Прогнозирование по уравнению регрессии представляет собой подстановку в уравнение регрессии соответственного значения х . Такой прогноз называется точечным. Он не является точным, поэтому дополняется расчетом стандартной ошибки ; получается интервальная оценка прогнозного значения :

Преобразуем уравнение регрессии:

ошибка зависит от ошибки и ошибки коэффициента регрессии т.е.

Из теории выборки известно, что

Используем в качестве оценки остаточную дисперсию на одну степень свободы получаем:

Ошибка коэффициента регрессии из формулы (15):

Таким образом, при получаем:

(23)

Как видно из формулы (23), величина достигает минимума при и возрастает по мере удаления от в любом направлении.


Для нашего примера эта величина составит:

При . При

Для прогнозируемого значения 95% - ные доверительные интервалы при заданном определены выражением:

(24)

т.е. при или При прогнозное значение составит - это точечный прогноз.

Прогноз линии регрессии лежит в интервале:

Мы рассмотрели доверительные интервалы для среднего значения при заданном Однако фактические значения варьируются около среднего значения они могут отклоняться на величину случайной ошибки ε, дисперсия которой оценивается как остаточная дисперсия на одну степень свободы Поэтому ошибка прогноза отдельного значения должна включать не только стандартную ошибку , но и случайную ошибку S . Таким образом, средняя ошибка прогноза индивидуального значения составит:

(25)

Для примера:

Доверительный интервал прогноза индивидуальных значений при с вероятностью 0,95 составит: или

Пусть в примере с функцией издержек выдвигается предположение, что в предстоящем году в связи со стабилизацией экономики затраты на производство 8 тыс. ед. продукции не превысят 250 млн. руб. Означает ли это изменение найденной закономерности или затраты соответствуют регрессионной модели?

Точечный прогноз:

Предполагаемое значение - 250. Средняя ошибка прогнозного индивидуального значения:

Сравним ее с предполагаемым снижением издержек производства, т.е. 250-288,93=-38,93:

Поскольку оценивается только значимость уменьшения затрат, то используется односторонний t - критерий Стьюдента. При ошибке в 5 % с , поэтому предполагаемое уменьшение затрат значимо отличается от прогнозируемого значения при 95 % - ном уровне доверия. Однако, если увеличить вероятность до 99%, при ошибке 1 % фактическое значение t – критерия оказывается ниже табличного 3,365, и различие в затратах статистически не значимо, т.е. затраты соответствуют предложенной регрессионной модели.



Нелинейная регрессия

До сих пор мы рассматривали лишь линейную модель регрессионной зависимости y от x (3). В то же время многие важные связи в экономике являются нелинейными . Примерами такого рода регрессионных моделей являются производственные функции (зависимости между объемом произведенной продукции и основными факторами производства – трудом, капиталом и т.п.) и функции спроса (зависимости между спросом на какой-либо вид товаров или услуг, с одной стороны, и доходом и ценами на этот и другие товары – с другой).

При анализе нелинейных регрессионных зависимостей наиболее важным вопросом применения классического МНК является способ их линеаризации. В случае линеаризации нелинейной зависимости получаем линейное регрессионное уравнение типа (3), параметры которого оцениваются обычным МНК, после чего можно записать исходное нелинейное соотношение.

Несколько особняком в этом смысле стоит полиномиальная модель произвольной степени:

к которой обычный МНК можно применять без всякой предварительной линеаризации.

Рассмотрим указанную процедуру применительно к параболе второй степени:

(27)

Такая зависимость целесообразна в случае, если для некоторого интервала значений фактора возрастающая зависимость меняется на убывающую или наоборот. В этом случае можно определить значение фактора, при котором достигается максимальное или минимальное значение результативного признака. Если исходные данные не обнаруживают изменение направленности связи, параметры параболы становятся трудно интерпретируемыми, и форму связи лучше заменить другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени сводится к дифференцированию суммы квадратов остатков регрессии по каждому из оцениваемых параметров и приравниванию полученных выражений нулю. Получается система нормальных уравнений, число которых равно числу оцениваемых параметров, т.е. трем:



(28)

Решать эту систему можно любым способом, в частности, методом определителей.

Экстремальное значение функции наблюдается при значении фактора, равном:

Если b>0, c<0 , имеет место максимум, т.е. зависимость сначала растет, а затем падает. Такого рода зависимости наблюдаются в экономике труда при изучении заработной платы работников физического труда, когда в роли фактора выступает возраст. При b<0, c>0 парабола имеет минимум, что обычно проявляется в удельных затратах на производство в зависимости от объема выпускаемой продукции.

В нелинейных зависимостях, не являющихся классическими полиномами, обязательно проводится предварительная линеаризация, которая заключается в преобразовании или переменных, или параметров модели, или в комбинации этих преобразований. Рассмотрим некоторые классы таких зависимостей.

Зависимости гиперболического типа имеют вид:

(29)

Примером такой зависимости является кривая Филлипса, констатирующая обратную зависимость процента прироста заработной платы от уровня безработицы. В этом случае значение параметра b будет больше нуля. Другим примером зависимости (29) являются кривые Энгеля, формулирующие следующую закономерность: с ростом дохода доля доходов, расходуемых на продовольствие, уменьшается, а доля доходов, расходуемых на непродовольственные товары, будет возрастать. В этом случае b<0 , а результативный признак в (29) показывает долю расходов на непродовольственные товары.

Линеаризация уравнения (29) сводится к замене фактора z=1/x , и уравнение регрессии имеет вид (3), в котором вместо фактора х используем фактор z :

(30)

К такому же линейному уравнению сводится полулогарифмическая кривая:

(31)

которая может быть использована для описания кривых Энгеля. Здесь ln(x) заменяется на z , и получается уравнение (30).

Достаточно широкий класс экономических показателей характеризуется приблизительно постоянным темпом относительного прироста во времени. Этому соответствуют зависимости показательного (экспоненциального) типа, которые записываются в виде:

(32)

или в виде

(33)

Возможна и такая зависимость:

(34)

В регрессиях типа (32) – (34) применяется один и тот же способ линеаризации – логарифмирование. Уравнение (32) приводится к виду:

(35)

Замена переменной сводит его к линейному виду:

, (36)

где . Если Е удовлетворяет условиям Гаусса-Маркова, параметры уравнения (32) оцениваются по МНК из уравнения (36). Уравнение (33) приводится к виду:

, (37)

который отличается от (35) только видом свободного члена, и линейное уравнение выглядит так:

, (38)

где . Параметры А и b получаются обычным МНК, затем параметр a в зависимости (33) получается как антилогарифм А . При логарифмировании (34) получаем линейную зависимость:

где , а остальные обозначения те же, что и выше. Здесь также применяется МНК к преобразованным данным, а параметр b для (34) получается как антилогарифм коэффициента В .

Широко распространены в практике социально-экономических исследований степенные зависимости. Они используются для построения и анализа производственных функций. В функциях вида:

(40)

особенно ценным является то обстоятельство, что параметр b равен коэффициенту эластичности результативного признака по фактору х . Преобразуя (40) путем логарифмирования, получаем линейную регрессию:

(41)

Еще одним видом нелинейности, приводимым к линейному виду, является обратная зависимость:

(42)

Проводя замену u=1/y , получим:

(43)

Наконец, следует отметить зависимость логистического типа:

(44)

Графиком функции (44) является так называемая «кривая насыщения», которая имеет две горизонтальные асимптоты y=0 и y=1/a и точку перегиба , а также точку пересечения с осью ординат y=1/(a+b) :



Уравнение (44) приводится к линейному виду заменами переменных .

Любое уравнение нелинейной регрессии, как и линейной зависимости, дополняется показателем корреляции, который в данном случае называется индексом корреляции:

(45)

Здесь - общая дисперсия результативного признака y , - остаточная дисперсия, определяемая по уравнению нелинейной регрессии . Следует обратить внимание на то, что разности в соответствующих суммах и берутся не в преобразованных, а в исходных значениях результативного признака. Иначе говоря, при вычислении этих сумм следует использовать не преобразованные (линеаризованные) зависимости, а именно исходные нелинейные уравнения регрессии. По-другому (45) можно записать так:

(46)

Величина R находится в границах , и чем ближе она к единице, тем теснее связь рассматриваемых признаков, тем более надежно найденное уравнение регрессии. При этом индекс корреляции совпадает с линейным коэффициентом корреляции в случае, когда преобразование переменных с целью линеаризации уравнения регрессии не проводится с величинами результативного признака. Так обстоит дело с полулогарифмической и полиномиальной регрессий, а также с равносторонней гиперболой (29). Определив линейный коэффициент корреляции для линеаризованных уравнений, например, в пакете Excel с помощью функции ЛИНЕЙН, можно использовать его и для нелинейной зависимости.

Иначе обстоит дело в случае, когда преобразование проводится также с величиной y , например, взятие обратной величины или логарифмирование. Тогда значение R , вычисленное той же функцией ЛИНЕЙН, будет относиться к линеаризованному уравнению регрессии, а не к исходному нелинейному уравнению, и величины разностей под суммами в (46) будут относиться к преобразованным величинам, а не к исходным, что не одно и то же. При этом, как было сказано выше, для расчета R следует воспользоваться выражением (46), вычисленным по исходному нелинейному уравнению.

Поскольку в расчете индекса корреляции используется соотношение факторной и общей СКО, то R 2 имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину R 2 для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится так же, как и оценка надежности коэффициента корреляции.

Индекс детерминации используется для проверки существенности в целом уравнения нелинейной регрессии по F -критерию Фишера:

, (47)

где n -число наблюдений, m -число параметров при переменных х . Во всех рассмотренных нами случаях, кроме полиномиальной регрессии, m =1, для полиномов (26) m=k , т.е. степени полинома. Величина m характеризует число степеней свободы для факторной СКО, а (n-m-1) – число степеней свободы для остаточной СКО.

Индекс детерминации R 2 можно сравнивать с коэффициентом детерминации r 2 для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем больше разница между R 2 и r 2 . Близость этих показателей означает, что усложнять форму уравнения регрессии не следует и можно использовать линейную функцию. Практически, если величина (R 2 -r 2) не превышает 0,1, то линейная зависимость считается оправданной. В противном случае проводится оценка существенности различия показателей детерминации, вычисленных по одним и тем же данным, через t -критерий Стьюдента:

(48)

Здесь в знаменателе находится ошибка разности (R 2 -r 2) , определяемая по формуле:

(49)

Если , то различия между показателями корреляции существенны и замена нелинейной регрессии линейной нецелесообразна.

В заключение приведем формулы расчета коэффициентов эластичности для наиболее распространенных уравнений регрессии:

Вид уравнения регрессии Коэффициент эластичности

Список учебной литературы

1. Эконометрика: Учебник /Под ред. И.И. Елисеевой/ - М.: Финансы и статистика, 2001. – 344с.

2. Практикум по эконометрике: Учебное пособие / И.И. Елисеева и др./ - М.: Финансы и статистика, 2001. – 192с.

3. Бородич С.А. Эконометрика: Учебное пособие. – М.: Новое знание. 2001. – 408с.

4. Магнус Я.Р., Катышев П.К., Пересецкий А.А., Эконометрика. Начальный курс. Учебное пособие. – М.: Дело, 1998. – 248с.

5. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 1997. – 402с.

Если модель регрессии признана адекватной, то переходят к построению прогноза.

Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной х прогн :

Данный прогноз называется точечным. Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большой надежностью:

где t – t-критерий Стьюдента, определяемый по таблице при уровне значимости 0,05 и числе степеней свободы k=n-2 (для парной регрессии);

– остаточная дисперсия на одну степень свободы, определяемая по формуле:

;

s – стандартная ошибка предсказания, определяемая по формуле:

.

По статистическим данным, описывающим зависимость удельного веса бракованной продукции от удельного веса рабочих со специальной подготовкой на предприятиях построить уравнение парной регрессии и определить его значимость.

1. Построим диаграмму рассеяния для определения наличия зависимости между признаками и типа этой зависимости.

Диаграмма рассеяния или корреляционное поле показывает наличие линейной обратной связи.

2. Определим линейный коэффициент корреляции по формуле . Для этого построим вспомогательную таблицу:

Номер предприя-тия Удельный вес рабочих со специальной подготовкой, % х Удельный вес бракован-ной продукции, % y (x-xср)^2 (y-yср)^2 xy
857,6531 83,59184
371,9388 9,877551
86,22449 1,306122
0,510204 0,734694
114,7959 8,163265
429,0816 14,87755
661,2245 34,30612
Сумма 2521,429 152,8571
Среднее значение 44,28571 8,857143 360,2041 21,83673 306,4286

Линейный коэффициент корреляции будет равен:

С помощью встроенной функции КОРРЕЛ Excel получаем такое же значение линейного коэффициента корреляции. Для этого в ячейку необходимо ввести =КОРРЕЛ(массив1; массив2), причем не имеет значения последовательность ввода массивов.

Таким образом, делаем вывод о сильной обратной линейной зависимости между изучаемыми признаками.

2. Построим уравнение парной линейной регрессии . Оценим параметры уравнения регрессии а и b с помощью МНК. Для этого построим вспомогательную таблицу.



Номер х у x^2 xy
Сумма

Система нормальных уравнений для нахождения параметров парной линейной регрессии имеет вид:

Подставим необходимые данные и получим:

Решив систему, получим

С помощью встроенной функции ЛИНЕЙН Excel получаем такие же значения параметров уравнения регрессии. Для этого необходимо выделить две ячейки в одной строке, выбрать в главном меню Вставка/Функция , далее выбрать из категории Статистические функцию ЛИНЕЙН . В образовавшемся окне заполнить аргументы функции:

Известные значения y – диапазон, содержащий данные результативного признака;

Известные значения x – диапазон, содержащий данные факторного признака;

Константа – логическое значение, которое указывает на наличие или отсутствие свободного члена в уравнении регрессии, может принимать значение 0 или 1. Указываем 1.

Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если указать 0, будут выведены только значения параметров уравнения регрессии а и b в двух выделенных ячейках.

Чтобы вывести всю статистику по уравнению регрессии изначально необходимо выделить диапазон из пяти строк и двух столбцов и задать логическое значение 1 в аргументе функции ЛИНЕЙН Статистика . Дополнительная регрессионная статистика будет выводится в порядке, указанном в следующей схеме:

Для разбираемого примера таблица будет выглядеть следующим образом:

-0,23824 19,40793
0,027796 1,339265
0,936275 1,395765
73,46237
143,1163 9,740793

Таким образом, уравнение регрессии будет иметь вид: .

. Табличное значение t-критерия Стьюдента составляет 2,57. Поскольку расчетное значение больше табличного параметр а признается статистически значимым.

t-критерий Стьюдента для параметра а будет равен . Поскольку , параметр b признается статистически значимым.

Т.к. коэффициент детерминации , коэффициент корреляции равен и будет иметь отрицательное значение, поскольку связь обратная, на что указывает отрицательный коэффициент при х в уравнении регрессии.

Расчетное значение F-критерия Фишера равно 73,46, табличное значение F-критерия Фишера равно 6,61. Поскольку расчетное значение F-критерия больше табличного или критического, уравнение парной линейной регрессии в целом признается статистически значимым с вероятностью 95%.

t-критерий Стьюдента для линейного коэффициента корреляции определяется по формуле: , что больше табличного значения, поэтому линейный коэффициент корреляции признается статистически значимым.

В прогнозных расчетах по уравнению регрессии определяется предсказываемое значение как точечный прогноз при , т. е. путем подстановки в уравнение регрессии соответствующего значения х. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т. е , и соответственно интервальной оценкой прогнозно­го значения (у*)

Чтобы понять, как строится формула для определения вели­чин среднеквадратической ошибки , обратимся к уравнению линейной парной регрессии:

Известным образом найдем дисперсию модели парной линейной регрессии:

(3.29)

С учетом выражении (3.24) и (3.25) предварительно запишем:

После несложных преобразовании окончательно получим:

(3.30)

Отсюда перейдем среднеквадратической ошибке модели парной линейной регрессии:

Рассмотренная формула среднеквадратическая ошибки предсказывае­мого среднего значения y при заданном значении характеризу­ет ошибку положения линии регрессии. Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере того, как «удаляется» от в любом направлении. Иными словами, чем больше разность между и x , тем больше ошибка с которой предсказывается среднее зна­чение y для заданного значения . Можно ожидать наилучшие результаты прогноза, если признак-фактор х находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от . Если же значение оказывается за пределами наблюдаемых значений х, используемых при пост­роении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколько отклоняется от области наб­людаемых значений фактора x .

Для нашего примера составит:

Для прогнозируемого значения 95%-ные довери­тельные интервалы при заданном определяются выражением

Для вероятности 95% тогда26,04.

При , прогнозное значениеy составит:

которое представляет собой точечный прогноз.

Прогноз линии регрессии в интервале составит:

Однако фактические значения у варьируют около среднего значения . Индивидуальные значенияу могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы. Поэтому предсказываемого индивидуального значения y должна включать не только стандартную ошибку, но и случайную ошибкуS .

Средняя ошибка прогнозируемого индивидуального значе­ния y составит:

По данным рассматриваемого примера получим:

Доверительные интервалы прогноза индивидуальных значений y при с вероятностью 0,95 составят:, или 141,57, это означает, что.

Интервал достаточно широк, прежде всего, за счет малого объ­ема наблюдений.

При прогнозировании на основе уравнения регрессии следу­ет помнить, что величина прогноза зависит не только от стандарт­ной ошибки индивидуального значения у, но и от точности прогноза значения фактора х. Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы разви­тия событий.

Предположим, что в нашем примере с функцией издержек выдвигается предположение, что в предстоящем году в связи со стабилизацией экономики при выпуске продукции в 8 тыс. ед. затраты на производство не превысят 250 млн руб. Означает ли это действительно изменение найденной закономерности или же данная величина затрат соответствует регрессионной модели?

Чтобы ответить на этот вопрос, найдем точечный прогноз при х = 8, т. е.

Предполагаемое же значение затрат, исходя из экономичес­кой ситуации, - 250,0. Для оценки существенности различия этих величин определим среднюю ошибку прогнозируемого ин­дивидуального значения:

Сравним ее с величиной предполагаемого снижения издер­жек производства, т. е. :

Поскольку оценивается значимость только уменьшения зат­рат, то используется односторонний критерий Стьюдента. При ошибке в 5 % с пятью степенями свободы. Следова­тельно, предполагаемое уменьшение затрат значимо отличается от прогнозируемого по модели при 95 %-ном уровне доверия. Однако если увеличить вероятность до 99 %, при ошибке в 1 % фак­тическое значение критерия оказывается ниже табличного 3,365, и рассматриваемое различие в величине затрат статисти­чески не значимо.

Для прогнозирования с помощью уравнения регрессии необходимо вычислить коэффициенты и уравнения регрессии. И здесь существует еще одна проблема сказывающаяся на точности прогнозирования. Она заключается в том, что обычно нет всех возможных значений переменных Х и У, т.е. генеральная совокупность совместного распределения в задачах прогнозирования не известна, известна только выборка из этой генеральной совокупности. В результате этого при прогнозировании помимо случайной составляющей возникает еще один источник ошибок – ошибки, вызванные не полным соответствием выборки генеральной совокупности и порождаемыми этим погрешностями в определении коэффициентов уравнения регрессии.

Иными словами вследствие того, что генеральная совокупность не известна, точные значения коэффициентов и уравнения регрессии определить не возможно. Используя выборку из этой неизвестной генеральной совокупности можно лишь получить оценки и истинных коэффициентов и.

Для того чтобы ошибки прогнозирования в результате такой замены были минимальными, оценку необходимо осуществлять методом который гарантирует несмещенность и эффективность полученных значений. Метод обеспечивает несмещенные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается выполнение условия и. Метод обеспечивает эффективные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается минимальная дисперсия коэффициентов a и b, т.е. выполняются условия и.

В теории вероятности доказана теорема согласно которой эффективность и несмещенность оценок коэффициентов уравнения линейной регрессии по данным выборки обеспечивается при применении метода наименьших квадратов.

Суть метода наименьших квадратов заключается в следующем.

Для каждой из точек выборки записываются уравнение вида. Затем находятся ошибка между расчетным и фактическим значениями. Решение оптимизационной задачи по нахождению таких значений и которые обеспечивают минимальную сумму квадратов ошибок для всех n точек, т.е. решение задачи поиска, дает несмещенные и эффективные оценки коэффициентов и. Для случая парной линейной регрессии это решение имеет вид:

Следует отметить, что полученные таким образом по выборке несмещенные и эффективные оценки истинных значений коэффициентов регрессии для генеральной совокупности вовсе не гарантируют от ошибки при однократном применении. Гарантия заключается в том, что, в итоге многократного повторения этой операции с другими выборками из той же генеральной совокупности, гарантирована меньшая сумма ошибок по сравнению любым другим способом и разброс этих ошибок будет минимален.


Полученные коэффициенты уравнения регрессии определяют положение регрессионной прямой, она является главной осью облака образованного точками исходной выборки. Оба коэффициента имеют вполне определенный смысл. Коэффициент показывает значение при, но в многих случаях не имеет смысла, кроме того часто также не имеет смысла, по этому приведенной трактовкой коэффициента нужно пользоваться осторожно. Более универсальная трактовка смысла заключается в следующем. Если, то относительное изменение независимой переменной (изменение в процентах) всегда меньше чем относительное изменение зависимой переменной.

Коэффициент показывает насколько единиц изменится зависимая переменная при изменении независимой переменной на одну единицу. Коэффициент часто называют коэффициентом регрессии подчеркивая этим, что он важнее чем. В частности, если вместо значений зависимой и независимой переменных взять их отклонения от своих средних значений, то уравнение регрессии преобразуется к виду.

Коэффициент корреляции меняется в пределах от –1 до +1. Чем он ближе по абсолютному значению к единице, тем сильнее зависимость (тем сильнее облако данных прижато к своей главной оси). Если то наклон линии регрессии отрицателен, чем ближе он к 0 тем слабее связь, при линейной связи между переменными нет, а при связь переменных является функциональной. Коэффициент корреляции позволяет получить оценку точности уравнения регрессии - коэффициент детерминации. Для парной линейной регрессии он равен квадрату коэффициента корреляции, для многомерной или нелинейной регрессии его определение сложнее. Коэффициент детерминации показывает, сколько процентов дисперсии зависимой переменной объясняется уравнением регрессии, а - сколько процентов дисперсии осталась необъясненной (зависит от неконтролируемого нами случайного члена).

32. Временные ряды: понятие, классификация.

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Виды временных рядов.

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных временных рядов могут служить также ряды численности населения или стоимости основных фондов, т.к. значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней

служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

33. Компонентный анализ рядов динамики.

Ряды динамики - это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Для более глубокого изучения закономерностей развития показателя используется компонентный анализ, который представляет из себя разложение данного временного ряда на конечное число соответствующих. Любой экономический процесс может быть представлен хотя бы одним из нижеуказанных компонент.

Наиболее часто встречающимися, на которые можно разложить временной ряд, являются следующие:

U (t) – характеризует устойчивые систематические изменения уровней ряда, т.е. тренд

K (t) – нестрого периодические циклические колебания

V (t) – строго периодические колебания (сезонные).

E (t) – случайная компонента (несистематические колебания, которые возникают от случая.

Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают) и общая тенденция развития неясна.

На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

34. Способы установления наличия тенденции в ряду динамики.

Приемы для установления тенденций или закономерностей.

o Преобразование ряда - применяется для большей наглядности зменений изучаемых явлений. Одно число ряда принимается за 1, чаще всего за 100 или 1000, и, по отношению к данному числу ряда, рассчитываются остальные.

o Выравнивание ряда - применяется при скачкообразных изменениях (колебаниях) уровней ряда. Цель выравнивания - устранить влияние случайных факторов и выявить тенденцию изменений значений явлений (или признаков), а в дальнейшем установить закономерности этих изменений

Способы и методы выявления тренда:

1)Увеличение интервалов.

Первоначальный ряд динамики заменяется другим рядом, уровни которого относятся к большим по продолжительности периодам времени. Новые уровни образуются суммированием старых.

2)Вычисление средних уровней для укрупненных интервалов. Является частным случаем первого метода.

3)Определение скользящей средней – для первоначального ряда динамики формируются увеличенные интервалы, состоящие из одинакового количества уровней. Каждый новый интервал получается из предыдущего смещением на один уровень.

Точечный прогноз заключается в получении прогнозного значения уp , которое определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения xp:

уp = a + b* xp

Интервальный прогноз заключается в построении доверительного интервала прогноза, т. е. нижней и верхней границ уpmin , уpmax интервала, содержащего точную величину для прогнозного значения yp (ypmin < yp < ypmin ) с заданной вероятностью.

При построении доверительного интервала прогноза используется стандартная ошибка прогноза :

Где

Строится доверительный интервал прогноза :

Множественный регрессионный анализ

(слайд 1) Множественная регрессия применяется в ситуациях, когда из множества факторов, влияющих на результативный признак, нельзя выделить один доминирующий фактор и необходимо учитывать влияние нескольких факторов. Например, объем выпуска продукции определяется величиной основных и оборотных средств, численностью персонала, уровнем менеджмента и т. д., уровень спроса зависит не только от цены, но и от имеющихся у населения денежных средств.

Основная цель множественной регрессии – построить модель с несколькими факторами и определить при этом влияние каждого фактора в отдельности, а также их совместное воздействие на изучаемый показатель.

Таким образом, множественная регрессия – это уравнение связи с несколькими независимыми переменными:

(слайд 2) Построение уравнения множественной регрессии

1. Постановка задачи

По имеющимся данным n наблюдений (табл. 3.1) за совместным изменением p +1 параметра y и xj и ((yi,xj,i ); j =1, 2, ..., p ; i =1, 2, ..., n ) необходимо определить аналитическую зависимость ŷ = f(x1 ,x2 ,...,xp) , наилучшим образом описывающую данные наблюдений.

Таблица 3.1

Данные наблюдений

x1 1

х1 2

х1 n

x 2 n

Каждая строка таблицы представляет собой результат одного наблюдения. Наблюдения различаются условиями их проведения.

Вопрос о том, какую зависимость следует считать наилучшей, решается на основе какого-либо критерия. В качестве такого критерия обычно используется минимум суммы квадратов отклонений расчетных значений результативного показателя ŷi от наблюдаемых значений yi:

2. Спецификация модели

(слайд 3) Спецификация модели включает в себя решение двух задач:

– отбор факторов, подлежащих включению в модель;

– выбор формы уравнения регрессии.

2.1. Отбор факторов при построении множественной регрессии

Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлениями исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями.

К факторам, включаемым в модель, предъявляются следующие требования :

1. Факторы должны быть количественно измеримы. Включение фактора в модель должно приводить к существенному увеличению доли объясненной части в общей вариации зависимой переменной. Поскольку данная величина характеризуется коэффициентом детерминации , включение нового фактора в модель должно приводить к заметному изменению коэффициента. Если этого не происходит, то включаемый в анализ фактор не улучшает модель и является лишним.

Например, если для регрессии, включающей 5 факторов, коэффициент детерминации составил 0,85, и включение шестого фактора дало коэффициент детерминации 0,86, то вряд ли целесообразно дополнять модель этим фактором.

Если необходимо включить в модель качественный фактор, не имеющий количественной оценки, то нужно придать ему количественную определенность. В этом случае в модель включается соответствующая ему «фиктивная» переменная , имеющая конечное количество формально численных значений, соответствующих градациям качественного фактора (балл, ранг).

Например, если нужно учесть влияние уровня образования (на размер заработной платы), то в уравнение регрессии можно включить переменную, принимающую значения: 0 – при начальном образовании, 1 – при среднем, 2 – при высшем.

Несмотря на то, что теоретически регрессионная модель позволяет учесть любое количество факторов, на практике в этом нет необходимости, т.к. неоправданное их увеличение приводит к затруднениям в интерпретации модели и снижению достоверности результатов.

2. Факторы не должны быть взаимно коррелированы и, тем более, находиться в точной функциональной связи. Наличие высокой степени коррелированности между факторами может привести к неустойчивости и ненадежности оценок коэффициентов регрессии, а также к невозможности выделить изолированное влияние факторов на результативный показатель. В результате параметры регрессии оказываются неинтерпретируемыми.

Пример . Рассмотрим регрессию себестоимости единицы продукции (у ) от заработной платы работника (х ) и производительности труда в час (z ).

Коэффициент регрессии при переменной z показывает, что с ростом производительности труда на 1 ед-цу в час себестоимость единицы продукции снижается в среднем на 10 руб. при постоянном уровне оплаты труда.

А параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии в данном случае обусловлено высокой корреляцией между х и z (0,95).

(слайд 4) Считается, что две переменные явно коллинеарны , т.е. находятся между собой в линейной зависимости, если коэффициент интеркорреляции (корреляции между двумя объясняющими переменными) ≥ 0,7. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из уравнения. Предпочтение при этом отдается не тому фактору, который более тесно связан с результатом, а тому, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Наряду с парной коллинеарностью может иметь место линейная зависимость между более чем двумя переменными – мультиколлинеарность , т.е. совокупное воздействие факторов друг на друга.

Наличие мультиколлинеарности факторов может означать, что некоторые факторы всегда будут действовать в унисон. В результате вариация в исходных данных перестанет быть полностью независимой, что не позволит оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

(слайд 5) Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам :

    затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;

    оценки параметров не надежны, имеют большие стандартные ошибки и меняются с изменением количества наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

(слайд 6) Для оценки мультиколлинеарности используется определитель матрицы парных коэффициентов интеркорреляции :

(!) Если факторы не коррелируют между собой , то матрица коэффициентов интеркорреляции является единичной, поскольку в этом случае все недиагональные элементы равны 0. Например, для уравнения с тремя переменными матрица коэффициентов интеркорреляции имела бы определитель, равный 1, поскольку
и
.

(слайд 7)

(!) Если между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0 (Если две строки матрицы совпадают, то её определитель равен нулю).

Чем ближе к 0 определитель матрицы коэффициентов интеркорреляции, тем сильнее мультиколлинеарность и ненадежнее результаты множественной регрессии.

Чем ближе к 1 определитель матрицы коэффициентов интеркорреляции, тем меньше мультиколлинеарность факторов.

(слайд 8) Способы преодоления мультиколлинеарности факторов :

1) исключение из модели одного или нескольких факторов;

2) переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Например, если
, то можно построить следующее совмещенное уравнение:;

3) переход к уравнениям приведенной формы (в уравнение регрессии подставляется рассматриваемый фактор, выраженный из другого уравнения).

(слайд 9) 2.2. Выбор формы уравнения регрессии

Различают следующие виды уравнений множественной регрессии :

    линейные,

    нелинейные, сводящиеся к линейным,

    нелинейные, не сводящиеся к линейным (внутренне нелинейные).

В первых двух случаях для оценки параметров модели применяются методы классического линейного регрессионного анализа. В случае внутренне нелинейных уравнений для оценки параметров применяются методы нелинейной оптимизации.

Основное требование, предъявляемое к уравнениям регрессии, заключается в наличии наглядной экономической интерпретации модели и ее параметров. Исходя из этих соображений, наиболее часто используются линейная и степенная зависимости.

Линейная множественная регрессия имеет вид:

Параметры bi при факторах хi называются коэффициентами «чистой» регрессии . Они показывают, на сколько единиц в среднем изменится результативный признак за счет изменения соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

(слайд 10) Например, зависимость спроса на товар (Qd) от цены (P) и дохода (I) характеризуется следующим уравнением:

Qd = 2,5 - 0,12P + 0,23 I.

Коэффициенты данного уравнения говорят о том, что при увеличении цены на единицу, спрос уменьшится в среднем на 0,12 единиц, а при увеличении дохода на единицу, спрос возрастет в среднем 0,23 единицы.

Параметр а не всегда может быть содержательно проинтерпретирован.

Степенная множественная регрессия имеет вид:

Параметры bj (степени факторов хi ) являются коэффициентами эластичности. Они показывают, на сколько % в среднем изменится результативный признак за счет изменения соответствующего фактора на 1% при неизмененном значении остальных факторов.

Наиболее широкое применение этот вид уравнения регрессии получил в производственных функциях, а также при исследовании спроса и потребления.

Например, зависимость выпуска продукции Y от затрат капитала K и труда L:
говорит о том, что увеличение затрат капитала K на 1% при неизменных затратах труда вызывает увеличение выпуска продукции Y на 0,23%. Увеличение затрат труда L на 1% при неизменных затратах капитала K вызывает увеличение выпуска продукции Y на 0,81 %.

Возможны и другие линеаризуемые функции для построения уравнения множественной регрессии:


Чем сложнее функция, тем менее интерпретируемы ее параметры. Кроме того, необходимо помнить о соотношении между количеством наблюдений и количеством факторов в модели. Так, для анализа трехфакторной модели должно быть проведено не менее 21 наблюдения.

(слайд 11) 3. Оценка параметров модели

Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов , согласно которому следует выбирать такие значения параметров а и bi , при которых сумма квадратов отклонений фактических значений результативного признака yi от теоретических значений ŷ минимальна, т. е.:

Если , тогдаS является функцией неизвестных параметров a , bi :

Чтобы найти минимум функции, нужно найти частные производные по каждому из параметров и приравнять их к 0:

Отсюда получаем систему уравнений:

(слайд 12) Ее решение может быть осуществлено методом определителей:

,

где – определитель системы;

a , ∆ b 1, ∆ bp – частные определители (j ).

–определитель системы,

j – частные определители, которые получаются из основного определителя путем замены j-го столбца на столбец свободных членов .

При использовании данного метода возможно возникновение следующих ситуаций:

1) если основной определитель системы Δ равен нулю и все определители Δj также равны нулю, то данная система имеет бесконечное множество решений;

2) если основной определитель системы Δ равен нулю и хотя бы один из определителей Δj также равен нулю, то система решений не имеет.

(слайд 13) Помимо классического МНК для определения неизвестных параметров линейной модели множественной регрессии используется метод оценки параметров через β -коэффициенты – стандартизованные коэффициенты регрессии.

Построение модели множественной регрессии в стандартизированном, или нормированном, масштабе означает, что все переменные, включенные в модель регрессии, стандартизируются с помощью специальных формул.

У равнение регрессии в стандартизованном масштабе:

где
,
- стандартизованные переменные;

- стандартизованные коэффициенты регрессии.

Т.е. посредством процесса стандартизации точкой отсчета для каждой нормированной переменной устанавливается ее среднее значение по выборочной совокупности. При этом в качестве единицы измерения стандартизированной переменной принимается ее среднеквадратическое отклонение σ .

β -коэффициенты показывают , на сколько сигм (средних квадратических отклонений) изменится в среднем результат за счет изменения соответствующего фактора xi на одну сигму при неизменном среднем уровне других факторов.

Стандартизованные коэффициенты регрессии βi сравнимы между собой, что позволяет ранжировать факторы по силе их воздействия на результат. Большее относительное влияние на изменение результативной переменной y оказывает тот фактор, которому соответствует большее по модулю значение коэффициента βi . В этом основное достоинство стандартизованных коэффициентов регрессии , в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой.

(слайд 14) Связь коэффициентов «чистой» регрессии bi с коэффициентами βi описывается соотношением:

, или

Параметр a определяется как .

Коэффициенты β определяются при помощи МНК из следующей системы уравнений методом определителей:

Для оценки параметров нелинейных уравнений множественной регрессии предварительно осуществляется преобразование последних в линейную форму (с помощью замены переменных) и МНК применяется для нахождения параметров линейного уравнения множественной регрессии в преобразованных переменных. В случае внутренне нелинейных зависимостей для оценки параметров приходится применять методы нелинейной оптимизации.

(слайд 1) 4. Проверка качества уравнения регрессии

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, т.е. оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции рассчитывается по формуле:

Коэффициент множественной корреляции принимает значения в диапазоне 0 ≤ R ≤ 1. Чем ближе он к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

При линейной зависимости признаков формулу индекса множественной корреляции можно записать в виде:

,

где - стандартизованные коэффициенты регрессии,

- парные коэффициенты корреляции результата с каждым фактором.

Данная формула получила название линейного коэффициента множественной корреляции , или совокупного коэффициента корреляции .

Индекс детерминации для нелинейных по оцениваемым параметрам функций принято называть «квази-
».
Для его определения по функциям, использующим логарифмические преобразования (степенная, экспонента), необходимо сначала найти теоретические значения ln y, затем трансформировать их через антилогарифмы (антилогарифм ln y = y) и далее определить индекс детерминации как «квази-
» по формуле:

.

Величина «квази-
» не будет совпадать с совокупным коэффициентом корреляции, который может быть рассчитан для линейного в логарифмах уравнения множественной регрессии, потому что в последнем раскладывается на факторную и остаточную суммы квадратов не
, а
.

(слайд 2) Использование коэффициента множественной детерминации
для оценки качества модели обладает тем недостатком, что включение в модель нового фактора (даже несущественного) автоматически увеличивает величину
.
Поэтому при большом количестве факторов предпочтительней использовать так называемый скорректированный (улучшенный) коэффициент множественной детерминации
, определяемый соотношением:

где n – число наблюдений,

m – число параметров при переменных х (чем больше величина m, тем сильнее различия между к-том множ. детерминации
и скорректированным к-том
).

При заданном объеме наблюдений и при прочих равных условиях с увеличением числа независимых переменных (параметров) скорректированный к-т множ. детерминации убывает. Его величина может стать и отрицательной при слабых связях результата с факторами. При небольшом числе наблюдений нескорректированная величина к-та имеет тенденцию переоценивать долю вариации результативного признака, связанную с влиянием факторов, включенных в регрессионную модель. Чем больше объем совокупности, по которой исчислена регрессия, тем меньше различаются
и
.

Отметим, что низкое значение коэффициента множественной корреляции и коэффициента множественной детерминации может быть обусловлено следующими причинами :

– в регрессионную модель не включены существенные факторы;

– неверно выбрана форма аналитической зависимости, не отражающая реальные соотношения между переменными, включенными в модель.

(слайд 3) Значимость уравнения множественной регрессии в целом оценивается с помощью F - критерия Фишера :

Выдвигаемая «нулевая» гипотеза H0 о статистической незначимости уравнения регрессии отвергается при выполнении условия F > F крит, где F крит определяется по таблицам F -критерия Фишера по двум степеням свободы k 1 = m , k 2= n- m - 1 и заданному уровню значимости α.

Значимость одного и того же фактора может быть различной в зависимости от последовательности введения его в модель.

(слайд 4) Мерой для оценки включения фактора в модель служит частный F -критерий (оценивает статистическую значимость присутствия каждого из факторов в уравнении):

,

где
- коэффициент множ. детерминации для модели с полным

набором факторов;

- тот же показатель, но без включения в модель фактора х1 ;

n – число наблюдений;

m – число параметров при переменных х.

Если фактическое значение F превышает табличное, то дополнительное включение в модель фактора xi статистически оправдано и коэффициент чистой регрессии bi при факторе xi статистически значим.

Если же фактическое значение F меньше табличного, то нецелесообразно включать в модель дополнительный фактор, поскольку он не увеличивает существенно долю объясненной вариации результата, а коэффициент регрессии при данном факторе статистически не значим.

(слайд 5) Частный F-критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и t -критерий Стьюдента :

или

где m bi – средняя квадратическая ошибка коэффициента регрессии b i , она может быть определена по формуле:

.

Величина стандартной ошибки совместно с t-распределением Стьюдента при n-m-1 степенях свободы применяется для проверки значимости коэффициента регрессии и для расчета его доверительного интервала.