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные x 2 и x 4 следует записать на второй и четвертой позиции:

.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Из общего решения системы можно найти бесконечно много частных решений . Это очень просто. Свободными переменные x 2 и x 4 называют так, потому что им можно придавать любые конечные значения . Самыми популярными значениями являются нулевые значения, поскольку при этом частное решение получается проще всего.

Подставив (x 2 = 0; x 4 = 0) в общее решение, получим одно из частных решений:

, или – это частное решение, соответствующее свободным переменным при значениях (x 2 = 0; x 4 = 0).

Другой сладкой парочкой являются единицы, подставим (x 2 = 1 и x 4 = 1) в общее решение:

, т. е. (-1; 1; 1; 1) – еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений, так как свободным переменным мы можем придать любые значения.

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение (-1; 1; 1; 1) и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно. Поэтому, прежде всего, более основательна и надёжна проверка общего решения.

Как проверить полученное общее решение ?

Это несложно, но довольно требует длительных преобразований. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:

Получена правая часть исходного первого уравнения системы.

В левую часть второго уравнения системы:

Получена правая часть исходного второго уравнения системы.

И далее – в левые части третьего и четвертого уравнение системы. Эта проверка дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют именно проверку общего решения.

Пример 4:

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений.

Пример 5:

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение: Запишем расширенную матрицу системы и, с помощью элементарных преобразований, приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.

(2). К третьей строке прибавляем вторую строку, умноженную на (–5). К четвертой строке прибавляем вторую строку, умноженную на (–7).

(3). Третья и четвертая строки одинаковы, одну из них удаляем. Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.

Свободная переменная, которой не досталось ступеньки здесь всего одна: .

(4). Обратный ход. Выразим базисные переменные через свободную переменную:

Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :

, , ,

Рассмотрим первое уравнение и подставим в него найденные выражения и :

Таким образом, общее решение при одной свободной переменной x 4:

Еще раз, как оно получилось? Свободная переменная x 4 одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , , - тоже на своих местах.

Сразу выполним проверку общего решения.

Подставляем базисные переменные , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, найдено верное общее решение.

Теперь из найденного общего решения получим два частных решения. Все переменные выражаются здесь через единственную свободную переменную x 4 . Ломать голову не нужно.

Пусть x 4 = 0, тогда – первое частное решение.

Пусть x 4 = 1, тогда – еще одно частное решение.

Ответ: Общее решение: . Частные решения:

и .

Пример 6:

Найти общее решение системы линейных уравнений.

Проверка общего решения у нас уже сделана, ответу можно доверять. Ваш ход решения может отличаться от нашего хода решения. Главное, чтобы совпали общие решения. Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановимся на особенностях решения, которые не встретились в прорешанных примерах. В общее решение системы иногда может входить константа (или константы).

Например, общее решение: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Однако метод Гаусса работает в самых суровых условиях. Следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Повторимся в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Решения и ответы:

Пример 2:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1) Первую и третью строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на (–6). К третьей строке прибавили первую строку, умноженную на (–7).

(3) К третьей строке прибавили вторую строку, умноженную на (–1).

В результате элементарных преобразований получена строка вида , где λ 0 . Значит, система несовместна. Ответ: решений нет.

Пример 4:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньки нет единицы , и преобразование (2) направлено на её получение.

(2). К третьей строке прибавили вторую строку, умноженную на –3.

(3). Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)

(4). К третьей строке прибавили вторую строку, умноженную на 3.

(5). У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход:

(1). Здесь – базисные переменные (которые на ступеньках), а – свободные переменные (кому не досталось ступеньки).

(2). Выразим базисные переменные через свободные переменные:

Из третьего уравнения: .

(3). Рассмотрим второе уравнение: , частные решения:

Ответ: Общее решение:

Комплексные числа

В этом разделе мы познакомимся с понятием комплексного числа , рассмотрим алгебраическую , тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять алгебраические действия с «обычными» числа, и помнить тригонометрию.

Сначала вспомним «обычные» Числа. В математике они называются множеством действительных чисел и обозначаются буквой R, либо R (утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой оси обязательно соответствует некоторое действительное число.

Отыскание решений линейной системы
Портабельные Windows-приложения на сайте Bodrenko.com

§2. Отыскание решений линейной системы

Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности линейной системы, но не дает способа нахождения решений этой системы.
В этом параграфе мы займемся отысканием решений линейной системы (3.1). Сначала мы рассмотрим простейший случай квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы, а затем перейдем к отысканию совокупности всех решений общей линейной системы вида (3.1).
1. Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля. Пусть дана квадратная система линейных уравнений

с отличным от нуля определителем Δ основной матрицы


Докажем, что такая система имеет, и притом единственное, решение, и найдем это решение. Сначала докажем, что система (3.10) может иметь только одно решение (т. е. докажем единственность решения системы (3.10) в предположении его существования).
Предположим, что существуют какие-либо n чисел х 1 , x 2 ,...,х n такие, что при подстановке этих чисел в систему (3.10) все уравнения этой системы обращаются в тождества (т. е. существует некоторое решение системы (3.10) х 1 , x 2 ,...,х n). Тогда, умножая тождества (3.10) соответственно на алгебраические дополнения A 1j , A 2j ,..., A nj элементов j-ro столбца определителя Δ матрицы (3.11) и складывая затем получающиеся при этом тождества, мы получим (для любого номера j, равного 1, 2,..., n)

Учитывая, что сумма произведений элементов i-го столбца на соответствующие алгебраические дополнения элементов j-ro столбца равна нулю при i ≠ j и равна определителю Δ матрицы (3.11) при i = j (cм. свойство 4° из п. 4 §2 гл. 1), мы получим из последнего равенства

x j Δ = b 1 A 1j + b 2 A 2j + ... + b n A nj . (3.12)

Обозначим символом Δ j (b i ) (или, более кратко, символом Δ j ) определитель, получающийся из определителя Δ основной матрицы (3.11) заменой его j-го столбца столбцом из свободных членов b 1 , b 2 ,...,b n (с сохранением без изменения всех остальных столбцов Δ ).
Заметим, что в правой части (3.12) стоит именно определитель Δ j (b i) (ч тобы убедиться в этом, достаточно записать разложение определителя Δ j (b i) по элементам i-го столбца ), и это равенство принимает вид

Δ x j = Δ j (3.13)

Поскольку определитель Δ матрицы (3.11) отличен от нуля, равенства (3.13) эквивалентны соотношениям

Итак, мы доказали, что если решение х 1 , x 2 ,...,х n системы (3.10) с определителем Δ основной матрицы (3.11), отличным от нуля, существует, то это решение однозначно определяется формулами (3.14) .
Формулы (3.14) называются формулами Крамера .
Еще раз подчеркнем, что формулы Крамера пока получены нами в предположении существования решения и доказывают его единственность.
Остается доказать существование решения системы (3.10). Для э того в силу теоремы Кронекера-Капелли достаточно доказать, что ранг основной матрицы (3.11) равен рангу расширенной матрицы (cуществует и другой способ доказательства существования решения системы (3.10), заключающийся в проверке того, что числа х 1 , x 2 ,...,х n , определяемые формулами Крамера (3.14), обращают в тождества все уравнения системы (3.10))

но это очевидно, ибо в силу соотношения Δ ≠ 0, ранг основной матрицы равен n, а ранг содержащей n строк расширенной матрицы (3.15) больше числа n быть не может и потому равен рангу основной матрицы.
Тем самым полностью доказано, что квадратная система линейных уравнений (3.10) с определителем основной матрицы, отличным от нуля, имеет, и притом единственное, решение, определяемое формулами Крамера (3.14).

Доказанное нами утверждение еще проще устанавливается матричным способом. Для того чтобы сделать это, заменим (как и в п. 1 § 1) систему (3.10) эквивалентным ей матричным уравнением

AX = B, (3.16)

где А - основная матрица системы (3.11), а X и В - столбцы,

первый из которых подлежит определению, а второй задан.
Так как определитель Δ матрицы А отличен от нуля, то существует обратная матрица А -1 (см. п. 7 §2 гл. 1).
Предположим, что существует решение системы (3.10), т.е. существует столбец X, обращающий в тождество матричное уравнение (3.16). Помножая указанное тождество слева на обратную матрицу А -1 будем иметь

А -1 (АХ) =А -1 В. (3.17)

Учтем теперь, что в силу сочетательного свойства произведения трех матриц (см. п. 2 § 1 гл. 1) и в силу соотношения А -1 А = Е, где Е - единичная матрица (см. п. 7 §2 гл. 1), А -1 (АХ) = (А -1 А)Х = ЕХ = X, так что мы получим из (3.17)

X = А -1 В. (3.18)

Развертывая равенство (3.18) и учитывая вид обратной матрицы (cм. формулу A.41) из п. 7 §2 гл. 1), мы и получим для элементов столбца X формулы Крамера.
Итак, мы доказали, что если решение матричного уравнения (3.16) существует, то оно однозначно определяется соотношением (3.18), эквивалентным формулам Крамера.
Легко проверить, что столбец X, определяемый соотношением (3.18), в самом деле является решением матричного уравнения (3.16),
т. е. при подстановке в это уравнение обращает его в тождество. В самом деле, если столбец X определяется равенством (3.18), то АХ = А(А -1 В) = (АА -1)В = ЕВ = В.
Итак, если определитель Δ матрицы А отличен от нуля (т. е. если эта матрица является невырожденной), то существует, и притом единственное, решение матричного уравнения (3.16), определяемое соотношением (3.18), эквивалентным формулам Крамера.
Пример. Найдем решение квадратной системы линейных уравнений

с отличным от нуля определителем основной матрицы

Поскольку

то, в силу формул Крамера, единственное решение рассматриваемой системы имеет вид х 1 = 1, х 2 = 2, x 3 = 3, х 4 = 4.
Основное значение формул Крамера состоит в том, что они дают явное выражение для решения квадратной системы линейных уравнений (с определителем, отличным от нуля) через коэффициенты уравнений и свободные члены. Практическое использование формул Крамера связано с довольно громоздкими вычислениями (для решения системы n уравнений с n неизвестными приходится вычислять (n + 1) определитель n-го порядка). К этому следует добавить, что если коэффициенты уравнений и свободные члены представляют собой лишь приближенные значения каких - либо измеряемых физических величин или округляются в процессе вычислений, то использование формул Крамера может привести к большим ошибкам и в ряде случаев является нецелесообразным.
В §4 гл.4 будет изложен метод регуляризации, принадлежащий А.Н. Тихонову и позволяющий находить решение линейной системы с точностью, соответствующей точности задания матрицы коэффициентов уравнений и столбца свободных членов, а в гл. 6 дается представление о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.
В заключении отметим, что в этом пункте мы исключили из рассмотрения случай обращения в нуль определителя Δ основной матрицы системы (3.10). Этот случай будет содержаться в общей теории систем m линейных уравнений с n неизвестными, излагаемой в следующем пункте.
2. Отыскание всех решений общей линейной системы. Рассмотрим теперь общую систему m линейных уравнений с n неизвестными (3.1). Предположим, что эта система совместна и что ранг ее основной и расширенной матриц равен числу r. Не ограничивая общности, мы можем предположить, что базисный минор основной матрицы (3.2) находится в левом верхнем углу этой матрицы (общий случай сводится к этому случаю посредством перестановки в системе (3.1) уравнений и неизвестных).
Тогда первые r строк как основной матрицы (3.2), так и расширенной матрицы (3.8) являются базисными строками этих матриц (т ак как ранги основной и расширенной матриц оба равны r, то базисный минор основной матрицы будет одновременно являться базисным минором и расширенной матрицы), и, по теореме 1.6 о базисном миноре, каждая из строк расширенной матрицы (1.8), начиная с (r + 1)-й строки, является линейной комбинацией п ервых r строк этой матрицы.
В терминах системы (3.1) это означает, что каждое из уравнений этой системы, начиная с (r + 1)-го уравнения, является линейной комбинацией (т. е. следствием) первых r уравнений этой системы (т. е. всякое решение первых г уравнений системы (3.1) обращает в тождества и все последующие уравнения этой системы ).
Таким образом, достаточно найти все решения лишь первых r уравнений системы (3.1). Рассмотрим первые r уравнений системы (3.1), записав их в виде

Если мы придадим неизвестным х r+1 ,...,х n совершенно произвольные значения c r+1 ,...,c n , то система (1.19) превратится в квадратную систему r линейных уравнений для r неизвестных х 1 , x 2 ,...,х r , причем определителем основной матрицы этой системы является отличный от нуля базисный минор матрицы (3.2). В силу результатов предыдущего пункта, эта система (3.19) имеет единственное решение, определяемое формулами Крамера, т. е. для произвольно выбранных c r+1 ,...,c n существует единственная совокупность r чисел c 1 ,...,c r , обращающих в тождества все уравнения системы (3.19) и определяющихся формулами Крамера.
Чтобы записать это единственное решение, договоримся обозначать символом M j (d i) определитель, получающийся из базисного минора М матрицы (3.2) заменой его j-ro столбца столбцом из чисел d 1 , d 2 ,...,d i ,...,d r (с сохранением без изменения всех остальных столбцов М). Тогда, записывая решение системы (3.19) с помощью формул Крамера и пользуясь линейным свойством определителя, мы получим

Формулы (3.20) выражают значения неизвестных x j = c j (j = 1, 2,......, r) через коэффициенты при неизвестных, свободные члены и произвольно заданные параметры с r+1 ,...., с n .
Докажем, что формулы (3.20) содержат любое решение системы (3.1) . В самом деле, пусть c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n - произвольное решение указанной системы. Тогда оно является решением и системы (3.19). Но из системы (3.19) величины c (0) 1 , c (0) 2 ,...,c (0) r , определяются через величины c (0) r+1 , ...,c (0) n однозначно и именно по формулам Крамера (3.20). Таким образом, при с r+1 = c (0) r+1 , ..., с n = c (0) n формулы (3.20) дают нам как раз рассматриваемое решение c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n .
Замечание. Если ранг r основной и расширенной матриц системы (3.1) равен числу неизвестных n, то в этом случае соотношения (3.20) переходят в формулы

определяющие единственное решение системы (3.1). Таким образом, система (3.1) имеет единственное решение (т.е. является определенной) при условии, что ранг r основной и расширенной ее матриц равен числу неизвестных n (и меньше числа уравнений m или равен ему).
Пример. Найдем все решения линейной системы

Нетрудно убедиться в том, что ранг как основной, так и расширенной матрицы этой системы равен двум (т. е. эта система совместна), причем можно считать, что базисный минор М стоит в левом верхнем углу основной матрицы, т. е. . Но тогда, отбрасывая два последних уравнения и задавая произвольно с 3 и с 4 , мы получим систему

x 1 - x 2 = 4 - c 3 + c 4 ,

x 1 + x 2 = 8 - 2c 3 - 3c 4 ,

из которой в силу формул Крамера получаем значения

x 1 = c 1 = 6 - 3/2 c 3 - c 4 , x 2 = c 2 = 2 - 1/2 c 3 - 2c 4 . (3.22)

Таким образом, четыре числа

(6 - 3/2 c 3 - c 4 ,2 - 1/2 c 3 - 2c 4 ,c 3 , c 4) (3.23)

при произвольно заданных значениях с 3 и с 4 образуют решение системы (3.21), причем строка (3.23) содержит все решения этой системы.

3. Свойства совокупности решений однородной системы. Рассмотрим теперь однородную систему m линейных уравнений с n неизвестными (3.7), предполагая, как и выше, что матрица (3.2) имеет ранг, равный r, и что базисный минор М расположен в левом верхнем углу этой матрицы. Поскольку на этот раз все b i равны нулю, вместо формул (3.20) мы получим следующие формулы:

выражающие значения неизвестных x j = c j (j = 1, 2,..., r) через коэффициенты при неизвестных и произвольно заданные значения c r+1 ,...,c n . В силу доказанного в предыдущем пункте формулы (3.24) содержат любое решение однородной системы (3.7) .
Убедимся теперь в том, что совокупность всех решений однородной системы (3.7) образует линейное пространство .
Пусть Х 1 = (x (1) 1 , x (1) 2 ,...,x (1) n) и Х 2 = (x (2) 1 , x (2) 2 ,...,x (2) n) - два произвольных решения однородной системы (3.7), а λ - любое вещественное число. В силу того, что каждое решение однородной системы (3.7) является элементом линейного пространства А n всех упорядоченных совокупностей n чисел, достаточно доказать, что каждая из двух совокупностей

Х 1 + Х 2 = (x (1) 1 + x (2) 1 ,..., x (1) n + x (2) n)

λ Х 1 = (λ x (1) 1 ,...,λ x (1) n)

также является решением однородной системы (3.7).
Рассмотрим любое уравнение системы (3.7), например i-е уравнение, и подставим в это уравнение на место неизвестных элементы указанных совокупностей. Учитывая, что Х 1 и Х 2 - решения однородной системы, будем иметь

а это и означает, что совокупности Х 1 + Х 2 и λ Х 1 являются решениями однородной системы (3.7).
Итак, совокупность всех решений однородной системы (3.7) образует линейное пространство, которое мы обозначим символом R.
Найдем размерность этого пространства R и построим в нем базис.
Докажем, что в предположении о том, что ранг матрицы однородной системы (3.7) равен r, линейное пространство R всех решений однородной системы (3.7) изоморфно линейному пространству А n-r всех упорядоченных совокупностей (n - r) чисел (п ространство А m введено в примере 3 п. 1 § 1 гл. 2).

Поставим в соответствие каждому решению (c 1 ,...,c r , c r+1 ,...,c n) однородной системы (3.7) элемент (c r+1 ,...,c n) пространства А n-r Поскольку числа c r+1 ,...,c n могут быть выбраны произвольно и при каждом выборе с помощью формул (3.24) однозначно определяют решение системы (3.7), то установленное нами соответствие является взаимно однозначным . Далее заметим, что если элементы c (1) r+1 ,...,c (1) n и c (2) r+1 ,...,c (2) n пространства А n-r отвечают элементам (c (1) 1 ,...,c (1) r , c (1) r+1 ,...,c (1) n)и (c (2) 1 ,...,c (2) r , c (2) r+1 ,...,c (2) n) пространства R, то из формул (3.24) сразу же следует, что элементу (c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n) отвечает элемент (c (1) 1 + c (2) 1 ,...,c (1) r + c (2) r , c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n), а элементу (λ c (1) r+1 ,...,λ c (1) n) при любом вещественном λ отвечает элемент (λ c (1) 1 ,...,λ c (1) r , λ c (1) r+1 ,...,λ c (1) n). Тем самым доказано, что установленное нами соответствие является изоморфизмом.
Итак, линейное пространство R всех решений однородной системы (3.7) с n неизвестными и рангом основной матрицы, равным r, изоморфно пространству А n-r и, стало быть, имеет размерность n - r.
Любая совокупность из (n - r) линейно независимых решений однородной системы (3.7) образует (в силу теоремы 2.5) базис в пространстве R всех решений и называется фундаментальной совокупностью решений однородной системы (3.7).
Для построения фундаментальной совокупности решений можно отправляться от любого базиса пространства А n-r . Отвечающая этому базису совокупность решений системы (3.7), в силу изоморфизма, будет линейно независимой и поэтому будет являться фундаментальной совокупностью решений.
Особо выделяют фундаментальную совокупность решений системы (3.7), отвечающую простейшему базису e 1 = (1, 0, 0,..., 0), е 2 = (1, 1, 0,..., 0), ..., е n-r = (0, 0, 0,..., 1) пространства А n-r и называемую нормальной фундаментальной совокупностью решений однородной системы (3.7).
При сделанных выше предположениях о ранге и расположении базисного минора, в силу формул (3.24), нормальная фундаментальная совокупность решений однородной системы (3.7) имеет вид:

По определению базиса любое решение X однородной системы (3.7) представимо в виде

X= C 1 X 1 + C 2 X 2 + ... + C n-r X n-r , (3.26)

где C 1 , C 2 , ...,C n-r - некоторые постоянные. Поскольку в формуле (3.26) содержится любое решение однородной системы (3.7), то эта формула дает общее решение рассматриваемой однородной системы.
Пример. Рассмотрим однородную систему уравнений:

соответствующую неоднородной системе (3.21), разобранной в примере в конце предыдущего пункта. Там мы выяснили, что ранг r матрицы этой системы равен двум, и взяли в качестве базисного минор, стоящий в левом верхнем углу указанной матрицы.
Повторяя рассуждения, проведенные в конце предыдущего пункта, мы получим вместо формул (3.22) соотношения

c 1 = - 3/2 c 3 - c 4 , c 2 = - 1/2 c 3 - 2c 4 ,

справедливые при произвольно выбранных c 3 и c 4 . С помощью этих соотношений (полагая сначала c 3 =1,c 4 =0, а затем c 3 = 0,c 4 = 1) мы получим нормальную фундаментальную совокупность двух решений системы (3.27):

X 1 = (-3/2,-1/2,1,0), X 2 = (-1,-2, 0,1). (3.28)

где С 1 и С 2 - произвольные постоянные.
В заключение этого пункта установим связь между решениями неоднородной линейной системы (3.1) и соответствующей ей однородной системы (3.7) (c теми же самыми коэффициентами при неизвестных). Докажем следующие два утверждения.
1°. Сумма любого решения неоднородной системы (3.1) с любым решением соответствующей однородной системы (3.7) представляет собой решение системы (3.1).
В самом деле, если c 1 ,...,c n - решение системы (3.1), a d 1 ,...,d n - решение соответствующей ей однородной системы (3.7), то, подставив в любое (например, в i-е) уравнение системы (3.1) на место неизвестных числа c 1 + d 1 ,...,c n + d n , получим

что и требовалось доказать.
2°. Разность двух произвольных решений неоднородной системы (3.1) является решением соответствующей однородной системы (3.7).
В самом деле, если c" 1 ,...,c" n и c" 1 ,...,c" n - два произвольных решения системы (3.1), то, подставив в любое (например, в i-е) уравнение системы (3.7) на место неизвестных числа c" 1 - c" 1 ,...,c" n - c" n получим

что и требовалось доказать.
Из доказанных утверждений вытекает, что, найдя одно решение неоднородной системы (3.1) и складывая его с каждым решением соответствующей однородной системы (3.7), мы получим все решения неоднородной системы (3.1).
Другими словами, сумма частного решения неоднородной системы (3.1) и общего решения соответствующей однородной системы (3.7) дает общее решение неоднородной системы (3.1).
В качестве частного решения неоднородной системы (3.1) естественно взять то его решение (п ри этом предполагается, как и выше, что ранги основной и расширенной матриц системы (3.1) равны r и что базисный минор находится в левом верхнем углу этих матриц)

которое получится, если в формулах (3.20) положить равными нулю все числа c r+1 ,...,c n . Складывая это частное решение с общим решением (3.26) соответствующей однородной системы, мы получим следующее выражение для общего решения неоднородной системы (3.1):

X= X 0 + C 1 X 1 + C 2 X 2 + ... + C n-r X n-r . (3.30)

В этом выражении X 0 обозначает частное решение (3.29), C 1 , C 2 , ... , C n-r - произвольные постоянные, а X 1 ,X 2 ,... ,X n-r - элементы нормальной фундаментальной совокупности решений (3.25) соответствующей однородной системы.
Так, для рассмотренной в конце предыдущего пункта неоднородной системы (3.21) частное решение вида (3.29) равно Х 0 =(6,2,0, 0).
Складывая это частное решение с общим решением (3.28) соответствующей однородной системы (3.27), мы получим следующее общее решение неоднородной системы (3.21):

X = (6,2,0, 0) + C 1 (-3/2,-1/2,1,0) + C 2 (-1,-2, 0,1). (3.31)

Здесь C 1 и C 2 - произвольные постоянные.
4. Заключительные замечания о решении линейных систем. Развитые в предыдущих пунктах методы решения линейных систем
упираются в необходимость вычисления ранга матрицы и нахождения ее базисного минора. После того, как базисный минор найден, решение сводится к технике вычисления определителей и к использованию формул Крамера.
Для вычисления ранга матрицы можно использовать следующее правило: при вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков; при этом, если уже найден отличный от нуля минор М порядка k, то требуют вычисления лишь миноры порядка (k + 1), окаймляющие (т о есть содержащие внутри себя минор М) этот минор М; в случае равенства нулю всех окаймляющих миноров порядка (k + 1) ранг матрицы равен к (в самом деле, в указанном случае все строки (столбцы) матрицы принадлежат линейной оболочке ее k строк (столбцов), на пересечении которых стоит минор М, а размерность указанной линейной оболочки равна k).
Укажем и другое правило вычисления ранга матрицы. Заметим, что со строками (столбцами) матрицы можно производить три элементарные операции , не изменяющие ранга этой матрицы: 1) перестановку двух строк (или двух столбцов), 2) умножение строки (или столбца) на любой отличный от нуля множитель, 3) прибавление к одной строке (столбцу) произвольной линейной комбинации других строк (столбцов) (э ти три операции не изменяют ранга матрицы вследствие того, что операции 1) и 2) не изменяют максимального числа линейно независимых строк (столбцов) матрицы, а операция 3) обладает тем свойством, что линейная оболочка всех строк (столбцов), имевшихся до проведения этой операции, совпадает с линейной оболочкой всех строк (столбцов), полученных после проведения этой операции).
Будем говорить, что матрица ||а ij ||, содержащая m строк и n столбцов, имеет диагональный вид, если равны нулю все ее элементы, отличные от а 11 , а 22 ,.., a rr , где r = min{m, n}. Ранг такой матрицы, очевидно, равен r.
Убедимся в том, что посредством трех элементарных операций любую матрицу

можно привести к диагональному виду (что и позволяет вычислить ее ранг).

В самом деле, если все элементы матрицы (3.31) равны нулю, то эта матрица уже приведена к диагональному виду. Если же у мат-
рицы (3.31) есть отличные от нуля элементы, то путем перестановки двух строк и двух столбцов можно добиться того, чтобы был отличен от нуля элемент а 11 . Умножая после этого первую строку матрицы на а 11 -1 , мы превратим элемент а 11 в единицу. Вычитая далее из j-ro столбца матрицы (при j = 2, 3,..., n) первый столбец, умноженный на а i1 , а затем вычитая из i-й строки (при i = 2, 3,..., n) первую строку, умноженную на а i1 , мы получим вместо (3.31) матрицу следующего вида:

Совершая уже описанные нами операции с матрицей, взятой в рамку, и продолжая действовать аналогичным способом, мы после конечного числа шагов получим матрицу диагонального вида.
Изложенные в предыдущих пунктах методы решения линейных систем, использующие, в конечном итоге, аппарат формул Крамера, могут привести к большим погрешностям в случае, когда значения коэффициентов уравнений и свободных членов заданы приближенно или когда производится округление этих значений в процессе вычислений.
В первую очередь это относится к случаю, когда матрица, отвечающая основному определителю (или базисному минору), является плохо обусловленной (т. е. когда «малым» изменениям элементов этой матрицы отвечают «большие» изменения элементов обратной матрицы). Естественно, что в этом случае решение линейной системы будет неустойчивым (т. е. «малым» изменениям значений коэффициентов уравнений и свободных членов будут отвечать «большие» изменения решения).
Отмеченные обстоятельства приводят к необходимости разработки как других (отличных от формул Крамера) теоретических алгоритмов отыскания решения, так и численных методов решения линейных систем.
В §4 гл.4 мы познакомимся с методом регуляризации А.Н. Тихонова отыскания так называемого нормального (т. е. наиболее близкого к началу координат) решения линейной системы.
В гл.6 будут изложены основные сведения о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.