100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .

Комплексной слуюйной функцией называютфункцию

Z (t )=X (t )+Y (t )i ,

где Х (t ) и Y (t )-действительные случайные функции действительного аргумента t .

Обобщим определения математического ожидания и дисперсии на комплексные случайные функции так, чтобы, в частности, при Y=0 эти характеристики совпали с ранее введенными характеристиками для действительных случайных функций, т. е. чтобы выполнялись требования:

m z (t )=m x (t )(*)

D z (t )=D x (t )(**)

Математическим , ожиданием , комплексной случайной функции Z (t )=Х (t )+Y (t )i называют комплексную функцию (неслучайную)

m z (t )=m x (t )+m y (t )i .

В частности, при Y=0 получим т z (t )=т x (t ),т.е. требование (*) выполняется.

Дисперсией комплексной случайной функции Z (t ) называют математическое ожидание квадрата модуля центрированной функции Z (t ):

D z (t )=M [| (t )| 2 ].

В частности, при Y==0 получим D z (t )= M [| (t )|] 2 =D x (t ), т. е. требование (**) выполняется.

Учитывая, что математическое ожидание суммы равно сумме математических ожиданий слагаемых, имеем

D z (t )=M [| (t )| 2 ]= M {[ (t )] 2 + [ (t ) 2 ]}= M [ (t )] 2 +M [ (t ) 2 ]= D x (t )+D y (t ).

Итак,дисперсия комплексной случайной функции равна сумме дисперсий ее действительной и мнимой частей:

D z (t )=D x (t )+D y (t ).

Известно, что корреляционная функция действительной случайной функции Х (t ) при разных значениях аргументов равна дисперсии D x (t ). Обобщим определение корреляционной функции на комплексные случайные функции Z (t ) так, чтобы при равных значениях аргументов t 1 =t 2 =t корреляционная функция K z (t , t ) была равна дисперсии D z (t ), т. е. чтобы выполнялось требование

K z (t , t )=D z (t ). (***)

Корреляционной функцией комплексной случайной функции Z (t ) называют корреляционный момент сечений (t 1)и (t 2)

K z (t 1 , t 2)= M .

В частности, при равных значениях аргументов

K z (t , t )= M =M [| | 2 ]= D z (t ).

т. е. требование (***) выполняется.

Если действительные случайные функции Х (t ) и Y (t )коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2)+ [R xy (t 2 ,t 1)]+ [ R xy (t 1 ,t 1)].

если Х (t ) и Y (t ) не коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2).

Обобщим определение взаимной корреляционной функции на комплексные случайные функции Z 1 (t )=Х 1 (t )+ Y 1 (t )i и Z 2 (t )=Х 2 (t )+ Y 2 (t )i так, чтобы, в частности, при Y 1 =Y 2 = 0 выполнялось требование

Взаимной корреляционной функцией двух комплексных случайных функций называют функцию (неслучайную)

В частности, при Y 1 =Y 2 =0 получим

т. е. требование (****) выполняется.

Взаимная корреляционная функция двух комплексных случайных функций выражается через взаимные корреляционные функции их действительных и мнимых частей следующей формулой:

Задачи

1. Найти математическое ожидание случайных функций:

a) X (t )=Ut 2 , где U- случайная величина, причем M (U )=5 ,

б ) Х (t )=U cos2t+Vt , где U и V- случайные величины, причем M (U )=3 , M (V )=4 .

Отв. а) m x (t)=5t 2 ; б) т x (t)=3 cos2t+4t.

2. К х (t 1 ,t 2) случайной функции X (t ). Найти корреляционные функции случайных функций:

a) Y (t )=X (t )+t; б) Y (t )=(t +1)X (t ); в) Y (t )=4X (t ).

Отв. a) К y (t 1 ,t 2)= К х (t 1 ,t 2); б) К y (t 1 ,t 2)=(t 1 +1)(t 2 +1) К х (t 1 ,t 2); в) К y (t 1 ,t 2)=16 К x (t 1 ,t 2)=.

3. Задана дисперсия D x (t ) случайной функции Х (t ). Найти дисперсию случайных функций: a) Y (t )(t )+e t б ) Y (t )=tX (t ).

Отв . a) D y (t )=D x (t ); б) D y (t )=t 2 D x (t ).

4. Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию случайной функции Х (t )=Usin 2t , где U- случайная величина, причем M (U )=3 , D (U )=6 .

Отв . а)m x (t ) =3sin 2t; б) К х (t 1 ,t 2)= 6sin 2t 1 sin 2t 2 ; в) D x (t )=6sin 2 2t .

5. Найти нормированную корреляционную функцию случайной функции X (t ), зная ее корреляционную функцию К х (t 1 ,t 2)=3cos (t 2 -t 1).

Отв. ρ x (t 1 ,t 2)=cos(t 2 -t 1).

6. Найти: а) взаимную корреляционную функцию; б) нормированную взаимную корреляционную функцию двух случайных функций X (t )=(t +1)U , и Y(t )= (t 2 + 1)U , где U- случайная величина, причем D (U )=7.

Отв . a) R xy (t 1 ,t 2)=7(t 1 +l)(t 2 2 +l); б) ρ xy (t 1 ,t 2)=1.

7. Заданы случайные функции Х (t )= (t- 1)U и Y (t )=t 2 U , где U и V - некоррелированные случайные величины, причем M (U )=2, M (V )= 3, D (U )=4 , D (V )=5 . Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию суммы Z (t )=X (t )+Y (t ).

Указание. Убедиться, что взаимная корреляционная функция заданных случайных функций равна нулю и, следовательно, Х (t ) и Y (t ) не коррелированы.

Отв . а) m z (t )=2(t - 1)+3t 2 ; б) К z (t 1 ,t 2)=4(t 1 - l)(t 2 - 1)+6t 1 2 t 2 2 ; в) D z (t )=4(t - 1) 2 +6t 4 .

8. Задано математическое ожидание m x (t )=t 2 +1 случайной функции Х (t ). Найти математическое ожидание ее производной.

9. Задано математическое ожидание m x (t )=t 2 +3 случайной функции Х (t ). Найти математическое ожидание случайной функции Y (t )=tХ" (t )+t 3 .

Отв. m y (t)=t 2 (t+2).

10. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции X (t ). Найти корреляционную функцию ее производной.

11. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции Х (t ). Найти взаимные корреляционные функции.

Пусть над случайной функцией X(t) проведено п независимых опытов (наблюдений) и в результате получено п реализаций случайной функции (рис. 15.4.1).

Рис. 15.4.1

Требуется найти оценки для характеристик случайной функции: ее математического ожидания m x (t), дисперсии D x (t) и корреляционной функции K x (t,t).

Для этого рассмотрим ряд сечений случайной функции для моментов времени

и зарегистрируем значения, принятые функцией X(t) в эти моменты времени. Каждому из моментов /, t 2 , ..., t m будет соответствовать п значений случайной функции.

Значения /, I, t m обычно задаются равноотстоящими; величина интервала между соседними значениями выбирается в зависимости от вида экспериментальных кривых так, чтобы по выбранным точкам можно было восстановить основной ход кривых. Часто бывает так, что интервал между соседними значениями t задается независимо от задач обработки частотой работы регистрирующего прибора (например, темпом киноаппарата).

Зарегистрированные значения X(t) заносятся в таблицу, каждая строка которой соответствует определенной реализации, а число столбцов равно числу опорных значений аргумента (табл. 15.4.1).

Таблица 15.4.1

X 2 (?2)

x 2 U k )

X 2 {ti)

x 2 (J m)

%i (tm)

X„{t 2)

X„(tk)

X„ (?,)

В таблице 15.4.1 в /-Й строке помещены значения случайной функции, наблюденной в /-й реализации (/-м опыте) при значениях аргумента, / 2 , ..., t m . Символом Xj(4) обозначено значение, соответствующее /-й реализации в момент t k .

Полученный материал представляет собой не что иное, как результаты п опытов над системой т случайных величин

и обрабатывается совершенно аналогично (см. подраздел 14.3). Прежде всего находятся оценки для математических ожиданий по формуле

затем - для дисперсий

и, наконец, для корреляционных моментов

В ряде случаев бывает удобно при вычислении оценок для дисперсий и корреляционных моментов воспользоваться связью между начальными и центральными моментами и вычислять их по формулам:

При пользовании последними вариантами формул, чтобы избежать разности близких чисел, рекомендуется заранее перенести начало отсчета по оси ординат поближе к математическому ожиданию.

После того, как эти характеристики вычислены, можно, пользуясь рядом значений m x (t {),m x (t 2), m x (t m), построить зависимость m x (t) (рис. 15.4.1). Аналогично строится зависимость О х (/). Функция двух аргументов K x (t,t") воспроизводится по ее значениям в прямоугольной сетке точек. В случае надобности все эти функции аппроксимируются какими-либо аналитическими выражениями.

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем подразделе мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей.

Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т.д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам.

Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса -10,11,12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величин, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.


Рис. 15.5.1

Имеется некоторая динамическая система А; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т.п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т.п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т.д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения. Рассмотрим самый простой случай: когда на вход системы А подается только одно воздействие, представляющее собой функцию времени х(/); реакция системы на это воздействие есть другая функция времени у (/). Схема работы системы А условно изображена на рис. 15.5.1. Будем говорить, что система А осуществляет над входным воздействием некоторое преобразование, в результате которого функция x(f) преобразуется в другую функцию у (/). Запишем это преобразование символически в виде:

Преобразование А может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование А сводится к решению дифференциального уравнения, связывающего воздействие х (/) с реакцией у (I).

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию x(t) определить реакцию системы y(t). Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие х(/) никогда не поступает на вход системы в чистом виде; оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция x(t), а случайная функция X(t) соответственно этому система вырабатывает в качестве реакции случайную функцию Y(t), также отличающуюся от теоретической реакции у (/) (рис. 15.5.2).


Рис. 15.5.2

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы А поступает случайная функция Х(1 ); система подвергает ее известному преобразованию, в результате чего на выходе системы появляется случайная функция:

Известны характеристики случайной функции X(t): математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции Y(t). Короче, по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование А принадлежит к классу так называемых линейных преобразований и соответственно система А принадлежит к классу линейных систем.

1. ПОНЯТИЕ СЛУЧАЙНОЙ ФУНКЦИИ

До определенных пор теория вероятностей ограничивалась понятием случайных величин. Их использование позволяет выполнять статические расчеты, учитывающие случайные факторы. Однако механические системы подвергаются также разнообразным динамическим, то есть изменяющимся во времени воздействиям случайного характера. К ним относятся, в частности, вибрационные и ударные воздействия при движении транспортных средств, аэродинамические силы, вызванные атмосферной турбулентностью, сейсмические силы, нагрузки, обусловленные случайными отклонениями от номинальных режимов работы машин.

Случайные динамические явления изучаются при анализе тенденций в экономике (например, изменения курса акций или валюты). Работа в условиях случайных возмущений характерна для систем управления разнообразными динамическими объектами.

Для анализа подобных явлений используется понятие случайной функции . Случайной функцией X (t ) называется такая функция аргумента t , значение которой при любом t является случайной величиной. Если аргумент принимает дискретные значения t 1 , t 2 , …, t k то говорят о случайной последовательности X 1 , X 2 ,…, X k , где X i = X (t i ).

Во многих практических задачах неслучайный аргумент t имеет смысл времени, при этом случайную функцию называют случайным процессом , а случайную последовательность – временным рядом . Вместе с тем, аргумент случайной функции может иметь и иной смысл. Например, речь может идти о рельефе местности Z (x , y ), где аргументами являются координаты местности x и y , а роль случайной функции играет высота над уровнем моря z. В дальнейшем, для определенности, имея в виду приложения случайных функций к исследованию динамических систем, будем говорить о случайных процессах.

Предположим, что при исследовании случайного процесса X (t ) произведено n независимых опытов, и получены реализации

представляющие собой n детерминированных функций. Соответствующее семейство кривых в определенной мере характеризует свойства случайного процесса. Так, на рис.1.1а представлены реализации случайного процесса с постоянными средним уровнем и разбросом значений возле среднего, на рис. 1.1б – реализации случайного процесса с постоянным средним и изменяющимся разбросом, на рис. 1.1в – реализации случайного процесса с изменяющимися во времени средним и разбросом.



Рис.1.1. Типичные реализации случайных процессов

На рис. 1.2 показаны реализации двух случайных процессов, имеющих одинаковый средний уровень и разброс, но различающихся плавностью. Реализации случайного процесса на рис. 1.2а имеют высокочастотный характер, а на рис. 1.2б – низкочастотный.

Рис. 1.2. Высокочастотный и низкочастотный случайные процессы

Таким образом, X (t ) можно рассматривать и как совокупность всевозможных реализаций, которая подчиняется определенным вероятностным закономерностям. Как и для случайных величин, исчерпывающую характеристику этих закономерностей дают функции или плотности распределения. Случайный процесс считается заданным, если заданы все многомерные законы распределения случайных величин X (t i ), X (t 2 ), …, X (t n ) для любых значений t 1 , t 2 , …, t n из области изменения аргумента t . Речь идет, в частности, об одномерной плотности распределения , двумерной плотности распределения и т.д. .

Для упрощения анализа в большинстве случаев ограничиваются моментными характеристиками, причем чаще всего используют моменты первого и второго порядков. Для характеристики среднего уровня случайного процесса служит математическое ожидание

. (1.1)

Для характеристики амплитуды отклонений случайного процесса от среднего уровня служит дисперсия

Для характеристики изменчивости (плавности) случайного процесса служит корреляционная (автокорреляционная) функция

(1.3)

Как следует из (1.3), корреляционная функция представляет собой ковариацию случайных величин X (t 1) и X (t 2). Ковариация же, как известно из курса теории вероятностей, характеризует взаимозависимость между X (t 1) и X (t 2).

В рамках корреляционной теории случайных функций, которая оперирует лишь моментами первого и второго порядков, могут быть решены многие технические задачи. В частности, могут быть определены априорная, а также условная вероятности выхода случайного процесса за пределы заданных границ. Вместе с тем, некоторые важные в практическом плане задачи не решаются средствами корреляционной теории и требуют использования многомерных плотностей распределения. К таким задачам относится, например, расчет среднего времени нахождения случайного процесса выше или ниже заданной границы.

2. ТИПЫ СЛУЧАЙНЫХ ПРОЦЕССОВ

2.1. Квазидетерминированные случайные процессы

Основные задачи

Можно выделить два основных вида задач, решение которых требует использования теории случайных функций.

Прямая задача {анализ): заданы параметры некоторого устройства и его вероятностные характеристики (математические ожидания, корреляционные функции, законы распределения) поступающей на его «вход» функции (сигнала, процесса); требуется определить характеристики на «выходе» устройства (по ним судят о «качестве» работы устройства).

Обратная задача {синтез): заданы вероятностные характеристики «входной» и «выходной» функций; требуется спроектировать оптимальное устройство (найти его параметры), осуществляющее преобразование заданной входной функции в такую выходную функцию, которая имеет заданные характеристики. Решение этой задачи требует кроме аппарата случайных функций привлечения и других дисциплин и в настоящей книге не рассматривается.

Определение случайной функции

Случайной функцией называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента является случайной величиной. Случайные функции аргумента t обозначают прописными буквами X{t), Y{t) и т.д.

Например, если U - случайная величина, то функция Х{!)=С U - случайная. Действительно, при каждом фиксированном значении аргумента эта функция является случайной величиной: при t { = 2

получим случайную величину Х х = AU, при t 2 = 1,5 - случайную величину Х 2 = 2,25 U и т.д.

Для краткости дальнейшего изложения введем понятие сечения.

Сечением случайной функции называют случайную величину, соответствующую фиксированному значению аргумента случайной функции. Например, для случайной функции X(t) = t 2 U, приведенной выше, при значениях аргумента 7, = 2 и t 2 = 1,5 были получены соответственно случайные величины X { = AUn Х 2 = 2,2577, которые и являются сечениями заданной случайной функции.

Итак, случайную ф у н к ц и ю можно рассматр и - вать как совокупность случайных величин {Х(?)}, зависящих от параметра t. Возможно и другое истолкование случайной функции, если ввести понятие ее реализации.

Реализацией (траекторией , выборочной функцией) случайной функции X(t) называют неслучайную функцию аргумента t , равной которой может оказаться случайная функция в результате испытания.

Таким образом, если в опыте наблюдают случайную функцию, то в действительности наблюдают одну из возможных ее реализаций; очевидно, при повторении опыта будет наблюдаться другая реализация.

Реализации функции X(t) обозначают строчными буквами x t (t) t x 2 (t) и т.д., где индекс указывает номер испытания. Например, если X(t) = (/sin t, где U - непрерывная случайная величина, которая в первом испытании приняла возможное значение и { = 3, а во втором испытании и 2 = 4,6, то реализациями X(t) являются соответственно неслучайные функции х { (t ) = 3sin t и х 2 (t) = 4,6sin t.

Итак, случайную функцию можно рассматривать как совокупность ее возможных реализаций.

Случайным (стохастическим ) процессом называют случайную функцию аргумента t, который истолковывается как время. Например, если самолет должен лететь с заданной постоянной скоростью, то в действительности вследствие воздействия случайных факторов (колебание температуры, изменение силы ветра и др.), учесть влияние которых заранее нельзя, скорость изменяется. В этом примере скорость самолета - случайная функция от непрерывно изменяющегося аргумента (времени), т.е. скорость есть случайный процесс.

Заметим, что если аргумент случайной функции изменяется дискретно, то соответствующие ему значения случайной функции (случайные величины) образуют случайную последовательность.

Аргументом случайной функции может быть не только время. Например, если измеряется диаметр ткацкой нити вдоль ее длины, то вследствие воздействия случайных факторов диаметр нити изменяется. В этом примере диаметр - случайная функция от непрерывно изменяющегося аргумента (длины нити).

Очевидно, задать случайную функцию аналитически (формулой), вообще говоря, невозможно. В частных случаях, если вид случайной функции известен, а определяющие ее параметры - случайные величины, задать ее аналитически можно. Например, случайными являются функции:

X{t) = sin Qf, где Q - случайная величина,

X(t) = Г/sin t, где U - случайная величина,

X(t) = Г/sin Qt, где О. и }