Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, - ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат - зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку - и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь - взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности, названный теперь его именем:

неопределенность значения координаты неопределенность скорости ,


математическое выражение которого называется соотношением неопределенностей Гейзенберга:

Где - неопределенность (погрешность измерения) пространственной координаты микрочастицы, - неопределенность скорости частицы, - масса частицы, а - постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10 –34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System - навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку - в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, - и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, ), тем более неопределенной становится другая переменная (), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость - на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени - назовем его . За этот промежуток времени энергия системы случайным образом меняется - происходят ее флуктуация, - и выявить ее мы не можем. Обозначим погрешность измерения энергии . Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для и неопределенности времени, которым квантовая частица этой энергией обладала:

Относительно принципа неопределенности нужно сделать еще два важных замечания:

  1. он не подразумевает, что какую-либо одну из двух характеристик частицы - пространственное местоположение или скорость - нельзя измерить сколь угодно точно;
  2. принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.
Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!

Принцип неопределенности является фундаментальным законом микромира. Его можно считать частным выражением принципа дополнительности.

В классической механике частица движется по определенной траектории, и в любой момент времени возможно точно определить ее координаты и ее импульс. Относительно микрочастицы такое представление неправомерно. Микрочастица не имеет четко выраженной траектории, она обладает и свойствами частицы, и свойствами волны (корпускулярно‑волновой дуализм). В этом случае понятие «длина волны в данной точке» не имеет физического смысла, а поскольку импульс микрочастицы выражается через длину волны – p =к/ л, то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату, и наоборот.

В. Гейзенберг (1927 г.), учитывая двойственную природу микрочастиц, пришел к выводу, что невозможно одновременно с любой наперед заданной точностью характеризовать микрочастицу и координатами, и импульсом.

Соотношениями неопределенностей Гейзенберга называются неравенства:

Δx · Δp x ≥ h, Δy · Δp y ≥ h, Δz · Δp z h.

Здесь Δx, Δy, Δz означают интервалы координат, в которых может быть локализована микрочастица (эти интервалы и есть неопределенности координат), Δp x , Δp y , Δp z означают интервалы проекций импульса на координатные осиx, y, z, h – постоянная Планка. Согласно принципу неопределенностей, чем точнее фиксируется импульс, тем значительнее будет неопределенность по координате, и наоборот.

Принцип соответствия

По мере развития науки, углубления накопленных знаний новые теории становятся более точными. Новые теории охватывают все более широкие горизонты материального мира и проникают в ранее неизведанные глубины. Динамические теории сменяются статическими.

Каждая фундаментальная теория имеет определенные границы применимости. Поэтому появление новой теории не означает полного отрицания старой. Так, движение тел в макромире со скоростями значительно меньшими, чем скорость света, всегда будет описываться классической механикой Ньютона. Однако при скоростях, соизмеримых со скоростью света (релятивистских скоростях), механика Ньютона неприменима.

Объективно имеет место преемственность фундаментальных физических теорий. Это и есть принцип соответствия, который можно сформулировать следующим образом: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

3.4. Понятие о состоянии системы. Лапласовский детерминизм

В классической физике система понимается как совокупность каких‑то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно‑следственных отношений между взаимодействующими элементами системы.

Философское учение об объективности закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира называют детерминизмом. Центральным понятием детерминизма является положение о существованиипричинности; причинность имеет место, когда одно явление порождает другое явление (следствие).

Классическая физика стоит на позициях жесткого детерминизма, который называют лапласовским, – именно Пьер Симон Лаплас провозгласил принцип причинности как фундаментальный закон природы. Лаплас считал, что если известно расположение элементов (каких‑то тел) системы и действующие в ней силы, то можно с полной достоверностью предсказать, как будет двигаться каждое тело этой системы сейчас и в будущем. Он писал: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширен, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами». Традиционно это гипотетическое существо, которое могло бы (по Лапласу) предсказать развитие Вселенной, в науке называют «демоном Лапласа».

В классический период развития естествознания утверждается представление о том, что только динамические законы полностью характеризуют причинность в природе.

Лаплас пытался объяснить весь мир, в том числе физиологические, психологические, социальные явления с точки зрения механистического детерминизма, который он рассматривал как методологический принцип построения всякой науки. Образец формы научного познания Лаплас видел в небесной механике. Таким образом, лапласовский детерминизм отрицает объективную природу случайности, понятие вероятности события.

Дальнейшее развитие естествознания привело к новым представлениям причинности и следствия. Для некоторых природных процессов трудно определить причину – например, радиоактивный распад происходит случайно. Нельзя однозначно связать время «вылета» α– или β‑частицы из ядра и значение ее энергии. Подобные процессы объективно случайны. Особенно много таких примеров в биологии. В нынешнем естествознании современный детерминизм предлагает разнообразные, объективно существующие формы взаимосвязи процессов и явлений, многие из которых выражаются в виде соотношений, не имеющих выраженных причинных связей, то есть не содержащих в себе моментов порождения одного другим. Это и пространственно‑временные связи, отношения симметрии и определенных функциональных зависимостей, вероятностные соотношения и т. д. Однако все формы реальных взаимодействий явлений образуются на основе всеобщей действующей причинности, вне которой не существует ни одного явления действительности, в том числе и так называемых случайных явлений, в совокупности которых проявляются статические законы.

Наука продолжает развиваться, обогащается новыми концепциями, законами, принципами, что свидетельствует об ограниченности лапласовского детерминизма. Однако классическая физика, в частности классическая механика, имеет и сегодня свою нишу применения. Ее законы вполне применимы для относительно медленных движений, скорость которых значительно меньше скорости света. Значение классической физики в современный период хорошо определил один из создателей квантовой механики Нильс Бор: «Как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщать другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики».

Принципы неопределенности Гейзенберга являются одной из проблем квантовой механики, однако прежде мы обратимся к развитию физической науки в целом. Еще в конце XVII века Исааком Ньютоном была заложена современная классическая механика. Именно он сформулировал и описал ее основные законы, при помощи которых можно предсказать поведение окружающих нас тел. К концу XIX века эти положения казались нерушимыми и применимыми ко всем законам природы. Задачи физики как науки, казалось, были решены.

Нарушение законов Ньютона и рождение квантовой механики

Но, как выяснилось, на тот момент о свойствах Вселенной было известно существенно меньше, чем казалось. Первым камнем, нарушившим стройность классической механики, стало неподчинение ее законам распространения световых волн. Таким образом, совсем молодая на тот момент наука электродинамика была вынуждена выработать совершенно иной свод правил. А для физиков-теоретиков возникла проблема: как привести две системы к единому знаменателю. Кстати, наука и сегодня работает над ее решением.

Миф о всеобъемлющей ньютоновской механике был окончательно разрушен с более глубоким изучением строения атомов. Британец Эрнест Резерфорд обнаружил, что атом не является неделимой частицей, как считалось ранее, а сам имеет в своем составе нейтроны, протоны и электроны. Более того, их поведение также совершенно не вязалось с постулатами классической механики. Если в макромире гравитация в значительной степени определяет природу вещей, то в мире квантовых частиц она является крайне малой силой взаимодействия. Так были заложены основы квантовой механики, в которой тоже действовали собственные аксиомы. Одним из показательных отличий этих мельчайших систем от привычного нам мира стал принцип неопределенности Гейзенберга. Он наглядно продемонстрировал необходимость отличного подхода к этим системам.

Принцип неопределенности Гейзенберга

В первой четверти XX века квантовая механика совершала свои первые шаги, а физики всего мира лишь осознавали, что же вытекает для нас из ее положений, и какие она открывает перспективы. Немецкий физик-теоретик Вернер Гейзенберг свои знаменитые принципы сформулировал в 1927 г. Заключаются принципы Гейзенберга в том, что невозможно просчитать одновременно и пространственное положение, и скорость квантового объекта. Основной причиной этому является тот факт, что при измерении мы уже воздействуем на измеряемую систему, тем самым нарушая ее. Если в знакомом нам макромире мы оцениваем объект, то, бросая на него даже взгляд, мы видим отражение света от него.

Но принцип неопределенности Гейзенберга говорит о том, что хоть в макромире свет никак не влияет на измеряемый объект, а в случае с квантовыми частицами фотоны (или любые другие производные измерения) оказывают значительное влияние на частицу. При этом интересно отметить, что отдельно скорость или отдельно положение тела в пространстве квантовая физика измерить вполне может. Но чем более точными будут наши показания скорости, тем меньше нам будет известно о пространственном положении. И наоборот. То есть принцип неопределенности Гейзенберга создает известные сложности в предсказании поведения квантовых частиц. Буквально это выглядит так: они меняют свое поведение, когда мы пытаемся за ними наблюдать.

В квантовой механике состояние частицы определяется заданием значений координат, импульса, энергии и других подобных величин, которые называются динамическими переменными .

Строго говоря, микрообъекту не могут быть приписаны динамические переменные. Однако информацию о микрообъекте мы получаем в результате их взаимодействия с макроприборами. Поэтому необходимо результаты измерений выражаются в динамических переменных. Поэтому, например, говорят о состоянии электрона с определенной энергией.

Своеобразие свойств микрообъектов заключается в том, что не для всех переменных получаются при изменениях определенные значения. Так в мысленном эксперименте мы видели, что при попытке уменьшить неопределенность координаты электронов в пучке путем уменьшения ширины щели приводит к появлению у них неопределенной составляющей импульса в направлении соответствующей координаты. Между неопределенностями координаты и импульса имеет место соотношение

(33.4)

Аналогичное соотношение имеет место для других осей координат и соответствующих проекций импульса, а также для ряда других пар величин. В квантовой механике такие пары величин называются канонически сопряженными . Обозначив канонически сопряженными величины А и В , можно записать:

(33.5)

Соотношение (33.5) было установлено в 1927 году Гейзенбергом и называется соотношением неопределенности .

Само утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше принципом неопределенности Гейзенберга . Принцип неопределенности Гейзенберга является одним из фундаментальных положений квантовой механики.

Важно отметить, что канонически сопряженными являются энергия и время, и справедливо соотношение:

(33.6) в частности, означает, что для измерения энергии с погрешностью не более (порядка) необходимо затратить время не менее . С другой стороны, если известно, что в некотором состоянии частица не может находиться более , то можно утверждать что энергия частицы в этом состоянии не может быть определена с погрешностью менее



Соотношение неопределенностей определяет возможность использования классических понятий для описания микрообъектов. Очевидно, что чем больше масса частицы, тем меньше произведение неопределенностей ее координаты и скорости . Для частиц с размерами порядка микрометра неопределенности координаты и скорости становятся столь малы, что оказываются за пределами точности измерений, и движение таких частиц можно рассматривать происходящим по определенной траектории.

При определённых условиях даже движение микрочастицы может рассматриваться, как происходящее по траектории. Например, движение электрона в ЭЛТ.

Соотношение неопределенностей, в частности, позволяет объяснить, почему электрон в атоме не падает на ядро. При падении электрона на ядро его координаты и импульс приняли бы одновременно определенные, а именно нулевые значения, что запрещено принципом неопределенности. Важно отметить, что принцип неопределенности – это базовое положение, которое определяет невозможность падения электрона на ядро наряду с рядом других следствий без принятия дополнительных постулатов.

Оценим на основе соотношения неопределенностей минимальные размеры атома водорода. Формально, с классической точки зрения, энергия должна быть минимальна при падении электрона на ядро, т.е. при и . Поэтому для оценки минимальной размеров атома водорода можно считать что, что его координата и импульс совпадают с неопределенностями этих величин: . Тогда они должны быть связаны соотношением:

Энергия электрона в атоме водорода выражается формулой:

(33.8)

Выразим импульс из (33.7) и подставим в (33.8):

. (33.9)

Найдем радиус орбиты , при котором энергия минимальна. Дифференцируя (33.9) и приравнивая производную нулю, получаем:

. (33.10)

Поэтому радиус расстояние от ядра, на котором электрон имеет минимальную энергию в атоме водорода, можно оценить по соотношению

Это значение совпадает с радиусом воровской орбиты.

Подставив найденное расстояние в формулу (33.9), получим выражение для минимальной энергии электрона в атоме водорода:

Это выражение также совпадает с энергией электрона на орбите минимального радиуса в теории Бора.

Уравнение Шрёдингера

Поскольку, по идее Де-Бройля, движение микрочастицы связано с некоторым волновым процессом, Шрёдингер сопоставил ее движению комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил . Часто это функцию так и называют – «пси-функция». В 1926 году Шрёдингер сформулировал уравнение, которому должна удовлетворять :

. (33.13)

В этом уравнении:

m – масса частицы;

;

– функция координат и времени, градиент, который с обратным знаком определяет силу, действующую на частицу.

Уравнение (33.13) называется уравнением Шрёдингера . Отметим, что уравнение Шрёдингера не выводится из каких-либо дополнительных соображений. Фактически оно является постулатом квантовой механики, сформулированным на основе аналогии уравнений оптики и аналитической механики. Фактическим обоснованием уравнения (33.13) Является соответствие результатов, полученных на его основе экспериментальным фактам.

Решая (33.13), получают вид волновой функции, описывающей рассматриваемую физическую систему, например, состояния электронов в атомах. Конкретный вид - функции определяется характером силового поля, в котором находится частица, т.е. функцией .

Если силовое поле стационарно , то не зависит явно от времени и имеет смысл потенциальной энергии . В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

где – полная энергия системы, которая в случае стационарного поля остаётся постоянной.

Подставив (33.14) в (33.13), получим:

После сокращения на ненулевой множитель получаем уравнение Шредингера, справедливое в указанных ограничениях:

. (33.15)

Уравнение (33.15) называется уравнением Шрёдингера для стационарных состояний , которое обычно записывают в виде.