Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Статистика - это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороны.

Статистическое исследование независимо от его масштабов и целей всегда завершается расчетом и анализом различных по виду и форме выражения статистических показателей.

Статистический показатель представляет собой количественную характеристику социально-экономических явлений и процессов в условиях качественной определенности.

Как правило, изучаемый статистикой процесс и явления достаточно сложны, и их сущность не может быть отражена посредством одного отдельно взятого показателя. В таких случаях используется система показателей.

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака в статистической совокупности. Средняя величина дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Она отражает уровень этого признака, отнесенный к единице совокупности. Широкое применение средних объясняется тем, что они имеют ряд положительных свойств, делающих их независимым инструментом анализа явлений и процессов в экономике.

Важнейшее свойство средней величины заключается в том, что она отражает от общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызнанные действием основных факторов. Это позволяет средней абстрагировать от индивидуальных особенностей, присуще отдельным единицам.

Информации о средних уровнях исследуемых показателей обычно бывает недостаточно для глубокого анализа изучаемого процесса или явления. Необходимо также учитывать и вариацию значений отдельных единиц относительно средней, которая является важной характеристикой изучаемой совокупности. Значительной вариации, например, подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды.

Основными показателями, характеризующим вариацию, является размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

1 . Средние величины

1.1 Понятие средней величины

Средняя величина - это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего - один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.

1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.

2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.

3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.

4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

1.2 Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качествеструктурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i - варианта (значение) усредняемого признака;

n - число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

где X i - варианта (значение) усредняемого признака или серединное значение интервала, в котором измеряется варианта;

m - показатель степени средней;

f i - частота, показывающая, сколько раз встречается i-e значение усредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:

В результате группировки получаем новый показатель - частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:

средняя гармоническая, если m = -1;

средняя геометрическая, если m -> 0;

средняя арифметическая, если m = 1;

средняя квадратическая, если m = 2;

средняя кубическая, если m = 3.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 1. Виды степенных средних

Вид степенной

Показатель

степени (m)

Формула расчета

Взвешенная

Гармоническая

Геометрическая

Арифметическая

Квадратическая

Кубическая

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 Ч i 1 Ч i 2 Ч...Чi n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

1.3 Структурные средние

Особый вид средних величин - структурные средние - применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды - наиболее часто повторяющегося значения признака - и медианы - величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой - не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

где X Me - нижняя граница медианного интервала;

h Me - его величина;

(Sum m)/2 - половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);

S Me-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;

m Me - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo - нижнее значение модального интервала;

m Mo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);

m Mo-1 - то же для интервала, предшествующего модальному;

m Mo+1 - то же для интервала, следующего за модальным;

h - величина интервала изменения признака в группах.

2 . Показатели вариации

2.1 Общее понятие о вариации

средний величина мода вариация

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае. Средняя величина - это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность. В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность. Колеблемость отдельных значений характеризуют показатели вариации. Термин "вариация" произошел от латинского variatio -“изменение, колеблемость, различие”. Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую. Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.

Вариацией называется различие значений признака у отдельных единиц совокупности.

Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности.

Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.

Вариации в пространстве показывают различие статистических показателей относящихся к различным административно-территориальным единицам.

Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.

2. 2 Сущность и значение показателей вариации

2. 2 .1 Абсолютные показатели вариации (=42, без коэффициен та)

К примерам вариаций относятся следующие показатели:

1. размах вариаций

2. среднее линейное отклонение

3. среднее квадратическое отклонение

4. дисперсия

5. коэффициент

1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблемость внутри совокупности.

2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.

3. Среднее квадратическое отклонение определяется как корень из дисперсии.

4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблемости.

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака.

5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах.

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.

Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины.

Свойства дисперсии:

1. Дисперсия постоянной величины равна нулю.

2. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии. Значит средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

3. Уменьшение всех значений признака в k раз уменьшает дисперсию в k2 раз, а среднее квадратическое отклонение - к раз. Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.

4. Если исчислить средний квадрат отклонений от любой величины А, то в той или иной степени отличающейся от средней арифметической (X~), то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Выделяют дисперсию общую, межгрупповую и внутригрупповую.

Общая дисперсия (2 измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Межгрупповая дисперсия ((2x) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки.

Внутригрупповая дисперсия ((2i) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки.

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий.

Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

Правило сложения дисперсий широко применяется при исчислении показателей тесноты связей, в дисперсионном анализе, при оценке точности типической выборки и в ряде других случаев.

2. 2 .2 Относительные показатели вариации

Для сравнения вариации в разных совокупностях рассчитываются относительные показатели вариации. К ним относятся коэффициент вариации, коэффициент осцилляции и линейный коэффициент вариации (относительное линейное отклонение).

Коэффициент вариации - это отношение среднеквадратического отклонения к среднеарифметическому, рассчитывается в процентах:

Коэффициент вариации позволяет судить об однородности совокупности:

17% - абсолютно однородная;

17-33%% - достаточно однородная;

35-40%% - недостаточно однородная;

40-60%% - это говорит о большой колеблемости совокупности.

Отсюда, отношения каждой из перечисленных абсолютных оценок вариации к среднему значению, являются оценками относительных показателей вариации:

Относительный размах

Относительное отклонение

Относительное среднее квадратическое отклонение

Относительный межквартальный полуразмах

Интенсивность вариации показывает, какая степень вариации приходится на единицу среднего значения случайной величины.

Коэффициент осцилляции - это отношение размаха вариации к средней, в процентах. Отражает относительную колеблемость крайних значений признака вокруг средней. Линейный коэффициент вариации характеризует долю усредненного значения абсолютного отклонения от средней величины. При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической используются относительные показатели вариации. Они вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане) и чаще всего выражаются в процентах. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной. Его применяют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности.

3 . Практическ ая работ а

3.1 Задача №1

Условие: Определить снижение себестоимости в отчетном году по сравнению с базисным по всем видам продукции, для чего рассчитайте общий индекс себестоимости, укажите сумму экономии от снижения себестоимости продукции.

1) Найдем общие затраты на производство в отчетном году по каждому виду продукции:

Себестоимость продукции №1 по сравнению с прошлым годом увеличилась на 2 единицы за каждую штуку, следовательно 780тыс.руб. х 2 = 1560тыс.руб.

Себестоимость продукции №2 = 690тыс.руб./ |-13| = 53,08тыс.руб.

Себестоимость продукции №3 = 745тыс.руб./ |-4| = 186,25тыс.руб.

2)Отсюда мы узнаем рентабельность продукции:

Продукция №1=780тыс.руб.-1560тыс.руб.= -780тыс.руб. составил перерасход в отчетном году на производство продукции №1

Продукция №2 =690тыс.руб.-53,08=636,92тыс.руб. составила экономия от производства продукции №2 в отчетном году

Продукция №3=745тыс.руб.-186,25=558,75тыс.руб. было сэкономлено в отчетном году от производства продукции №3

3)Полученные данные необходимо отразить в таблице.

Продукция

Общие затраты на производство в прошлым году, тыс.руб. С0

Изменение себестоимости 1шт.в отчетном году

Общие затраты на производство в отчетном году, тыс.руб. С1

Индекс себестоимости iс/с

iс/с продукции №1= С 1 / С 0 = 1560,0тыс.руб. / 780тыс.руб.= 2,0

iс/с продукции №2=53,08тыс.руб / 690тыс.руб.= 0,08

iс/с продукции №3=186,25тыс.руб/ 745тыс.руб.= 0,25.

3.2 Задача №2

Условие: Имеется данные среднемесячной заработной платы на одного занятого в экономике и объеме оборота общественного питания на одного жителя в городах Удмуртии в 2004г.:

Сравните вариацию показателей каждой совокупности, для этого по каждой совокупности отдельно рассчитайте средний квадрат отклонений (дисперсию) и квадратичное отклонение, коэффициент вариации. Сделайте вывод. Постройте график вариационных рядов. Как он называется?

1)Исследуем среднемесячную заработную плату:

R=x max -x min =6587.2-4415.7=2171.5руб.

=(6587,2+4519+6530,2+4415,7+4748)/5=5360,02

2)Исследуем объем оборота общественного питания на 1 жителя

R=x max -x min =1724,2-298,8=1425,4руб

(887,1+608,2+1724,2+510,4+ 298,8)/5805,74рублей

Пределы вероятности ошибок:

заработная плата

общественное питание

Границы генеральной средней:

заработная плата

общественное питание

Вывод: У жителей городов Ижевск и Глазов средняя заработная плата и обороты от общественного питания выше, чем у остальных исследуемых городов. В городах Воткинск, Сарапул и Можга экономическая ситуации примерно одинаковы.

Заключение

Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления. Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.

Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.

По смыслу определения вариация измеряется степенью колеблемости вариантов признака от уровня их средней величины, т.е. как разность х-х. На использовании отклонений от средней построено большинство показателей применяемых в статистике для измерения вариаций значений признака в совокупности.

Самым простейшим абсолютным показателем вариации является размах вариации

Размах вариации выражается в тех же единицах измерения, что и Х. Он зависит только от двух крайних значений признака и, поэтому, недостаточно характеризует колеблемость признака.

Среднее линейное отклонение является средней величиной из абсолютных значений отклонений от средней арифметической величины.

Среднее линейное отклонение имеет единицы измерения как у признака.

Дисперсия (средний квадрат отклонения) - это средняя арифметическая из квадратов отклонений значений варьирующего признака от средней арифметической.

Дисперсию в отдельных случаях удобнее рассчитывать по другой формуле, представляющей собой алгебраическое преобразование предыдущих формул.

Наиболее удобным и широко распространенным на практике показателем является среднее квадратическое отклонение (s). Оно определяется как квадратный корень из дисперсии.

Абсолютные показатели вариации зависят от единиц измерения признака и затрудняют сравнение двух или нескольких различных вариационных рядов.

Относительные показатели вариации вычисляются как отношение различных абсолютных показателей вариации к средней арифметической. Наиболее распространённым из них является коэффициент вариации. Его формула:

Коэффициент вариации характеризует колеблемость признака внутри средней. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.

Размещено на Allbest.ru

Подобные документы

    Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция , добавлен 13.02.2011

    Сущность и разновидности средних величин в статистике. Определение и особенности однородной статистической совокупности. Расчет показателей математической статистики. Что такое мода и медиана. Основные показатели вариации и их значение в статистике.

    реферат , добавлен 04.06.2010

    Абсолютные и относительные статистические величины. Понятие и принципы применения средних величин и показателей вариации. Правила применения средней арифметической и гармонической взвешенных. Коэффициенты вариации. Определение дисперсии методом моментов.

    учебное пособие , добавлен 23.11.2010

    Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа , добавлен 24.09.2012

    Понятие абсолютной и относительной величины в статистике. Виды и взаимосвязи относительных величин. Средние величины и общие принципы их применения. Расчет средней через показатели структуры, по результатам группировки. Определение показателей вариации.

    лекция , добавлен 25.09.2011

    Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.

    контрольная работа , добавлен 01.03.2012

    Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа , добавлен 20.05.2010

    Порядок группировки территорий с определенным уровнем фондовооруженности, расчет доли занятых. Расчёт средних значений каждого показателя с указанием вида и формы использованных средних гармонических, абсолютных и относительных показателей вариации.

    контрольная работа , добавлен 10.11.2010

    Абсолютная величина как объем или размер изучаемого события. Виды абсолютных величин: абсолютная и суммарная. Группы величин: моментная и интервальная единицы измерения. Виды относительных величин. Виды средних величин: степенные и структурные.

    презентация , добавлен 22.03.2012

    Понятие и свойства средних величин. Характеристика и расчет их видов (средних арифметической, гармонической, геометрической, квадратической, кубической и структурных). Сфера их применения в экономическом анализе хозяйственной деятельности отраслей.

Средняя величина – это обобщающая характеристика варьирующего признака единиц качественно однородной совокупности.

Средние величины используются в планировании, анализе выполнения планов, расчетах экономической эффективности общественного производства и т.д. Сравнивая изменение средних уровней во времени, статистика тем самым характеризует важнейшие закономерности развития явлений.

В статистике применяются различные виды средних величин: средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя хронологическая средняя квадратическая и средняя кубическая.

Наиболее распространенным видом средних величин является средняя арифметическая. Она рассчитывается в двух формах – простой и взвешенной.

Средняя арифметическая простая называется так потому, что в основе ее вычисления лежит простое суммирование. Чтобы определить ее, все показатели варьирующего признака суммируются и делятся на их количество.

Формула средней арифметической простой:

Где х – варианты; n – число вариант.

Формула средней арифметической взвешенной:

, где х – варианты; f – веса.

Эта средняя называется взвешенной потому, что для ее определения значения признака, по которым эта средняя исчисляется, не просто складываются, а предварительно умножаются на частоту (взвешиваются).

Применяется эта средняя в том случае, если показатели в совокупности встречаются несколько раз (т.е. повторяются).

Иногда среднюю арифметическую величину исчисляют по данным интервального вариационного ряда (когда варианты представлены в виде интервалов «от – до»). Для исчисления средней нужно прежде всего получить середину интервала каждой группы, а затем расчет производится по формуле арифметической взвешенной.

Средняя гармоническая взвешенная рассчитывается по формуле:

, где х – варианты; W – объем признака.

Средняя гармоническая применяется в тех случаях, когда отсутствует показатель частоты. Она представляет собой величину обратную средней арифметической из обратных значений признака

Модой называют то значение признака, которое наиболее часто встречается в данной совокупности.

Для интервальных вариационных рядов мода определяется по формуле:

М 0 = х мо + i мо *
, где

х мо - нижняя граница интервала, содержащего моду;

i мо - величина модального интервала;

f мо - частота модального интервала;

f мо-1 - частота интервала, предшествующего модальному;

f мо+1 – частота интервала, следующего за модальным.

Медианой называют значение признака, приходящееся на середину ранжированной совокупности.

М е = х ме + i ме *
, где

х ме - нижняя граница интервала, содержащего медиану;

i ме - величина медианного интервала;

∑f - сумма частот;

S ме-1 - сумма накопленных частот, предшествующих медианному интервалу;

f ме – частота медианного интервала.

Изменение значений признака в пределах изучаемой совокупности называется вариацией .

Для характеристики величины колебания признака в статистике вычисляют следующие показатели вариации:

    размах вариации;

    среднее линейное отклонение;

    средний квадрат отклонения (дисперсия);

    среднее квадратическое отклонение;

    коэффициент вариации.

Абсолютные и относительные показатели вариации, характеризующие изменчивость значений признака, позволяют оценить степень однородности совокупности, типичности и устойчивости средней.

Размах вариации (R) – наиболее простой измеритель вариации и представляет собой разность между наибольшим и наименьшим значениями признака

R = x max – x min , где

x max – наибольшее значение признака;

x min – наименьшее значение признака.

Среднее линейное отклонение (ι) этосредняяарифметическая из абсолютных отклонений индивидуальных значений признака от общей средней.

(простое);
(взвешенное);

Средний квадрат отклонения, или дисперсия представляет собой среднюю арифметическую из квадратов отклонений вариант от общей средней

=
(простая);
=
(взвешенная)

Среднее квадратическое отклонение – квадратный корень из дисперсии

;
;

Размах вариации, среднее линейное и среднее квадратическое отклонение являются абсолютными показателями вариации

Коэффициент вариации является относительным показателем вариации, выражается в %. Он представляет собой отношение среднего квардратического отклонения к средней величине признака:

V=

Чем больше коэффициент вариации, тем менее однородна совокупность и тем менее типична средняя величина, тем менее она характеризует изучаемое явление.

Пример:

По трем предприятиям, вырабатывающим один вид изделий, известны следующие данные за отчетный месяц:

Определите: 1) среднюю выработку одного рабочего; 2) среднюю себестоимость единицы продукции; 3)среднюю численность рабочих на одно предприятие.

    Определим среднюю выработку одного рабочего:

    Определим среднюю себестоимость единицы продукции:

    Определим среднее число рабочих:

Пример:

Имеются данные о распределении 100 ткачих по дневной выработке:

На основании данных вычислите:

    среднюю дневную выработку 1 ткачихи;

    моду и медиану

Дневная выработка, м

Число ткачих

интервала (х)

Накопленные частоты

120 и выше

    Средняя дневная выработка одной ткачихи определяется по формуле средней арифметической взвешенной

    Модальное значение выработки вычислим по формуле

М 0 = х мо + i мо *

3.Значение медианы вычислим по формуле:

М е = х ме + i ме *

Пример:

По обувной фабрике имеются следующие данные:

Определите процент брака в среднем по фабрике за 1 и 2 кварталы

Сделайте вывод.

Средний процент брака за 1 квартал определяется по формуле:

Средний процент брака за 2 квартал определяется по формуле:

Вывод: удельный вес бракованной продукции во втором квартале по сравнению с первым уменьшился на 0,2%.

Пример:

Известны данные о распределении 20 заводов отрасли по стоимости основных средств:

Определите:

1) среднюю стоимость основных средств на один завод по отрасли;

2) размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение, коэффициент вариации. Сделайте вывод.

Стоимость

основных

средств (млрд. руб.)

Середина

интервала

I
I*f

(
) 2

(
) 2 *f

    Определим среднюю стоимость основных средств

млрд. руб.

    Вычислим размах вариации

R = x max – x min ,= 14 - 4 = 10 млрд. руб.

Определим среднее линейное отклонение

млрд. руб.

Дисперсию признака вычислим по следующей формуле

=

Среднее квадратическое отклонение

млрд. руб.

Коэффициент вариации

V=

Вывод: средняя стоимость основных средств по отрасли составляет 9,7 млрд. руб. Совокупность однородна, т.к. коэффициент вариации 25,4%, т.е. вариация признака умеренная.

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

средняя арифметическая;

средняя геометрическая;

средняя гармоническая;

средняя квадратическая;

средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через. Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Основные свойства средней арифметической.

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

  • 2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:
  • 3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:
  • 4. Если х = с, где с - постоянная величина, то.
  • 5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где - начальное значение интервала, содержащего моду;

Величина модального интервала;

Частота модального интервала;

Частота интервала, предшествующего модальному;

Частота интервала, следующего за модальным.

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Задача 1. Имеются следующие данные о возрастном составе студентов группы заочного отделения ВУЗа (лет): 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 22; 23; 23; 24; 25; 25; 25; 26; 27; 29.
Для анализа распределения студентов по возрасту требуется:
1) построить интервальный ряд распределения и его график;
2) рассчитать модальный, медианный и средний возраст, установить его типичность с помощью коэффициентов вариации;
3) проверить распределение на нормальность с помощью коэффициентов асимметрии и эксцесса.

Решение. Для построения интервального ряда из дискретного используется формула Стерджесса, с помощью которой определяется оптимальное количество интервалов (n ):
n = 1 +3,322 lg N,
где N – число величин в дискретном ряде.
В нашей задаче n = 1 + 3,322lg 25 = 1 + 3,322*1,398 = 5,64. Так как число интервалов не может быть дробным, то округлим его до ближайшего целого числа, т.е. до 6.
После определения оптимального количества интервалов определяем размах интервала по формуле:
h = H / n,
где H – размах вариации.
H = Хмах –Х min ,
X м a x и Xmin - максимальное и минимальное значения в совокупности.
В нашей задаче h = (29 – 19)/6 = 1,67.
Интервальная группировка данных приведена в первом столбце таблицы 1, которая содержит также алгоритм и промежуточные расчеты.
Таблица 1 . Вспомогательные расчеты для решения задачи

более 27,33

На основе этой группировки строится график распределения возраста студентов:


Рис. График распределения возраста студентов.
Мода – это наиболее часто повторяющееся значение признака. Для интервального ряда с равными интервалами величина моды определяется по формуле (13):
,
где ХMo – нижнее значение модального интервала; f Mo – число наблюдений или объем взвешивающего признака (вес признака) в модальном интервале; f Mo-1 – то же для интервала, предшествующего модальному; f Mo+1 – то же для интервала, следующего за модальным; h – величина интервала изменения признака в группах.
В нашей задаче чаще всего повторяется (12 раз) первый интервал возраста (до 20,67), значит, это и есть модальный интервал. Используя формулу (13), определяем точное значение модального возраста:
Мо = 19 + 1,667*(12-0)/(2*12-4-0) = 20 (лет).
Медиана – это такое значение признака, которое приходится на середину ранжированного ряда. Таким образом, в ранжированном ряду распределения одна половина ряда имеет значения признака больше медианы, другая – меньше медианы. Для интервального ряда с равными интервалами величина медианы определяется так:
,
где XMe – нижняя граница медианного интервала; h – его величина (размах); – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала; f Me – число наблюдений или объем взвешивающего признака в медианном интервале.
В нашей задаче второй интервал возраста (от 20,67 до 22,33) является медианным, так как на него приходится середина ряда распределения возраста.

Определяем точное значение медианного возраста:
Ме = 20,67 + 1,667*(12,5-12)/4 = 20,878 (года).
Средняя величина – это обобщающий показатель совокупности, характеризующий уровень изучаемого явления или процесса. Средние величины могут быть простыми и взвешенными. Простая средняя рассчитывается при наличии двух и более статистических величин, расположенных в произвольном (несгруппированном) порядке, по общей формуле (15). Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием общей формулы (16).
=

= .
При этом обозначено: Xi – значения отдельных статистических величин или середин группировочных интервалов; m - показатель степени, от значения которого зависят виды средних величин.
Таблица 2. Виды степенных средних и их применение


m

Название
средней

Формула расчета средней

Когда применяется

простая

взвешенная

Арифметическая

=

=

Чаще всего, кроме тех случаев, когда должны применяться другие виды средних

Гармоническая

ГМ =

ГМ =

Для осреднения величин с дробной размерностью при наличии дополнительных данных по числителю дробной размерности

Геометрическая

Для осреднения цепных индексов динамики

Квадратическая

=

=

Для осреднения вариации признака (расчет средних отклонений)

Кубическая

=

=

Для расчета индексов нищеты населения

Хронологическая

Для осреднения моментных статистических величин

В нашей задаче, применяя формулу (18) и подставляя вместо середины интервалов возраста ХИ , определяем средний возраст студентов: = 549,163/25 = 21,967 (года). Теперь осталось определить типичность или нетипичность найденной средней величины. Это осуществляется с помощью расчета показателей вариации. Чем ближе они к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности. При этом критериальным значением коэффициента вариации служит 1/3.
Коэффициенты вариации рассчитываются как отношение среднего отклонения к средней величине. Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации.
Среднее линейное отклонение определяется по формулам:
–простое; – взвешенное.
Среднее квадратическое отклонение определяется как корень квадратный из дисперсии, то есть по формуле (31):
= .
Дисперсия определяется по формулам:
–простая; –взвешенная.
В нашей задаче, применяя формулу (30), определим ее числитель и внесем в расчетную таблицу. В итоге получим среднее линейное отклонение: Л = 54,937/25 = 2,198 (года). Разделив это значение на средний возраст, получим линейный коэффициент вариации : = 2,198/21,967 = 0,100. По значению этого коэффициента для рассмотренной группы студентов делаем вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,100 < 0,333).
Применяя формулу (33), получим в итоге дисперсию: Д = 164,018/25 = 6,561. Извлечем из этого числа корень и получим в результате среднее квадратическое отклонение: = = 2,561 (года).Разделив это значение на средний возраст, получим квадратический коэффициент вариации : = 2,561/21,967 = 0,117. По значению этого коэффициента для рассмотренной группы студентов можно сделать вывод о типичности среднего возраста, т.к. расчетное значение коэффициента вариации не превышает критериального (0,117 < 0,333).
В качестве показателей асимметрии используются: коэффициент асимметрии – нормированный момент третьего порядка (34) и коэффициент асимметрии Пирсона (35):
, .
Если значение коэффициента асимметрии положительно, то в ряду преобладают варианты, которые больше средней (правосторонняя скошенность), если отрицательно – левосторонняя скошенность. Если коэффициент асимметрии равен 0, то вариационный ряд симметричен.
В нашей задаче ==383,636/25 = 15,345; =2,5613= 16,797; =15,345/16,797 = 0,914 > 0, значит, распределение студентов по росту с правосторонней асимметрией. Это подтверждает и значение коэффициента асимметрии Пирсона: As = (21,967-20)/2,561 = 0,768.

В статистике средней величиной называют обобщающий показатель совокупности однородных общественных или природных явлений, который показывает типичный уровень варьирующего признака в расчете на единицу совокупности в конкретный момент времени.

Нахождение среднего - один из распространенных приемов обобщения. Средняя величина отражает то общее, что типично (характерно) для всех единиц изучаемой совокупности, но в то же время она игнорирует различия отдельных единиц. Мы уже говорили, что при неограниченном увеличении количества наблюдений (п -» оо) средняя величина, согласно закону больших чисел, будет неограниченно приближаться к его математическому ожиданию, т. е. при п -> оо можно записать х ~ М[Х], здесь х - средняя величина. То есть средняя величина - это оценка математического ожидания.

Сделаем небольшое отступление и приведем краткие сведения об оценках параметров, полученных в результате п опытов. Предположим, что надо определить по результатам п опытов некоторый параметр d. Приближенное значение этого параметра будем называть его оценкой и обозначим d. Оценка d должна удовлетворять ряду требований, чтобы в каком-то смысле быть оценкой “доброкачественной”.

Оценка d при увеличении числа опытов должна сходиться по вероятности к искомому параметру, т. е.

Оценка, обладающая таким свойством, называется состоятельной.

Кроме того, пользуясь оценкой d вместо самого параметра d, желательно не делать систематической ошибки, т. е. математическое ожидание оценки должно быть равным самому параметру:

Оценка, которая обладает данным свойством, называется несмещенной.

Было бы хорошо, если бы выбранная несмещенная оценка d была как можно менее случайной, т. е. обладала по сравнению с другими минимальной дисперсией:

Оценка, которая обладает данным свойством, называется эффективной.

В реальных условиях не всегда удается удовлетворить всем перечисленным требованиям. Тем не менее при выборе оценки любого параметра желательно эту оценку рассмотреть со всех перечисленных точек зрения.

Вернемся к средним величинам. При их вычислении при большом количестве наблюдений случайности взаимопога- шаются (это следует из закона больших чисел), следовательно, можно абстрагироваться от несущественных особенностей изучаемого явления и от количественных значений признака в каждом конкретном опыте.

Крупный вклад в обоснование и развитие теории средних величин внес А. Кетле. Согласно его учению массовые процессы формируются под влиянием двух групп причин. К первой группе общих для всех единиц массовой совокупности причин относятся те из них, которые определяют состояние массового процесса. Они формируют типичный уровень для единиц данной однородной совокупности.

Вторая группа причин формирует специфические особенности отдельных единиц массовой совокупности и, следовательно, их разброс от типичного уровня.

Эти причины не связаны с природой изучаемого явления, поэтому их называют случайными причинами.

Средняя величина, полученная по всей совокупности, называется общей, а средние величины, вычисленные по каждой группе, называются групповыми средними. Есть два вида средних величин: степенные средние (средняя арифметическая и др.), структурные средние (мода, медиана).

Рассмотрим степенные средние. Степенные средние определяются исходя из формулы

где х - среднее значение;

х { - текущее значение изучаемого признака;

т - показатель степени средней;

п - количество признаков (вариант).

В зависимости от показателя т степени средней получаем следующие виды степенных средних:

  • - среднюю гармоническую х гар, если т = -1;
  • - среднюю геометрическую эс геом, если т = 0;
  • - среднюю арифметическую х ар, если т = 1;
  • - среднюю квадратическую х квад, если т = 2;
  • - среднюю кубическую х куб., если т = 3,
  • - ИТ. д.

При использовании одних и тех же данных чем больше т в формуле (6.4), тем больше значение средней, т. е.

Приведем конкретные формулы для вычисления некоторых видов степенных средних.

При т = -1 получаем среднюю гармоническую:

В том случае, если исходные данные сгруппированы, используются взвешенные средние. В качестве веса может использоваться частота р (количество опытов, в которых появилось интересующее нас событие) или относительная частота

Запишем формулы для взвешенной средней гармонической:

При т = 0 получаем среднюю геометрическую:

т. е. получили неопределенность.

Для ее раскрытия прологарифмируем обе части формулы (6.4.)

затем подставляем т = 0 и получаем

т. е. имеем неопределенность вида Для раскрытия этой неопределенности применяем правило Лопиталя. Полученный результат потенцируется, и окончательно получаем

Широкое применение средняя геометрическая получила для нахождения средних темпов изменения в рядах динамики и в рядах распределения.

Запишем формулы для взвешенной средней геометрической.

Приведем конкретный пример нахождения средней геометрической взвешенной по формуле (6.11).

Пример 6.1

Исходные данные наблюдений приведены в табл. 6.1.

Таблица 6.1

В табл. 6.1 х. - результаты, принятые некоторой случайной величиной X в г-м опыте; р. - частота события - показывает, сколько раз в результате всех опытов появилось интересующее нас событие. Например, х = 2 появилось в 24 опытах 5 раз.

Относительная частота события (частость).

По формуле (6.11) получаем:

По формуле (6.12) имеем

При т = 1 получаем среднюю арифметическую:

Средняя арифметическая - наиболее распределенный вид среди всех видов степенных средних. Она используется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных единиц.

Приведем формулы для нахождения средней арифметической взвешенной:

При большом количестве наблюдений, согласно закону больших чисел, формула (6.15) определяет оценку математического ожидания т. е.

При т = 2 получаем среднюю квадратическую:

Она используется для вычисления среднего размера признака, выраженного в квадратных единицах.

Формулы для нахождения средней квадратической взвешенной имеют вид:

При га = 3 получаем среднюю кубическую:

Она применяется для нахождения среднего размера признака, выраженного в кубических единицах.

Формулы для вычисления средней кубической взвешенной имеют вид:

Теперь рассмотрим структурные средние: моду и медиану. В статистике, в отличие от теории вероятностей, имеем дело с оценками этих величин. Мы будем обозначать их теми же буквами, что и в главе 2, но с тильдой.

Мода в статистике (Мо) - значение случайной величины, которое встречается в статистическом ряду распределения чаще всего, т. е. имеет наибольшую частоту или относительную частоту (частость).

Например, в табл. 6.1 наибольшая относительная частота / = 0,33, поэтому мода равна Мо = 5.

Если мы имеем группированный ряд распределения с равными интервалами, то моду можно найти по формуле

где Мо нижн - нижняя граница модального интервала;

г Мо - длина модального интервала;

Рмо - частота модального интервала;

М-мо_, - частота интервала, предшествующего модальному;

М-мо +1 -- частота интервала, следующего за модальным.

Заметим, что для расчета можно использовать и относительные частоты.

Медиана в статистике - варианта, которая находится в середине ранжированного ряда распределения, т. е. значение медианы находиться по ее порядковому номеру.

Если ряд распределения имеет нечетное число элементов, номер медианы находиться по формуле

Например, в табл. 6.2 приведены величины окладов профессорско-преподавательского состава кафедры высшей математики.

Таблица 6.2

Количество элементов ряда равно 5, поэтому по формуле (6.23) находим номер медианы , следовательно, меди

ана в данном случае равна

Если ряд содержит четное число элементов, то варианта находится как средняя из двух вариант, находящихся в середине ряда.

В группированном ряду распределения медиана (так как она делит всю совокупность на две равные части) находится в каком-то из интервалов.

Кумулятивная (накопленная) частота (или относительная частота) равна или превышает полусумму всех частот ряда (для относительных частот она равна 1/2 или превышает 1/2).

В этом случае значение медианы вычисляется по формуле

где - нижняя граница медианного интервала;

Длина медианного интервала;

Полусумма частот;

Сумма частот, накопленная до начала медианного интервала;

Частота медианного интервала.