фото с сайта scop-pro.fr

Технология микроскопирования открыла новые возможности в медицинской и лабораторной практике. Сегодня без специальной оптики не обходятся ни диагностические исследования, ни оперативные вмешательства. Наиболее значима роль микроскопов в стоматологии, офтальмологии, микрохирургии. Речь идёт не просто об улучшении видимости и облегчении работы, а о принципиально новом подходе к проведению исследований и операций.

Воздействие на тонкие структуры на клеточном уровне означает, что пациент легче перенесёт вмешательство, быстрее восстановится, не подвергнется повреждению здоровых тканей и осложнениям. За всеми этими преимуществами современной медицины нередко стоит микроскоп - мощное высокотехнологичное устройство, сконструированное с применением последних достижений оптики.

В зависимости от предназначения микроскопы подразделяются на:

  • лабораторные;
  • стоматологические;
  • хирургические;
  • офтальмологические;
  • отоларингологические.

Оптические системы для проведения биохимических, гематологических, дерматологических, цитологических исследований функционально отличаются от медицинских. Самыми совершенными и мощными признаны офтальмологические микроскопы - с их помощью удалось совершить радикальный прорыв в лечении катаракты, дальнозоркости, близорукости, астигматизма. Операции на микронном уровне, проводимые под 40-кратным увеличением, по инвазивности сопоставимы с уколом, пациент восстанавливается после операции за считанные дни.

Не менее интересны , позволяющие под 25 кратным увеличением прицельно лечить зубные каналы и другие мельчайшие структуры, не различимые человеческим глазом. Применяя новейшую оптику, стоматологам почти всегда удаётся провести качественное лечение и сохранить зуб.

Увеличительные приборы для микрохирургии отличаются расширенным полем зрения, повышенной резкостью изображения, возможностью плавной или ступенчатой регулировки увеличения. Всё это обеспечивает наилучшие условия видимости для хирурга и ассистентов.

Важно, что новое поколение приборов для микроскопирования максимально удобно в применении: работа с увеличительной оптикой проста и не требует больших усилий или специальных навыков. За счёт встроенной системы освещения и удобной формы окуляра специалист не испытывает усталости и дискомфорта даже при долгой непрерывной работе.

Микроскоп - достаточно хрупкий прибор, требующий бережного отношения. Особенно это касается линз: к оптическим поверхностям нежелательно прикасаться руками, для чистки устройства используют специальную кисточку и мягкие салфетки, смоченные в этиловом спирте.

В помещениях, где находятся микроскопы, должна поддерживаться комнатная температура и низкая влажность (менее 60%).

Подробное решение параграф § 1 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Вспомните!

Какие достижения современной биологии вам известны?

рентгенология

аппараты УЗИ, ЭМРТ

установление молекулярной структуры ДНК

расшифровка генома человека и других организмов

генная инженерия

3D-биопринтеры

Электронные сканирующие микроскопы

Экстракорпоральное оплодотворение и др.

Каких ученых-биологов вы знаете?

Линней, Ламарк, Дарвин, Мендель, Морган, Павлов, Пастер, Гук, Левенгук, Броун, Пурнинье, Бэр, Мечников, Мичурин, Вернадский, Ивановский, Флеминг, Тенсли, Сукачев, Четвериков, Лайль, Опарин, Шванн, Шлейден, Чаграфф, Навашин, Тимирязев, Мальпиги, Гольджи и др.

Вопросы для повторения и задания

1. Расскажите о вкладе в развитие биологии древнегреческих и древне-римских философов и врачей.

Первым учёным, создавшим научную медицинскую школу, был древнегреческий врач Гиппократ (ок. 460 - ок. 370 до н. э.). Он считал, что у каждой болезни есть естественные причины и их можно узнать, изучая строение и жизнедеятельность человеческого организма. С древних времён и по сей день врачи торжественно произносят клятву Гиппократа, обещая хранить врачебную тайну и ни при каких обстоятельствах не оставлять больного без медицинской помощи. Великий энциклопедист древности Аристотель (384-322 до н. э.). Стал одним из основателей биологии как науки, впервые обобщив биологические знания, накопленные до него человечеством. Он разработал систематику животных, определив в ней место и человеку, которого он называл «общественным животным, наделённым разумом». Многие труды Аристотеля были посвящены происхождению жизни. Древнеримский учёный и врач Клавдий Гален (ок. 130 - ок. 200), изучая строение млекопитающих, заложил основы анатомии человека. В течение следующих пятнадцати веков его труды были основным источником знаний по анатомии.

2. Охарактеризуйте особенности воззрений на живую природу в Средние века, эпоху Возрождения.

Резко возрос интерес к биологии в эпоху Великих географических открытий (XV в.). Открытие новых земель, налаживание торговых отношений между государствами расширяли сведения о животных и растениях. Ботаники и зоологи описывали множество новых, неизвестных ранее видов организмов, принадлежащих к различным царствам живой природы. Один из выдающихся людей этой эпохи - Леонардо да Винчи (1452-1519) - описал многие растения, изучал строение человеческого тела, деятельность сердца и зрительную функцию. После того как был снят церковный запрет на вскрытие человеческого тела, блестящих успехов достигла анатомия человека, что получило отражение в классическом труде Андреаса Везалия (1514-1564) «Строение человеческого тела» (рис. 1). Величайшее научное достижение - открытие кровообращения - совершил в XVII в. английский врач и биолог Уильям Гарвей (1578-1657).

3. Используя знания, полученные на уроках истории, объясните, почему в Средние века в Европе наступил период застоя во всех областях знаний.

После падения Западной Римской империи в Европе наступил застой в развитии наук и ремесла. Этому способствовали феодальные порядки, установившиеся во всех европейских странах, постоянные войны между феодалами, нашествия полудиких народов с востока, массовые эпидемии, а главное - идеологическое закабаление умов широких народных масс римско-католической церковью. В этот период римско-католическая церковь, несмотря на многие неудачи в борьбе за политическое господство, распространила свое влияние во всей Западной Европе. Имея огромную армию духовенства различных рангов, папство фактически добилось полного господства христианской римско-католической идеологии среди всех западноевропейских народов. Проповедуя смирение и покорность, оправдывая существующие феодальные порядки, римско-католическое духовенство вместе с тем жестоко преследовало все новое и прогрессивное. Естественные науки и вообще так называемое светское образование были полностью подавлены.

4. Какое изобретение XVII в. дало возможность открыть и описать клетку?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов.

5. Каково значение для биологической науки работ Л. Пастера и И. И. Мечникова?

Труды Луи Пастера (1822-1895) и Ильи Ильича Мечникова (1845-1916) определили появление иммунологии. В 1876 г. Пастер полностью посвятил себя иммунологии, окончательно установив специфичность возбудителей сибирской язвы, холеры, бешенства, куриной холеры и других болезней, развил представления об искусственном иммунитете, предложил метод предохранительных прививок, в частности от сибирской язвы, бешенства. Первая прививка против бешенства была сделана Пастером 6 июля 1885 г. В 1888 г. Пастер создал и возглавил научно-исследовательский институт микробиологии (Пастеровский институт), в котором работали многие известные ученые.

Мечников, обнаружив в 1882 г. явление фагоцитоза, разработал на его основе сравнительную патологию воспаления, а в дальнейшем - фагоцитарную теорию иммунитета, за что получил в 1908 г. Нобелевскую премию совместно с П. Эрлихом. Многочисленные работы Мечникова по бактериологии посвящены вопросам эпидемиологии холеры, брюшного тифа, туберкулеза и других инфекционных заболеваний. Мечников создал первую русскую школу микробиологов, иммунологов и патологов; активно участвовал в создании научно-исследовательских учреждений, разрабатывающих различные формы борьбы с инфекционными заболеваниями.

6. Перечислите основные открытия, сделанные в биологии в XX в.

В середине XX в. в биологию начали активно проникать методы и идеи других естественных наук. Достижения современной биологии открывают широкие перспективы для создания биологически активных веществ и новых лекарственных препаратов, для лечения наследственных заболеваний и осуществления селекции на клеточном уровне. В настоящее время биология стала реальной производительной силой, по развитию которой можно судить об общем уровне развития человеческого общества.

– Открытие витаминов

– Открытие пептидных связей в молекулах белков

– Изучение химической природы хлорофилла

– Описали основные ткани растений

– Открытие структуры ДНК

– Исследование фотосинтеза

– Открытие ключевого этапа в дыхании клеток - цикла трикарбоновых кислот, или цикла Кребса

– Исследование физиологии пищеварения

– Наблюдал клеточное строение тканей

– Наблюдал одноклеточных организмов, клетки животных (эритроциты)

– Открытие ядра в клетке

– Открытие аппарата Гольджи - органоида клетки, метод приготовления микроскопических препаратов нервной ткани, исследование строения нервной системы

– Установил, что одни части зародыша имеют влияние на развитие других его частей

– Сформулировал мутационную теорию

– Создание хромосомной теории наследственности

– Сформулировал закон гомологических рядов в наследственной изменчивости

– Обнаружили усиление мутационного процесса под действием радиоактивного излучения

– Открыл сложную структуру гена

– Открыл значение мутационного процесса в процессах, происходящих в популяциях, для эволюции вида

– Установил филогенетический ряд лошадиных как типовой ряд постепенных эволюционных изменений родственных видов

– Разработали теорию зародышевых листков для позвоночных

– Выдвинул теорию происхождения многоклеточных организмов от общего предка - гипотетического организма фагоцителлы

– Обосновывает наличие в прошлом предка многоклеточных - фагоцителлы и предлагает считать его живой моделью многоклеточное животное - трихоплакса

– Обосновали биологический закон «Онтогенез есть краткое повторение филогенеза»

– Утверждал, что многие органы многофункциональны; в новых условиях среды одна из второстепенных функций может стать более важной и заменить прежнюю главную функцию органа

– Выдвинул гипотезу возникновения билатеральной симметрии живых организмов

7. Назовите известные вам естественные науки, составляющие биологию. Какие из них возникли в конце XX в.?

На границах смежных дисциплин возникали новые биологические направления: вирусология, биохимия, биофизика, биогеография, молекулярная биология, космическая биология и многие другие. Широкое внедрение математики в биологию вызвало рождение биометрии. Успехи экологии, а также всё более актуальные проблемы охраны природы способствовали развитию экологического подхода в большинстве отраслей биологии. На рубеже XX и XXI вв. с огромной скоростью начала развиваться биотехнология - направление, которому, несомненно, принадлежит будущее.

Подумайте! Вспомните!

1. Проанализируйте изменения, произошедшие в науке в XVII-XVIII вв. Какие возможности они открыли перед учёными?

Новую эру в развитии биологии ознаменовало изобретение в конце XVI в. микроскопа. Уже в середине XVII в. была открыта клетка, а позднее обнаружен мир микроскопических существ - простейших и бактерий, изучено развитие насекомых и принципиальное строение сперматозоидов. В XVIII в. шведский натуралист Карл Линней (1707-1778) предложил систему классификации живой природы и ввёл бинарную (двойную) номенклатуру для наименования видов. Карл Эрнст Бэр (Карл Максимович Бэр) (1792-1876), профессор Петербургской медико-хирургической академии, изучая внутриутробное развитие, установил, что зародыши всех животных на ранних этапах развития схожи, сформулировал закон зародышевого сходства и вошёл в историю науки как основатель эмбриологии. Первым биологом, который попытался создать стройную и целостную теорию эволюции живого мира, стал французский учёный Жан Батист Ламарк (1774-1829). Палеонтологию, науку об ископаемых животных и растениях, создал французский зоолог Жорж Кювье (1769-1832). Огромную роль в понимании единства органического мира сыграла клеточная теория зоолога Теодора Шванна (1810-1882) и ботаника Маттиаса Якоба Шлейдена (1804-1881).

2. Как вы понимаете выражение «прикладная биология»?

4. Проанализируйте материал параграфа. Составьте хронологическую таблицу крупных достижений в области биологии. Какие страны в какие временные периоды были основными «поставщиками» новых идей и открытий? Сделайте вывод о связи между развитием науки и другими характеристиками государства и общества.

Страны, в которых произошли основные биологические открытия относятся к развитым и активно развивающимся странам.

5. Приведите примеры современных дисциплин, возникших на стыке биологии и других наук, не упомянутые в параграфе. Что является предметом их изучения? Попробуйте предположить, какие разделы биологии могут возникнуть в будущем.

Примеры современных дисциплин, возникших на стыке биологии и других наук: палеобиология, биомедицина, социобиология, психобиология, бионика, физиология труда, радиобиология.

Разделы биологии могут возникнуть в будущем: биопрограммирование, ИТ-медицина, биоэтика, биоинформатика, биотехнология.

6. Обобщите информацию о системе биологических наук и представьте её в виде сложной иерархической схемы. Сравните схему, созданную вами, с результатами, которые получились у ваших одноклассников. Одинаковы ли ваши схемы? Если нет, объясните, в чём их принципиальные отличия.

1) Человечество не может существовать без живой природы. Отсюда жизненно необходимо сохранять ее

2) Биология возникла в связи с решением очень важных для людей проблем.

3) Одной из них всегда было более глубокое постижение процессов в живой природе, связанных с получением пищевых продуктов, т.е. знание особенностей жизни растений и животных, их изменение под воздействием человека, способов получения надежного и все более богатого урожая.

4) Человек – продукт развития живой природы. Все процессы нашей жизнедеятельности подобны тем, которые происходят в природе. И поэтому глубокое понимание биологических процессов служит научным фундаментом медицины.

5) Появление сознания, означающее гигантский шаг вперед в самопознании материи, тоже не может быть понято без глубоких исследований живой природы, по крайней мере, в 2-х направлениях – возникновение и развитие мозга как органа мышления (до сих пор загадка мышления остается неразрешенной) и возникновение социальности, общественного образа жизни.

6) Живая природа является источником многих необходимых для человечества материалов и продуктов. Нужно знать их свойства, чтобы правильно использовать, знать, где искать их в природе, как получать.

7) Та вода, которую мы пьем, точнее - чистота этой воды, ее качество тоже определяется в первую очередь живой природой. Наши очистные сооружения лишь завершают тот огромный процесс, который незримо для нас происходит в природе: вода в почве или водоеме многократно проходит через тела мириадов беспозвоночных, фильтруется ими и, освобождаясь от органических и неорганических остатков, становится такой, какой мы знаем ее в реках, озерах и ключах.

8) Проблема качества воздуха и воды – одна из экологических проблем, а экология – биологическая дисциплина, хотя современная экология давно перестала быть только ею и включает в себя много самостоятельных разделов, зачастую принадлежащих к разным научным дисциплинам.

9) В результате освоения человеком всей поверхности планеты, развития сельского хозяйства, промышленности, вырубки лесов, загрязнения материков и океанов все большее число видов растений, грибов, животных исчезает с лица Земли. Исчезнувший вид восстановить невозможно. Он является продуктом миллионов лет эволюции и обладает уникальным генофондом.

10) В данный момент особенно быстро развиваются молекулярная биология, биотехнология и генетика.

8. Организационный проект. Выберите важное событие в истории биологии, годовщина которого приходится на текущий или следующий год. Разработайте программу вечера (конкурса, викторины), посвящённого этому событию.

Викторина:

– Разделение на группы

– Вступительное слово – описание события, историческая справка события, ученого

– Придумать название команд (по теме викторины)

– 1 раунд – простой: например, закончить предложение: Защитная реакция растений на изменение длины светового дня (листопад).

– 2 раунд – двойной: например, найди пару.

– 3 раунд – сложный: например, изобразить схему процесса, нарисовать явление.

История и изобретение микроскопа связано с тем, что с древних времен человек хотел видеть гораздо меньшие предметы, чем позволял невооруженный человеческий глаз. Хотя первое использование линзы из-за давности времени остается неизвестным, считается, что использование эффекта преломления света использовалось более чем 2000 лет назад. Во 2-м веке до нашей эры Клавдий Птолемей описал свойства света в бассейне с водой и точно рассчитал константу преломления воды.

В течение 1 века нашей эры (год 100), было изобретено стекло и римляне глядя через стекло его тестировали. Они экспериментировали с различными формами прозрачного стекла и один из их образцов был толще в середине и тоньше по краям. Они обнаружили, что объект через такое стекло будет выглядеть больше.

Слово «линза» на самом деле происходит от латинского слова «чечевица», они назвали потому, что напоминает форму бобового растения чечевица.

В то же время римский философ Сенека описывает фактическое увеличение через кувшин с водой «…письма, малые и невнятные, рассматриваются расширенные и более четкие через стеклянный кувшин, заполненный водой». Далее линзы не применялись до конца XIII века до . Затем около 1600 г, было обнаружено, что оптические инструменты могут быть сделаны с использованием линзы.

Первые оптические приборы

Ранние простые оптические приборы были с увеличительными стеклами и имели увеличение обычно около 6 x – 10 х. В 1590 году, два голландских изобретателя Ганс Янсен и его сын Захарий при шлифовке линз вручную обнаружили, что сочетание двух линз позволило увеличить изображение предмета в несколько раз.

Они смонтировали несколько линз в трубку и сделали очень важное открытие – изобретение микроскопа .

Их первые устройства были новизной, чем научный инструмент, поскольку максимальное увеличение было до 9 х. Первый микроскоп, сделанный для голландской королевской знати имел 3 раздвижные трубы, 50 см в длину и 5 см в диаметре. Было указано, что устройство имело увеличение от 3 x до 9 x когда полностью раскрыто.

Микроскоп Левенгука

Другой голландский ученый Антони ван Левенгук (1632-1723), считается одним из пионеров микроскопии, в конце XVII века стал первым человеком реально использовавшим изобретение микроскопа на практике.

Ван Левенгук достиг большего успеха, чем его предшественники путем разработки способа изготовления линзы путем шлифовки и полировки. Он достиг увеличения до 270 x, лучшее известное на то время. Это увеличение дает возможность просматривать объекты размером одна миллионная метра.

Антони Левенгук стал более активно участвовать в науке со своим новым изобретением микроскопа. Он мог видеть вещи, которые никто никогда не видел раньше. Он впервые увидел бактерии, плавающие в капле воды. Он отметил ткани растений и животных, клетки спермы и клетки крови, минералы, окаменелости и многое другое. Он также обнаружил нематод и коловраток (микроскопических животных) и обнаружил бактерии, глядя на образцы зубного налета от своих собственных зубов.

Люди стали понимать, что увеличение может выявить структуры, которые никогда не видели раньше – гипотеза, что все сделано из крошечных компонентов, невидимых невооруженным глазом тогда еще не рассматривалась.

Работы Антони Левенгука в дальнейшем развил английский ученый Роберт Гук, который опубликовал результаты микроскопических исследований «Микрография» в 1665 году. Роберт Гук описал подробные исследования в области микробиологии.

Англичанин Роберт Гук открыл микроскопическую веху и основную единицу всей жизни – клетку. В середине XVII века Гук увидел структурные клетки во время изучения образца, который напомнил ему о небольших монастырских комнатах. Гуку также приписывают быть первым, который использовал конфигурацию трех основных линз, как сегодня используют после изобретения микроскопа.

В 18-19 веках не так много изменений в конструкции основного микроскопа было введено. Были разработаны линзы с использованием более чистого стекла и различной формы для решения таких проблем, как искажение цвета и разрешение плохого изображения. В конце 1800-х годов немецкий физик-оптик Эрнст Аббе обнаружил, что покрытые маслом линзы предотвращают искажение света при высоком разрешении. Изобретение микроскопа помогло великому русскому учёному-энциклопедисту Ломоносову в середине 18 века проводить свои опыты двигать русскую науку.

Современное развитие микроскопии

В 1931 году немецкие ученые начали работать над изобретением электронного микроскопа. Этот вид прибора фокусирует электроны на образце и формируют изображение, которое может быть захвачено электронно чувствительным элементом. Эта модель позволяет ученым просмотреть очень мелкие детали с усилением до одного миллиона раз. Единственным недостатком является то, что живые клетки не могут наблюдаться электронным микроскопом. Однако цифровые и другие новые технологии создали новый прибор для микробиологов.

Немцы Эрнст Руска и доктор Макс Кноль, сначала создали «линзу» магнитного поля и электрического тока. К 1933 году ученые построили электронный микроскоп, который превзошел пределы увеличения оптического микроскопа на то время.

Эрнст получил Нобелевскую премию по физике в 1986 году за свою работу. Электронный микроскоп может достичь гораздо более высокого разрешения, так как длина волны электрона меньше, чем длина волны видимого света, в особенности, когда электрон ускоряется в вакууме.

Световая и электронная микроскопия продвинулаясь в 20-м веке. Сегодня увеличительные приборы используют флуоресцентные метки или поляризационные фильтры для просмотра образцов. Более современные используют для захвата и анализа изображений, которые не видны человеческому глазу.

Изобретение микроскопа в 16 веке позволило создать уже отражающие, фазовые, контрастные, конфокальные и даже ультрафиолетовые устройства .

Современные электронные устройства могут дать изображение даже одного атома.

Первые микроскописты второй половины XVII в. - физик Р. Гук, ана­том М. Мальпиги, ботаник Н. Грю, оптик-любитель А. Левенгук и др. с по­мощью микроскопа описали строение кожи, селезенки, крови, мышц, се­менной жидкости и др. Каждое исследование по существу являлось откры­тием , которое плохо уживалось с метафизическим взглядом на природу, складывавшимся веками. Случайный характер открытий, несовершенство микроскопов, метафизическое мировоззрение не позволили в течение 100 лет (с середины XVIIв. до середины XVIII в.) сделать существенные шаги вперед в познании закономерностей строения животных и растений, хотя и делались попытки обобщений (теории «волокнистого» и «зернисто­го» строения организмов и др.).

Открытие клеточного строения произошло в то время развития человечества, когда экспериментальная физика стала претендовать называться госпожой всех наук. В Лондоне было создано общество величайших ученых, которые делали упор в совершенствовании мира на конкретные физические законы. На встречах членов сообщества не происходило никаких политических дебатов, подвергали обсуждению только различные эксперименты и делились исследованиями по физике, механике. Времена тогда были беспокойными, и ученые соблюдали очень строгую конспирацию. Новое сообщество стали называть «коллегия невидимых». Первым, кто стоял у истоков создания общества, был Роберт Бойль - великий наставник Гука. Коллегия выпускала необходимую научную литературу. Автором одной из книг стал Роберт Гук, который тоже входил в это секретное научное сообщество. Гук уже в те годы слыл изобретателем интересных приборов, позволяющих делать великие открытия. Одним из таких приборов был микроскоп.

Одним из первых создателей микроскопа был Захариус Йансен , который создал его в 1595 году. Задумка изобретения была в том, что монтировались две линзы (выпуклые) внутри специальной трубки с выдвижным тубусом для фокусировки изображения. Этот прибор мог увеличивать исследуемые предметы в 3-10 раз. Роберт Гук усовершенствовал это изделие, что и сыграло главную роль в предстоящем открытии.

Роберт Гук в течение длительного времени наблюдал через созданный микроскоп разные мелкие экземпляры, и однажды для просмотра он взял обычную пробку из сосуда. Рассмотрев тонкий срез этой пробки, ученый удивился сложности структуры вещества. Его взору предстал интересный узор из множества ячеек, удивительно похожий на пчелиные соты. Так как пробка - это продукт растительный, Гук начал изучать с помощью микроскопа срезы стеблей растений. Везде повторялась аналогичная картинка - набор пчелиных сот. В микроскоп было видно множество рядов ячеек, которые разделялись тонкими стенками. Роберт Гук назвал эти ячейки клетками . Впоследствии образовалась целая наука о клетках, которая называется цитология. В цитологию входят изучение строения клеток и их жизнедеятельность. Используется эта наука во многих областях, в том числе медицине, промышленности.

С именем М. Мальпиги этого выдающегося биолога и врача связан важный период микроскопических исследований анатомии животных и растений.
Изобретение и усовершенствование микроскопа позволило ученым открыть
мир чрезвычайно мелких существ, совершенно не похожих на тех,
которые видны невооруженным глазом. Получив микроскоп, Мальпиги сделал ряд важнейших биологических открытий. Сначала он рассматривал
все, что попадало под руку:

  • насекомых,
  • легкие лягушки,
  • кровяные тельца,
  • капиллярные сосуды,
  • кожу,
  • печень,
  • селезенку,
  • растительные ткани.

В исследовании этих предметов он достиг такого совершенства, что стал
одним из создателей микроскопной анатомии. Мальпиги первым употребил
микроскоп для исследования кровообращения.

Используя 180-кратное увеличение, Мальпиги сделал открытие в теории кровообращения: разглядывая препарат легкого лягушки под микроскопом, он заметил пузырьки воздуха, окруженные пленкой, и мелкие кровеносные сосуды, увидел разветвленную сеть капиллярных сосудов, соединявших артерии с венами (1661 г.). На протяжении последующих шести лет Мальпиги сделал наблюдения, которые описал в научных трудах, принесших ему славу великого ученого. Сообщения Мальпиги о строении мозга, языка, сетчатки, нервов, селезенки, печени, кожи и о развитии зародыша в курином яйце, а также об анатомическом строении растений свидетельствуют о весьма тщательных наблюдениях.

Нееимия Грю (1641 – 1712 г.г.). Английский ботаник и врач, микроскопист,

основоположник анатомии растений. Основные работы посвящены вопросамстроения и поларастений. Наряду с М. Мальпиги был основоположником

анатомии растений. Впервые описал:

  • устьица,
  • радиальное расположение ксилемы в корнях,
  • морфологию сосудистой ткани в виде плотного образования вцентре стебля молодого растения,
  • процесс формирования полого цилиндра в старых стеблях.

Ввел термин"сравнительная анатомия", ввёл в ботанику понятия "ткань" и "паренхима". Изучая строение цветков, пришелк выводу, что они являются органами оплодотворения у растений.

Левенгук Антони (24.10.1632– 26.08.1723), нидерландский натуралист. Работал в мануфактурной лавке в Амстердаме. Вернувшись в Делфт, в свободное время занимался шлифованием линз. Всего за свою жизнь Левенгук изготовил около 250 линз, добившись 300-кратного увеличения и достиг в этом большого совершенства. Изготовленные им линзы, которые он вставлял в металлические держатели с прикрепленной к ним иглой для насаживания объекта наблюдения, давали 150–300-кратное увеличение. При помощи таких «микроскопов» Левенгук впервые наблюдал и зарисовал:

  • сперматозоиды (1677),
  • бактерии (1683),
  • эритроциты,
  • простейших,
  • отдельные растительные и животные клетки,
  • яйца и зародыши,
  • мышечную ткань,
  • многие другие части и органы более чем 200 видов растений и животных.

Впервые описал партеногенез у тлей (1695–1700).

Левенгук стоял на позициях преформизма, утверждая, что сформированный зародыш уже содержится в «анималькуле» (сперматозоиде). Отрицал возможность самозарождения. Свои наблюдения он описывал в письмах (всего до 300), которые направлял главным образом в Лондонское королевское общество. Следя за движением крови по капиллярам, показал, что капилляры связывают артерии и вены. Впервые наблюдал эритроциты и обнаружил, что у птиц, рыб и лягушек они имеют овальную форму, а у человека и других млекопитающих – дисковидную. Открыл и описал коловраток и ряд других мелких пресноводных организмов.

Применение ахроматического микроскопа в научных исследованиях послужило новым импульсом к развитию гистологии . В начале XIX в. сдела­но первое изображение ядер растительных клеток. Я. Пуркинье (в 1825- 1827 гг.) описал ядро в яйцеклетке курицы, а затем ядра в клетках различ­ных тканей животных. Позднее им было введено понятие «протоплазма» (цитоплазма) клеток, охарактеризованы форма нервных клеток, строение желез и др.

Р. Броун сделал заключение о том, что ядро является обязатель­ной частью растительной клетки. Таким образом, постепенно стал накап­ливаться материал о микроскопической организации животных и растений и строении «клеток» (cellula), увиденных впервые Р. Гуком.

Создание клеточной теории оказало огромное прогрессивное влияние на развитие биологии и медицины. В середине XIX в. начался период бурно­го развития описательной гистологии. На основе клеточной теории были изучены состав различных органов и тканей, их развитие, что позво­лило уже тогда создать в основных чертах микроскопическую анато­мию и уточнить классификацию тканей с учетом их микроскопического строения (А. Кёлликер и др.).

Микроскопом называется уникальный прибор, призванный увеличивать микроизображения и измерять размеры объектов или структурные образования, наблюдаемые через объектив. Эта разработка удивительна, а значение изобретения микроскопа чрезвычайно велико, ведь без него не существовало бы некоторых направлений современной науки. И отсюда поподробнее.

Микроскоп - родственное телескопу устройство, которое применяется для совершенно других целей. С помощью него удается рассмотреть структуру объектов, которые невидимы глазом. Он позволяет определять морфологические параметры микрообразований, а также оценивать их объемное расположение. Потому даже сложно представить, какое значение имело изобретение микроскопа, и как его появление повлияло на развитие науки.

История микроскопа и оптики

Сегодня сложно ответить, кто первым изобрел микроскоп. Вероятно, этот вопрос будет также широко обсуждаться, как и создание арбалета. Однако, в отличие от оружия, изобретение микроскопа действительно произошло в Европе. А кем именно, пока неизвестно. Вероятность того, что первооткрывателем устройства стал Ханс Янсен, голландский мастер по производству очков, достаточно высока. Его сыном, Захарием Янсеном, в 1590 году было сделано заявление, что он вместе с отцом сконструировал микроскоп.

Но уже в 1609 году появился и еще один механизм, который создал Галилео Галилей. Он назвал его occhiolino и презентовал публике Национальной академии деи Линчеи. Доказательством того, что в тот период уже мог использоваться микроскоп, является знак на печати папы Урбана III. Считается, что он представляет собой модификацию изображения, полученного путем микроскопирования. Световой микроскоп (составной) Галилео Галилея состоял из одной выпуклой и одной вогнутой линзы.

Совершенствование и внедрение в практику

Уже через 10 лет после изобретения Галилея Корнелиус Дреббель создает составной микроскоп, имеющий две выпуклые линзы. А позже, то есть уже к концу Кристиан Гюйгенс разработал двухлинзовую систему окуляров. Они производятся и сейчас, хотя им не хватает широты обзора. Но, что важнее, при помощи такого микроскопа в 1665 году было проведено исследование среза пробкового дуба, где ученый увидел так называемые соты. Результатом эксперимента стало введение понятия "клетка".

Другой отец микроскопа - Антони ван Левенгук - лишь переизобрел его, но сумел привлечь к прибору внимание биологов. И после этого стало понятно, какое значение имело изобретение микроскопа для науки, ведь это позволило развиваться микробиологии. Вероятно, упомянутый прибор существенно ускорил развитие и естественных наук, ведь пока человек не увидел микробов, он верил, что болезни зарождаются от нечистоплотности. А в науке царствовали понятия алхимии и виталистические теории существования живого и самозарождения жизни.

Микроскоп Левенгука

Изобретение микроскопа является уникальным событием в науке Средневековья, потому как благодаря устройству удалось найти множество новых предметов для научного обсуждения. Более того, множество теорий разрушилось благодаря микроскопированию. И в этом большая заслуга Антони ван Левенгука. Он смог усовершенствовать микроскоп так, чтобы он позволял детально увидеть клетки. И если рассматривать вопрос в этом контексте, то Левенгук действительно является отцом микроскопа такого типа.

Структура прибора

Сам световой представлял собой пластинку с линзой, способной многократно увеличивать рассматриваемые объекты. Эта пластинка с линзой имела штатив. Посредством него она монтировалась на горизонтальный стол. Направляя линзу на свет и располагая между нею и пламенем свечи исследуемый материал, можно было разглядеть Причем первым материалом, который Антони ван Левенгук исследовал, был зубной налет. В нем ученый увидел множество существ, назвать которые пока не мог.

Уникальность микроскопа Левенгука поражает. Имеющиеся тогда составные модели не давали высокого качества изображения. Более того, наличие двух линз только усиливало дефекты. Потому потребовалось более 150 лет, пока составные микроскопы, изначально разработанные Галилеем и Дреббелем, начали давать такое же качество изображения, как устройство Левенгука. Сам же Антони ван Левенгук все равно не считается отцом микроскопа, но по праву является признанным мастером микроскопирования нативных материалов и клеток.

Изобретение и совершенствование линз

Само понятие линзы существовало уже в Древнем Риме и Греции. Например, в Греции при помощи выпуклых стекол удавалось разжигать огонь. А в Риме давно заметили свойства стеклянных сосудов, наполненных водой. Они позволяли увеличивать изображения, хотя и не во много раз. Дальнейшее развитие линз неизвестно, хотя очевидно, что прогресс на месте стоять не мог.

Известно, что в 16 веке в Венеции вошло в практику применение очков. Подтверждением этого являются факты о наличии станков для шлифовки стекла, что позволяло получать линзы. Также имелись чертежи оптических приборов, представляющих собой зеркала и линзы. Авторство данных работ принадлежит Леонардо да Винчи. Но еще раньше люди работали с увеличительными стеклами: еще в 1268 году Роджер Бэкон выдвинул идею создания подзорной трубы. Позже она была реализована.

Очевидно, что авторство линзы никому не принадлежало. Но это наблюдалось до того момента, пока оптикой не занялся Карл Фридрих Цейс. В 1847 году он приступил к производству микроскопов. Затем его компания стала лидером в разработке оптических стекол. Она существует до сегодняшнего дня, оставаясь главной в отрасли. С ней сотрудничают все компании, которые занимаются производством фото- и видеокамер, оптических прицелов, дальномеров, телескопов и прочих устройств.

Совершенствование микроскопии

История изобретения микроскопа поражает при ее детальном изучении. Но не менее интересной является и история дальнейшего совершенствования микроскопии. Начали появляться новые а научная мысль, порождающая их, погружалась все глубже. Теперь целью ученого было не только изучение микробов, но и рассмотрение более мелких составляющих. Оными являются молекулы и атомы. Уже в 19 веке их удавалось исследовать посредством рентгеноструктурного анализа. Но наука требовала большего.

Итак, уже в 1863 году исследователем Генри Клифтоном Сорби для исследования метеоритов был разработан поляризационный микроскоп. А в 1863 году Эрнстом Аббе была разработана теория микроскопа. Она была успешно перенята на производстве Карла Цейса. Его компания за счет этого развилась до признанного лидера отрасли оптических приборов.

Но вскоре наступил 1931 год - время создания электронного микроскопа. Он стал новым видом аппарата, позволяющим видеть намного больше, чем световой. В нем для просвечивания применялись не фотоны и не поляризованный свет, а электроны - частицы куда более мелкие, нежели самые простые ионы. Именно изобретение электронного микроскопа позволило развиваться гистологии. Теперь ученые обрели полную уверенность, что их суждения о клетке и ее органеллах действительно правильные. Впрочем, лишь в 1986 году создателю электронного микроскопа Эрнсту Руска была присуждена Нобелевская премия. Более того, уже в 1938 году Джеймс Хиллер строит просвечивающий электронный микроскоп.

Новейшие виды микроскопов

Наука после успехов многих ученых развивалась все быстрее. А потому целью, продиктованной новыми реалиями, стала необходимость разработки высокочувствительного микроскопа. И уже в 1936 году Эрвином Мюллером выпускается полевой эмиссионный прибор. А в 1951 году производится еще одно устройство - полевой ионный микроскоп. Его важность чрезвычайна, потому как он впервые позволил ученым видеть атомы. А вдобавок к этому в 1955 году Ежи Номарский разрабатывает теоретические основы дифференциальной интерференционно-контрастной микроскопии.

Совершенствование новейших микроскопов

Изобретение микроскопа еще не является успехом, потому как заставить ионы или фотоны проходить через биологические среды, а потом рассматривать полученное изображение, в принципе, нетрудно. Вот только вопрос повышения качества микроскопии был действительно важным. И после этих умозаключений ученые создали пролетный масс-анализатор, который получил название сканирующего ионного микроскопа.

Это устройство позволяло сканировать отдельно взятый атом и получать данные о трехмерной структуре молекулы. Вместе с этот метод позволил значительно ускорить процесс идентификации многих веществ, встречающихся в природе. А уже в 1981 году был введен сканирующий туннельный микроскоп, а в 1986 - атомно-силовой. 1988 - это год изобретения микроскопа сканирующего электрохимического туннельного типа. А самым последним и наиболее полезным является силовой зонд Кельвина. Он был разработан в 1991 году.

Оценка глобального значения изобретения микроскопа

Начиная с 1665 года, когда Левенгук занялся обработкой стекла и производством микроскопов, отрасль развивалась и усложнялась. И задаваясь вопросом о том, какое значение имело изобретение микроскопа, стоит рассмотреть основные достижения микроскопирования. Итак, этот метод позволил рассмотреть клетку, что послужило очередным толчком развития биологии. Затем прибор позволил разглядеть органеллы клетки, что дало возможность сформировать закономерности клеточной структуры.

Затем микроскоп позволил увидеть молекулу и атом, а позднее ученые смогли сканировать их поверхность. Более того, посредством микроскопа можно увидеть даже электронные облака атомов. Поскольку электроны движутся со скоростью света вокруг ядра, то рассмотреть эту частицу совершенно невозможно. Несмотря на это, следует понимать, какое значение имело изобретение микроскопа. Он дал возможность увидеть нечто новое, что нельзя видеть глазом. Это удивительный мир, изучение которого приблизило человека к современным достижениям физики, химии и медицины. А это стоит всех трудов.