что линии магнитной индукции поля кругового тока не являются правильными окружностями, они замыкаются, обходя проводник, по которому идет ток. Направление линий магнитной индукции можно определить с помощью правила правого винта (правило буравчика): если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока .

Закон Био́-Савара-Лапла́са - физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

Где I ток в контуре гамма контур, по которому идет интегрирование r0 произвольная точка

Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:

,

где - проекция вектора на направление касательной к линии контура в данной точке.

Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:

Магнитное поле не является потенциальным , оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.

Поле соленоида и тороидаСоленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо

внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна: .

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением причем длина тороида l берется по средней длине тороида (среднему диаметру).

Выражение для силы Ампера можно записать в виде: F = qnSΔlυB sin α. Взаимодействие параллельных токов Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

Где μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

Магни́тный пото́к - поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .


Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10 -7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.

Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиуса R (круговой ток). Определим магнитную индукцию в центре кругового тока (рис. 47.1).

Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение сводится к сложению их модулей. По формуле (42.4)

Проинтегрируем это выражение по всему контуру:

Выражение в скобках равно модулю дипольного магнитного момента (см. (46.5)).

Следовательно, магнитная индукция в центре кругового тока имеет величину

Из рис. 47.1 видно, что направление вектора В совпадает с направлением положительной нормали к контуру, т. е. с направлением вёктора Поэтому формулу (47.1) можно написать в векторном виде:

Теперь найдем В на оси кругового тока на расстоянии от центра контура (рис. 47.2). Векторы перпендикулярны к плоскостям, проходящим через соответствующий элемент и точку, в которой мы ищем поле. Следовательно, они образуют симметричный конический веер (рис. 47.2, б). Из соображений симметрии можно заключить, что результирующий вектор В направлен вдоль оси контура. Каждый из составляющих векторов вносит в результирующий вектор вклад равный по модулю Угол а между и b прямой, поэтому

Проинтегрировав по всему контуру и заменив на получим

Эта формула определяет величину магнитной индукции на оси кругового тока. Приняв во внимание, что векторы В и имеют одинаковое направление, можно написать формулу (47.3) в векторном виде:

Это выражение не зависит от знака г. Следовательно, в точках оси, симметричных относительно центра тока, В имеет одинаковую величину и направление.

При формула (47.4) переходит, как и должно быть, в формулу (47.2) для магнитной индукции в центре кругового тока.

На больших расстояниях от контура в знаменателе можно пренебречь по сравнению с Тогда формула (47.4) принимает вид

аналогичный выражению (9.9) для напряженности электрического поля на оси диполя.

Расчет, выходящий за рамки данной книги, дает, что любой системе токов или движущихся зарядов, локализованной в ограниченной части пространства, можно приписать магнитный дипольный момент (ср. с дипольным электрическим моментом системы зарядов). Магнитное поле такой системы на расстояниях, больших по сравнению с ее размерами, определяется через по таким же формулам, по каким определяется через дипольный электрический момент поле системы зарядов на больших расстояниях (см. § 10). В частности, поле плоского контура любой формы на больших расстояниях имеет вид

где - расстояние от контура до данной точки, - угол между направлением вектора и направлением от контура в данную точку поля (ср. с формулой (9.7)). При формула (47.6) дает для модуля вектора В такое же значение, как и формула (47.5).

На рис. 47.3 изображены линии магнитной индукции поля кругового тока. Показаны лишь линии, лежашие в одной из плоскостей, Проходящей через ось тока. Подобная же картина имеет место в любой из этих плоскостей.

Из всего сказанного в предыдущем и в данном параграфах вытекает, что дипольный магнитный момент является весьма важной характеристикой контура с током. Этой характеристикой определяется как поле, создаваемое контуром, так и поведение контура во внешнем магнитном поле.

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R . Найдем индукцию поля в центре кольца в точке O (рис. 431).

рис. 431
 Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био -Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока (IΔl) k и вектор r k , соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому sinα = 1 . Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

 Для любого другого элемента кольца ситуация абсолютно аналогична − вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

 Усложним задачу − найдем индукцию поля в точке A , находящейся на оси кольца на расстоянии z от его центра (рис. 432).

рис. 432
 По-прежнему, выделяем малый участок кольца (IΔl) k и строим вектор индукции поля ΔB k , созданным этим элементом, в рассматриваемой точке. Это вектор перпендикулярен вектору r , соединяющему выделенный участок с точкой наблюдения. Векторы (IΔl) k и r k , как и ранее, перпендикулярны, поэтому sinα = 1 . Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы r k = √{R 2 + z 2 } , а также одинаковы углы φ между векторами ΔB k и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции


 Из рисунка следует, что cosφ = R/r , с учетом выражения для расстояния r , получим окончательное выражение для вектора индукции поля


 Как и следовало ожидать, в центре кольца (при z = 0 ) формула (3) переходит в полученную ранее формулу (2).

Задания для самостоятельной работы.
1. Постройте график зависимости индукции поля (3) от расстояния до центра кольца.
2. Сравните полученную зависимость (3) с выражением для модуля напряженности электрического поля, создаваемого равномерно заряженным кольцом (36.6) . Объясните возникшие принципиальные различия между этими зависимостями.

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy (рис. 433),

рис. 433
а поле рассчитывается в плоскости yOz . Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y, z ) рассчитываются по формулам:


 Необходимое суммирование не может быть проведено аналитически, так как при переходе от одного участка кольца к другому изменяются расстояния до точки суммирования. Поэтому «простейший» способ провести такое суммирование − использовать компьютер.
 Если же известно значение вектора индукции (или хотя бы имеется алгоритм его расчета) в каждой точке, то можно построить картину силовых линий магнитного поля. Очевидно, что алгоритм построения силовых линий векторного поля не зависит от его физического содержания, а такой алгоритм был кратко рассмотрен нами при изучении электростатики.
 На рис. 434 картина силовых линий рассчитана при разбиении кольца на 20 частей, этого оказалось вполне достаточно, так как и при 10 интервалах разбиения получался практически тот же рисунок.

рис. 434
 Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R . В этом случае формула (3) упрощается и приобретает вид

где IπR 2 = IS = p m − произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μo в числителе на ε o в знаменателе) с выражением для напряженности электрического поля диполя на его оси.
 Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) − поэтому его поле совпадает с полем

1 Магнитостатика – раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае.

Магнитное поле – силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом.

2 Сила Лоренца – сила, действующая на заряженную частицу, движущуюся в электромагнитном поле.

Fm – сила, действующая на движущийся точечный заряд q в магнитном поле.

Вектор В называется напряженностью магнитного поля, v – скорость частицы, с – постоянная, выбор ее значения и размерности определяется системой единиц.

Измерим силу, когда заряд движется перпендикулярно к В со скоростью

, умножив векторно на , учитывая
, получим

В электрическом поле
, так как при действии электрического и магнитного полей, сила действующая на частицу складывается из магнитной и электрической составляющих.

4 Закон Био-Савара - закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током

Поднесем заряд к магниту на подвесе. Магнитное поле пропорционально скорости движения частицы. Чем больше заряд, тем сильнее отклонение, а также магнитное поле обратно пропорционально квадрату расстояния.

r – радиус-вектор проведенный от заряда к точке наблюдения, с- постоянная зависящая от выбора системы единиц

- электрическое поле неподвижного заряда

В гауссовой системе единиц величины В и Е имеют одинаковую размерность. Постоянная с" для простоты выбирается равной с, с – электродинамическая постоянная, по измерениям она совпадает со скоростью света в вакууме.

или

- закон Био-Савара для объемного элемента с током

- для линейного

Опытной проверке доступна только интегральная форма закона Био-Савара, так как выражения применимы для постоянных токов, а постоянные токи замкнуты, следовательно, невозможно выделить отдельные участки постоянных токов и экспериментировать с ними.

5 Принцип суперпозиции для магнитного поля магнитные поля отдельных движущихся зарядов векторно складываются, причем каждый заряд возбуждает поле, совершенно не зависящее от наличия других зарядов.

6 Магнитное поле прямого и кругового токов.

Магнитное поле прямого тока, т е тока текущего по прямому проводу бесконечной длины

- магнитное поле элемента тока ,dl – элемент длины провода

Проинтегрировав в этих пределах последнее выражение получим магнитное поле равное:

-магнитное поле прямого тока

от всех элементов тока будет образовываться конус векторов , результирующий вектор направлен вверх по осиZ. Сложим проекции векторов на осьZ, тогда каждая проекция имеет вид:

угол между и радиус векторомr равен .

Интегрируя по dl и учитывая , получим

- магнитное поле на оси кругового витка

7 Линии напряженности магнитного поля

Силовые линии магнитного поля – окружности. Линиями магнитного поля линии, проведенные так, что касательные к ним в каждой точке указывают направление поля в этой точке. линии поля чертятся так, чтобы их густота, т. е. число линий, проходящих через единицу площади, давала модуль магнитной индукции магнитного поля. Таким образом, мы будем получать «магнитные карты», способ построения и употребления которых аналогичен «электрическим картам» Главное отличие магнитного поля то, что линии его всегда оказываются замкнутыми. построение линий магнитного поля

8 Магнитный момент контура с током

Магнитный момент – величина, характеризующая магнитные свойства вещества.

- результирующая сила действующая на виток с током в постоянном магнитном поле. Если поле однородно, то В – постоянная выносится из под интеграла, а = 0

плоский виток, плоскость которого параллельна магнитному полю В

Где - высота ,

Момент сил, образуемый силами F1 и F2. - плечо пары,- площадь четырехугольника.

, S – площадь, охватываемая рассматриваемым витком тока

в векторной форме