Возрастная анатомия и физиология Антонова Ольга Александровна

Тема 4. РАЗВИТИЕ РЕГУЛЯТОРНЫХ СИСТЕМ ОРГАНИЗМА

4.1. Значение и функциональная деятельность элементов нервной системы

Координация физиологических и биохимических процессов в организме происходит посредством регуляторных систем: нервной и гуморальной. Гуморальная регуляция осуществляется через жидкие среды организма – кровь, лимфу, тканевую жидкость, нервная регуляция – посредством нервных импульсов.

Главное назначение нервной системы заключается в обеспечении функционирования организма как единого целого через взаимосвязь между отдельными органами и их системами. Нервная система осуществляет восприятие и анализ разнообразных сигналов из окружающей среды и от внутренних органов.

Нервный механизм регуляции функций организма более совершенен, нежели гуморальный. Это, во-первых, объясняется быстротой распространения возбуждения по нервной системе (до 100–120 м/с), а во-вторых, тем, что нервные импульсы приходят непосредственно к определенным органам. Однако следует иметь в виду, что вся полнота и тонкость приспособления организма к окружающей среде осуществляются при взаимодействии и нервных, и гуморальных механизмов регуляции.

Общий план строения нервной системы. В нервной системе по функциональному и структурному принципу выделяют периферическую и центральную нервную систему.

Центральная нервная система состоит из головного и спинного мозга. Головной мозг расположен внутри мозгового отдела черепа, а спинной мозг – в позвоночном канале. На разрезе головного и спинного мозга различают участки темного цвета (серое вещество), образованные телами нервных клеток (нейронов), и белого цвета (белое вещество), состоящие из скоплений нервных волокон, покрытых миелиновой оболочкой.

Периферическая часть нервной системы состоит из нервов, например пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней также относят любые скопления нервных клеток вне спинного и головного мозга, такие как нервные узлы, или ганглии.

Нейрон (от греч. neuron – нерв) – основная структурная и функциональная единица нервной системы. Нейрон – это сложно устроенная высокодифференцированная клетка нервной системы, функцией которой является восприятие раздражения, переработка раздражения и передача его к различным органам тела. Нейрон состоит из тела клетки, одного длинного маловетвящегося отростка – аксона и нескольких коротких ветвящихся отростков – дендритов.

Аксоны бывают различной длины: от нескольких сантиметров до 1–1,5 м. Конец аксона сильно ветвится, образуя контакты со многими клетками.

Дендриты – короткие сильноветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов.

В различных отделах нервной системы тело нейрона может иметь различную величину (диаметром от 4 до 130 мк) и форму (звездчатую, округлую, многоугольную). Тело нейрона покрыто мембраной и содержит, как и все клетки, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть.

Возбуждение по дендритам передается от рецепторов или других нейронов к телу клетки, а по аксону сигналы поступают к другим нейронам или рабочим органам. Установлено, что от 30 до 50 % нервных волокон передают информацию в центральную нервную систему от рецепторов. На дендритах имеются микроскопических размеров выросты, которые значительно увеличивают поверхность соприкосновения с другими нейронами.

Нервное волокно. За проведение нервных импульсов в организме отвечают нервные волокна. Нервные волокна бывают:

а) миелинизированные (мякотные); чувствительные и двигательные волокна этого типа входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру, а также участвуют в деятельности вегетативной нервной системы;

б) немиелинизированные (безмякотные), принадлежат в основном симпатической нервной системе.

Миелин выполняет изолирующую функцию и имеет слегка желтоватый цвет, поэтому мякотные волокна выглядят светлыми. Миелиновая оболочка в мякотных нервах через промежутки равной длины прерывается, оставляя открытыми участки осевого цилиндра – так называемые перехваты Ранвье.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друга только шванновскими клетками (миелоцитами).

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование систем внутренних органов ¦ СЕРДЕЧНОСОСУДИСТАЯ СИСТЕМАИсследование сердечнососудистой системы осуществляется путем выслушивания тонов сердца и пульса артерий и вен. Сердечная недостаточность, сопровождаемая внутрисердечными шумами, бывает обусловлена

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

Глава 6 ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Развитие систем органов плода собаки Обмен веществ между плодом и матерью происходит в плаценте. Питание плода осуществляется за счет поступления в его кровь питательных веществ из крови матери и за счет секрета эпителия слизистой оболочки. Некоторое количество

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

Тема 1. ЗАКОНОМЕРНОСТИ РОСТА И РАЗВИТИЯ ДЕТСКОГО

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Тема 2. ВЛИЯНИЕ НАСЛЕДСТВЕННОСТИ И СРЕДЫ НА РАЗВИТИЕ ДЕТСКОГО ОРГАНИЗМА 2.1. Наследственность и ее роль в процессах роста и развития Наследственностью называется передача родительских признаков детям. Некоторые наследственные качества (форма носа, цвет волос, глаз,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Активизация защитных систем организма и устойчивость к абиотическим факторам Наряду с селекцией на устойчивость к болезням и вредителям, в странах Западной Европы и США ведется работа по повышению потенциальной урожайности видов растений, обладающих генетически

Из книги Основы психофизиологии автора Александров Юрий

Из книги Мозг, разум и поведение автора Блум Флойд Э

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7. ВЗАИМОДЕЙСТВИЕ СЕНСОРНЫХ СИСТЕМ Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

1. ОБЩИЕ СВОЙСТВА СЕНСОРНЫХ СИСТЕМ Сенсорной системой называют часть нервной системы, воспринимающую внешнюю для мозга информацию, передающую её в мозг и анализирующую её. Сенсорная система состоит из воспринимающих элементов – рецепторов, нервных путей, передающих

Из книги автора

1.1. Методы исследования сенсорных систем Функции сенсорных систем исследуют в электрофизиологических, нейрохимических и поведенческих опытах на животных, проводят психофизиологический анализ восприятия у здорового и больного человека, а также с помощью ряда

Из книги автора

2. ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ 2.1. Что такое система? Термин «система» обычно применяется для того, чтобы указать на собранность, организованность группы элементов и отграниченность её от других групп и элементов. Давалось множество определений системы, которые

Из книги автора

7.1. Историческая детерминация уровневой организации систем Представления о закономерностях развития многими авторами разрабатываются в связи с идеями уровневой организации (см. в [Анохин, 1975, 1980; Роговин, 1977; Александров, 1989, 1995, 1997]). Процесс развития рассматривается как

Из книги автора

Общая модель сенсорной и двигательной систем На протяжении веков люди пользовались различными приспособлениями для связи друг с другом - от очень простых сигналов (сверкание отраженного солнечного света, передаваемого от одного наблюдательного поста к другому) до

Из книги автора

Глава 6 Особенности продуцирования биологических систем 6.1. Общие понятия, термины, определения В экологии принято количество живого вещества всех групп растительных и животных организмов называть биомассой. Она является результирующей величиной всех процессов

Из книги автора

8.5. Единство регуляторных систем организма Сигнальные молекулы традиционно делили на три группы, согласно «дальности» действия сигнала. Гормоны переносятся кровью по всему организму, медиаторы – в пределах синапса, гистогормоны – в пределах соседних клеток. Однако

Регуляторные системы организма человека - Дубынин В.А. - 2003.

В пособии на современном уровне, но в доступной для читателя форме изложены основы знаний по анатомии нервной системы, нейрофизиологии и нейрохимии (с элементами психофармакологии), физиологии высшей нервной деятельности и нейроэндокринологии.
Для студентов ВУЗов, обучающихся по направлению подготовки 510600 Биология, биологическим, а также медицинским, психологическим и другим специальностям.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ - 5с.
ВВЕДЕНИЕ - 6-8с.
1 ОСНОВЫ КЛЕТОЧНОГО СТРОЕНИЯ ЖИВЫХ ОРГАНИЗМОВ - 9-39с.
1.1 Клеточная теория - 9с.
1.2 Химическая организация клетки -10-16с.
1.3 Строение клетки - 17-26с.
1.4 Синтез белков в клетке - 26-31с.
1.5 Ткани: строение и функции - 31-39с.
2 СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ - 40-96с.
2.1 Рефлекторный принцип работы мозга - 40-42с.
2.2 Эмбриональное развитие нервной системы - 42-43с.
2.3 Общее представление о строении нервной системы - 43-44с.
2.4 Оболочки и полости центральной нервной системы - 44-46с.
2.5 Спинной мозг - 47-52с.
2.6 Общее строение головного мозга - 52-55с.
2.7 Продолговатый мозг - 56-57с.
2.8 Мост - 57-бОс.
2.9 Мозжечок - 60-62с.
2.10 Средний мозг - 62-64с.
2.11 Промежуточный мозг - 64-68с.
2.12 Конечный мозг - 68-74с.
2.13 Проводящие пути головного и спинного мозга - 74-80с.
2.14 Локализация функций в коре полушарий большого мозга - 80-83с.
2.15 Черепные нервы - 83-88с.
2.16 Спинномозговые нервы - 88-93с.
2.17 Автономная (вегетативная) нервная система - 93-96с.
3 ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ - 97-183с.
3.1 Синаптические контакты нервных клеток - 97-101 с.
3.2 Потенциал покоя нервной клетки - 102-107с.
3.3 Потенциал действия нервной клетки -108-115с.
3.4 Постсинаптические потенциалы. Распространение потенциала действия по нейрону- 115-121с.
3.5 Жизненный цикл медиаторов нервной системы -121-130с.
3.6 Ацетилхолин - 131-138с.
3.7 Норадреналин - 138-144с.
3.8 Дофамин-144-153С.
3.9 Серотонин - 153-160с.
3.10 Глутаминовая кислота (глутамат) -160-167с.
3.11 Гамма-аминомасляная кислота-167-174с.
3.12 Другие медиаторы-непептиды: гистамин, аспарагиновая кислота, глицин, пурины - 174-177с.
3.13 Медиаторы-пептиды - 177-183с.
4 ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ - 184-313с.
4.1 Общие представления о принципах организации поведения. Компьютерная аналогия работы центральной нервной системы - 184-191с.
4.2 Возникновение учения о высшей нервной деятельности. Основные понятия физиологии высшей нервной деятельности -191-200с.
4.3 Разнообразие безусловных рефлексов - 201-212с.
4.4 Разнообразие условных рефлексов - 213-223с.
4.5 Неассоциативное обучение. Механизмы кратковременной и долговременной памяти - 223-241с.
4.6 Безусловное и условное торможение - 241-251с.
4.7 Система сна и бодрствования - 251-259с.
4.8 Типы высшей нервной деятельности (темпераменты) - 259-268с.
4.9 Сложные типы ассоциативного обучения животных - 268-279с.
4.10 Особенности высшей нервной деятельности человека. Вторая сигнальная система - 279-290с.
4.11 Онтогенез высшей нервной деятельности человека - 290-296с.
4.12 Система потребностей, мотиваций, эмоций - 296-313с.
5 ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ -314-365с.
5.1 Общая характеристика эндокринной системы - 314-325с.
5.2 Гипоталамо-гипофизарная система - 325-337с.
5.3 Щитовидная железа - 337-341с.
5.4 Паращитовидные железы - 341-342с.
5.5 Надпочечники - 342-347с.
5.6 Поджелудочная железа - 347-350с.
5.7 Эндокринология размножения - 350-359с.
5.8 Эпифиз, или шишковидная железа - 359-361с.
5.9 Тимус - 361-362с.
5.10 Простагландины - 362-363с.
5.11 Регуляторные пептиды - 363-365с.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ - 366-367с.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Регуляторные системы организма человека - Дубынин В.А. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

В результате изучения данной главы студенты должны:

знать

  • виды межклеточных коммуникаций;
  • свойства гормонов и гормоноподобных веществ;
  • строение гормональных рецепторов;
  • механизмы реализации гормональных аффектов;

уметь

  • давать характеристику основным группам гормонов и основным типам метаботропных рецепторов;
  • разобраться в местах локализации гормональных рецепторов и в механизмах экскреции гормонов;

владеть

Методами прогноза возможных физиологических эффектов на основе химической структуры гормона и типа рецептора.

Регуляторные системы организма. Виды гуморальной регуляции и место эндокринной системы

Организм человека состоит приблизительно из 10 13 клеток, и все эти клетки должны работать согласованно, обеспечивая его выживание и, более того, оптимальное существование в постоянно меняющихся условиях. Для того чтобы из миллиардов клеток создать целостный, интегрированный организм, способный к самовосстановлению, самовоспроизведению и адаптации, необходима постоянно действующая система межклеточных коммуникаций, без которых невозможна надежная система управления функциями.

Уровни управления в организме можно разделить на внутриклеточные (обеспечивающие управление на уровне клетки) и межклеточные (обеспечивающие согласованную работу различных тканей, органов и систем органов целостного организма). В каждом случае системы управления могут быть неспециализированными и специализированными. Для соединений, используемых в неспециализированных системах управления, функция передачи информации не является главной, а акцент сдвинут в сторону их использования в качестве источников пластического или энергетического материала. Таким веществом может быть, например, глюкоза. В специализированном управлении участвуют соединения, главной функцией которых является передача информации, поэтому их называют сигнальными.

В ходе эволюционного процесса сформировались три системы , так или иначе отвечающие названию «сигнальные»: нервная , эндокринная и иммунная. Они очень сильно связаны между собой, что дает основание говорить о единой нейро-иммунно-эндокринной системе, хотя их описание на первых порах приходится производить раздельно. Все эти системы способны к дистантному управлению процессами жизнедеятельности, но достигают этого разными способами.

В зависимости от расстояния действия сигнального соединения различают местное и системное управление.

К местному {региональному) управлению относятся внутриклеточная (интракринная), аутокринная, юкстакринная и паракринная системы контроля (рис. 1.1).

Рис. 1.1.

При внутриклеточном контроле вещество-регулятор вырабатывается в клетке и действует на ее работу через внутриклеточные рецепторы. При аутокринном, ткстакринном и паракринном контроле вещество-регулятор покидает клетку и воздействует на нее же или на соседние клетки.

Системное управление отличается большой дистантностыо воздействия и подразделяется на эндокринное, нейроэндокринное и нейрокрин- ное (рис. 1.2).

Рис. 1.2.

а - эндокринный; б - нсйрокринный; в - нейроэндокринный

При эндокринной форме регуляции клетки железы или какой-то иной клетки выделяют гормон (от греч. оррасо - возбуждаю), который попадает в системный кровоток и способен воздействовать на все структуры организма, в которых есть рецепторы к этому гормону. Форма гормонального ответа зависит от типа ткани и разновидностей рецептора, реагирующих на этот гормон.

При нейроэндокринной форме регуляции нейрогормон сегрегируется терминалями аксонов в специализированную капиллярную сеть и из нее поступает в системный кровоток. Далее происходят те же явления, что и в случае эндокринного способа системной регуляции.

При нейрокринной форме регуляции нейроны вырабатывают нейромедиаторы, воздействующие на близлежащие клеточные структуры через специализированные рецепторы. Следовательно, имеет место разновидность паракринной регуляции, при которой дистантность действия достигается длиной аксонов и количеством синаптических переключений.

Вещества, выполняющие специфические функции передачи информации от одной клетки к другой, называются информонами. Информоны обычно не выполняют энергетических или пластических функций, а действуют на клетки через специальные распознающие молекулы - рецепторы. Содержание информонов в крови очень мало (10 6 -10“ 12 моль), а время их жизни обычно очень коротко, хотя они могут запускать длительные регуляторные каскады как в отдельных клетках, так и организме в целом.

Среди информонов с некоторой долей условности выделяют группу тканевых гормонов (гистогормонов), участвующих главным образом в процессах местной регуляции. Однако гистогормоны могут включаться и в общую регуляторную систему организма. Обычно гистогормоны секре- тируются из отдельных клеток различных систем органов, не образуя специализированных желез. Примером могут служить простагландины и тромбоксаны. Гистогормоны обычно действуют короткое время и вблизи от места секреции.

Вторая группа информонов - гормоны. Гормоны обычно образуются в особых секреторных клетках, которые или образуют компактные органы - железы, или расположены по одной или группами внутри органов. Секреторным клеткам свойственны некоторые морфологические особенности. Обычно синтез и «упаковка» гормонов происходят в одной части клеток, а их выброс в кровь - в другой. Чаще всего синтезируемые гормоны накапливаются к комплексе Гольджи - основном «складском помещении» клетки. Там, по мере надобности, гормоны упаковываются в маленькие секреторные пузырьки - гранулы, которые отпочковываются от комплекса Гольджи и передвигаются по цитоплазме к наружной мембране клетки, через которую гормон выбрасывается в кровь. Некоторые гормоны, например половые, не упаковываются в гранулы и выходят из секретирующей клетки в виде отдельных молекул. Выброс гормона в кровь происходит не постоянно, но только в том случае, когда к секретирующей клетке приходит специальный сигнал, под действием которого пузырьки высвобождают гормон во внеклеточную среду.

Однако в последние годы стало очевидно, что гормоны смогут выделяться не только из клеток специализированных эндокринных желез, но и из клеток многих других органов и тканей. Так, нейроны гипоталамуса способны вырабатывать целый набор гормональных факторов, таких как либерины, статины и другие гормоны, клетки сердечной мышцы выделяют в кровь натрийуретический пептид, лимфоциты выделяют ряд гормонов - стимуляторов иммунитета, наконец, множество пептидных гормонов синтезируются в слизистой кишечника.

В многоклеточном организме существует единая нейро-эндокринная система, которая обеспечивает согласованную регуляцию функций, структур и обмена веществ в различных органах и тканях.

Нервная система, как правило, через химический синапс (с помощью медиаторов), влияет на ближайшую к нервному окончанию клетку, а эндокринные образования вырабатывают гормоны, действующие на множество, даже удаленных от места их выработки, органов и тканей.

Нервная и эндокринная системы регулируют активность друг друга. Кроме того, одни и те же биологически активные вещества (БАВ) могут секретироваться эндокринными железами и нейронами (например, норадреналин).

Даже один отдел нервной системы (например, гипоталамус) способен влиять на другие структуры, как по нервным путям, так и с помощью гормонов.

Общая физиология эндокринной системы

Существование эндокринной системы невозможно без секреторных клеток. Они, вырабатывают свои биологически активные секреты (гормоны), которые поступают во внутренние внеклеточные среды организма (тканевая жидкость, лимфа и кровь). Поэтому эндокринные железы часто называют железами внутренней секреции.

В эндокринную систему входят (рис. 1) эндокринные железы (органы, в которых большинство клеток секретируют гормоны), нейрогемальные образования (нейроны, секретирующие вещества, обладающие свойствами гормонов)и диффузная эндокринная система (клетки секретирующие гормоны в органах и тканях, состоящих преимущественно из «неэндокринных» структур).

Рис. 1. Основные представители эндокринной системы: а) железы внутренней секреции (на примере надпочечника); б) нейрогемальные образования и в) диффузная эндокринная система (на примере поджелудочной железы).

К железам внутренней секреции относятся: гипофиз, щитовидная и околощитовидные железы, надпочечник и эпифиз. Примером нейрогемальной структуры являются нейроны секретирующие окситоцин, а диффузная эндокринная система наиболее характерна для поджелудочной железы, пищеварительного тракта, половых желез, тимуса и почек.

Эндокринные железы постоянно секретируют гормоны (базальный уровень секреции ), а уровень такой секреции, как правило, зависит от скорости их синтеза (только щитовидная железа накапливает в виде коллоида значительные количества гормонов ).

Таким образом, в соответствии с классической моделью эндокринной системы, гормон выделяется эндокринными железами в кровь, циркулирует с ней по всему организму и взаимодействует с клетками-мишенями независимо от степени удаления их от источника секреции.

Гормоны Свойства и классификации гормонов

Гормоны – это органические соединения, вырабатываемые в кровь специализированными клетками и влияющие вне места своего образования на определенные функции организма.

Для гормонов характерны: специфичность и высокая биологическая активность, дистантность действия, способность к прохождению через эндотелий капилляров и быстрая обновляемость.

Специфичность проявляется местом образования и избирательным действием гормонов на клетки. Биологическая активность гормонов характеризуется чувствительностью мишени к очень низким их концентрациям (10 -6 -10 -21 М). Дистантность действия заключается в проявлении эффектов гормонов на значительном расстоянии от места их образования (эндокринное действие). Способность к прохождению через эндотелий капилляров облегчает секрецию гормонов в кровь и переход их к клеткам-мишеням, а быстрая обновляемость объясняется высокой скоростью инактивации гормона или выведения из организма.

По химической природе гормоны делят на белковые, стероидные, а также производные аминокислот и жирных кислот.

Белковые гормоны дополнительно делят на полипептиды и протеиды (белки). К стероидным относят гормоны коры надпочечника и половых желез. Производными аминокислоты тирозина являются катехоламины (адреналин, норадреналин и дофамин) и тиреоидные гормоны, а жирных кислот - простогландины, тромбоксаны и лейкотриены.

У всех небелковых и некоторых небелковых гормонов также отсутствует видовая специфичность.

Вызываемые гормонами эффекты делят (рис. 2) на метаболические, морфогенетические, кинетические и коррегирующие (например, адреналин усиливает сердечные сокращения, но и без него сердце сокращается).

Эффекты

Метаболи-ческие

Морфогене-тические

Кинетические

Коррегирующие

Изменяют интенсивность обмена веществ

Регулируют дифференцировку и метаморфоз тканей

Повышают активность клеток-мишеней

Влияют на структуры, способные работать и при отсутствии гормонов

Рис. 2. Основные физиологические эффекты гормонов.

Гормоны переносятся кровью в растворенном и связанном (с белками) состояниях. Связанные гормоны неактивны и не разрушаются. Поэтому белки плазмы обеспечивают функции транспорта и депо гормона в крови. Часть из них (например, альбумины) взаимодействует с многими гормонами, но существуют и специфические переносчики. Например, кортикостероиды преимущественно связываются с транскортином.

Регуляция многих процессов в организме обеспечивается по принципу обратной связи. Он впервые был сформулирован отечественным ученым М.М. Завадовским в 1933 г. Под обратной связью подразумевается влияние результата деятельности системы на ее активность.

Различают «длинный», «короткий» и «ультракороткий» (рис. 3) уровни обратной связи.

Рис. 3. Уровни обратной связи.

Длинный уровень регуляции обеспечивает взаимодействие удаленных клеток, короткий – находящихся в соседних тканях, а ультракороткий – только в пределах одного структурного образования.

Является ли калорийность продуктов решающим фактором, влияющим на вес? Попробуем в этом разобраться.

Регуляторная система организма

Всю , которую мы получаем, расходуем на различные нужды: синтез ферментов, поддержание температуры тела, выполняемую работу, перемещение в пространстве, на мышление и нервную деятельность и т.д. Чем больше расход энергии, тем более интенсивным становится обмен веществ и лучше протекает процесс (до определенного рубежа).

Между поступлением энергии и ее расходованием поддерживается удивительный баланс, работает механизм саморегуляции.

В организме человека он осуществляется на нескольких уровнях. В биологическом теле координирует процесс головной мозг, он может вторгнуться в работу любой из систем, вплоть до отдельной клетки.

Однако в условиях обычной жизни текущие задачи в организме решает подсознание, которое в свою очередь также имеет несколько этажей иерархии, но на этом мы не будем делать акцент. Сейчас важен следующий момент: если дать определенную установку или программу своему подсознанию, возможно творить чудеса со своим телом.

Помимо непосредственного вмешательства подсознание оказывает влияние на организм с помощью сложной многоуровневой системы гормональной регуляции. В ее состав входит гипоталамус - основной координирующий центр, гипофиз - среднее звено, которому подчиняются железы внутренней секреции. Обмен же регулируют уже непосредственно гормоны.

Таким образом, оказывается, что в первую очередь на вес человека оказывают воздействие внутренние причины - установки подсознания и гормональное равновесие. А на них в свою очередь влияют здоровье (точнее патологии), генотип и эмоции.

Американскими учеными было доказано, ЧТО СРЕДНИЙ ВЕС ЧЕЛОВЕКА НЕ ЗАВИСИТ ОТ КАЛОРИЙНОСТИ ПИЩИ. Естественно, подразумеваются нормальные условия, когда отсутствуют какие-либо насильственные ограничения в еде.

То есть складывается следующая ситуация, что как бы утверждает определенный вес. Если имеет место небольшое временное переедание, то избыток энергии усиливает обмен и переходит в тепло, пока не установится баланс. Если же в течение длительного времени сознательно переедать, то, несомненно, жировые запасы начнут пополняться. Но если человек прекратит это делать, то вес вскоре начнет возвращаться к исходному. Разумеется, что такие перегрузки бесследно не пройдут, внутренние органы будут преждевременно изнашиваться.

В ситуации недоедания организм использует свои запасы и существует за их счет. Процесс теплообразования в целях экономии снижается, обмен веществ замедляется. Возникает голод, который человек стремиться утолить, и резервы организма пополняются.

К сожалению, эта регуляторная система организма не является такой, как нам хотелось бы. Природе не знакома ленивая жизнь в условиях изобилия. Задача выживания требует от нашего организма отложения небольшого количества жировых запасов «на черный день». И если человек питается обильно и сытно, понемногу формируются резервы на «черные дни», которые всё не наступают, а запасы продолжают расти….

Взаимосвязь усвоения пищи и возраста

Кроме того, с возрастом изменяется соотношение между синтезируемыми гормонами, и баланс начинает смещаться в сторону накопления веса. Некоторые автора (В. Дильман) считают, что ожирение - это нормальное следствие старения.

Дело в том, что к 22-25 годам завершается процесс полового созревания и роста, и постепенно начинает снижаться уровень метаболических гормонов. В итоге - ежегодно усвоение питательных элементов уменьшается на 1-2% и к 50 годам у людей, относительно здоровых, он составляет 40-50% от юношеского уровня и еще меньше - у тех, кто болен.

Хотя рост остановился, но клетки организма продолжают безостановочно делиться и обновляться. Увеличивается потребность организма в энергии и питательных элементах, ведь люди рождают и воспитывают детей, продвигаются по службе и т.п. Кроме того, ухудшается работа ЖКТ и эндокринной системы в организме, усугубляется питательный дефицит под воздействием болезней, лекарств, курения, алкоголя, стрессовых ситуаций, различных стимуляторов.

Ощущение голода люди продолжают утолять привычным количеством пищи, однако на клеточном уровне организм испытывает голод в связи с усвоением все меньшего количества необходимых элементов. Этот недостаток активизирует защитные функции организма - начинают накапливаться жировые запасы в области талии, бедер, живота, груди и иных генетически предрасположенных мест.

Типичной реакцией большинства женщин и мужчин и женщин в ответ на уменьшение процесса усвоения пищи, повышение нагрузок, увеличения массы тела, нехватку энергии является строгая диета и занятия спортом. Как результат, организм в условиях дефицита отвечает заболеваниями, депрессивными состояниями, усталостью, преждевременный старением.

Выходом из сложившейся ситуации является , которое обеспечит здоровье и долголетие, но об этом в других статьях.

Разумеется, человек в состоянии сознательно сместить внутренний баланс в нужную ему сторону. Но это требует отличной работы регуляторных систем , а для этого кому-то придется сбросить лишний вес, увеличить физическую нагрузку, отказаться от милых сердцу пирожных и пончиков.

Нарушение совершенной регуляции является заболеванием, а заболевание не может быть "нормальным". Ведь в "норме" человек имеет хорошее сложение, чувствует себя бодрым и сильным, а когда он худой или толстый, то это уже патология.

Увеличение веса может быть причиной попустительского отношения к себе у здоровых людей, правда, само по себе ожирение быстро спровоцирует развитие заболеваний. Кроме того, излишний вес часто бывает результатом врожденных или приобретенных заболеваний регуляторной системы организма. К примеру, когда с раннего детства ребенка закармливают, организм будет адаптироваться к этому и формировать новые жировые клетки. То есть родители будут обрекать свое чадо быть полным.

Истощение или ненормальная худоба также, как правило, является свидетельством какого-то скрытого недуга - наличия нервного либо гормонального расстройства, желудочного или кишечного заболевания и т. д.

Резюмируя все вышесказанное, сформулируем несколько положений:

1. Решающая роль в поддержании веса принадлежит регуляторным системам организма, а не калориям. Они координируют расход энергии, управляют чувством голода. Ожирение или худоба говорят о поломках в механизмах регуляции врожденного, приобретенного или возрастного характера.

2. В большей степени на работу регуляторных систем воздействуют повторяющиеся внешние воздействия - питание, физическая нагрузка, эмоции и т.п. Если имеют место систематические несоответствия любого рода, равновесие нарушается. Но само это положение дает нам возможность сознательно влиять на регуляторные системы организма.

3. Оптимизировать энергетический обмен и вес возможно только с помощью комплексного подхода - , физкультуры, психической гигиены. С помощью соблюдения одной только диеты можно будет поддерживать вес в течение некоторого времени, да и то не всегда. Но эта дисгармония не даст телу здоровья и долголетия.

И самый главный вывод: «ПОДСЧЕТ КАЛОРИЙ НЕ НУЖЕН». Когда организм в состоянии принимать пищу, автоматически дефицит энергии возбуждает здоровый голод. И утоление его без переедания является самым разумным способом питания.