Тлеющий разряд

Тлеющий разряд в неоне

Тле́ющий разря́д - один из видов стационарного самостоятельного электрического разряда в газах . Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд .

В отличие от нестационарных (импульсных) электрических разрядов в газах, основные характеристики тлеющего разряда остаются относительно стабильными во времени.

Типичным примером тлеющего разряда, знакомым большинству людей, является свечение неоновой лампы .

Присоединим электроды к источнику постоянного тока с напряжением несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остаётся тёмным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе - малинового цвета, в других газах - других цветов), соединяющего оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

При дальнейшей откачке светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубку. При давлении газа в несколько десятых миллиметра ртутного столба разряд заполняет почти весь объем трубки. Различают следующие две главные части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название тёмного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба. При подходящем давлении положительный столб может распадаться на отдельные слои, разделённые тёмными промежутками, так называемые страты.

Описанная форма разряда называется тлеющим разрядом. Почти весь свет исходит от его положительного столба. При этом цвет свечения зависит от рода газа. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе всё время поддерживается сильная ионизация. Причинами ионизации газа в тлеющем разряде являются электронная эмиссия с катода под действием высоких температур или сильного электрического поля, последующая ионизация молекул газа электронным ударом свободными электронами, вырванными с катода и летящих по направлению к аноду, а также вторичная электронная эмиссия электронов с катода, вызванная бомбардировкой катода положительно заряженными ионами газа.

В настоящее время трубки с тлеющим разрядом находят практическое применение как источник света - газоразрядные лампы. Для целей освещения часто применяются люминесцентные лампы , в которых разряд происходит в парах ртути, причём вредное для зрения ультрафиолетовое излучение поглощается слоем флюоресцирующего вещества - люминофора , покрывающего изнутри стенки лампы. Люминофор начинает светиться видимым светом, давая в результате свет, близкий по характеристикам к дневному свету (люминесцентные лампы дневного света). Такие лампы дают близкое к “естественному” освещение (но не полный спектр, как у ламп накаливания). Спектр испускаемого люминесцентными лампами света дискретный - красная, зелёная и синяя составляющая в определённой пропорции, плюс незначительные спектральные пики других цветов от примесей люминофора. Энергия освещения распределяется по этим узким полосам спектра, поэтому эти лампы значительно (в 3-4 раза) экономичнее ламп накаливания (у последних до 95% энергии занимает инфракрасная область спектра, невидимая человеческим глазом).

Люминесцентные лампы в быту приходят на смену лампам накаливания, а на производстве и в служебных помещениях почти полностью их вытеснили. Однако люминесцентные лампы не лишены недостатков. Так, например, на производстве использование люминесцентных ламп сопряжено с вредным стробоскопическим эффектом , заключающемся в том, что мерцание люминесцентной лампы с частотой питающего напряжения может совпасть по частоте вращения обрабатывающего механизма, при этом сам механизм в свете такой лампы для человека будет казаться неподвижным, "выключенным", что может привести к травме. Поэтому применяют дополнительную подсветку операционной зоны простой лампой накаливания, лишённой такого недостатка в силу инерции световой отдачи нити накаливания.

Газоразрядные лампы применяются также для декоративных целей. В этих случаях им придают очертания букв, различных фигур и т. д. и наполняют газом с красивым цветом свечения (неоном , дающим оранжево–красное свечение, или аргоном с синевато–зелёным свечением).

См. также

Литература

  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3

Wikimedia Foundation . 2010 .

Смотреть что такое "Тлеющий разряд" в других словарях:

    Один из видов стационарного самостоятельного электрического разряда в газах. Происходит при низкой темп ре катода, отличается сравнительно малой плотностью тока на катоде (… Физическая энциклопедия

    Электрический разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положительных ионов и фотоэлектронной эмиссией … Большой Энциклопедический словарь

    тлеющий разряд - Самостоятельный разряд, при котором электрическое поле в разрядном промежутке определяется в основном величиной и расположением объемных зарядов и который характеризуется наличием катодного падения потенциала, значительно большего, чем… … Справочник технического переводчика

    Самостоятельный электрический разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положительных ионов и фотоэлектронной … Энциклопедический словарь

    тлеющий разряд - Glow Discharge Тлеющий разряд Один из видов стационарного самостоятельного электрического разряда в газах. Формируется, как правило, при низком давлении газа и малом токе. При увеличении проходящего тока превращается в дуговой разряд. В… … Толковый англо-русский словарь по нанотехнологии. - М.

    тлеющий разряд - rusenantysis išlydis statusas T sritis automatika atitikmenys: angl. glow discharge vok. Glimmentladung, f rus. тлеющий разряд, m pranc. décharge luminescente, f … Automatikos terminų žodynas

    тлеющий разряд - rusenantysis išlydis statusas T sritis fizika atitikmenys: angl. glow discharge vok. Glimmentladung, f rus. тлеющий разряд, m pranc. décharge en lueur, f; décharge luminescente, f; effluve, f … Fizikos terminų žodynas

    Один из видов стационарного самостоятельного электрического разряда в газах (См. Электрический разряд в газах). Происходит при низкой температуре катода, отличается сравнительно малой плотностью тока на катоде и большим (порядка сотен… … Большая советская энциклопедия

    Самостоятельный электрич. разряд в газе, отличающийся сравнительно малой плотностью тока на катоде и большим катодным падением потенциала. Поддерживается электронной эмиссией с катода под действием ударов положит. ионов и фотоэлектронной эмиссией … Естествознание. Энциклопедический словарь Подробнее электронная книга


Тлеющий разряд удобно наблюдать при пониженном давлении газа. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сот ампер и затем постепенно откачивать воздух из трубки, то наблюдается следующее явление: при атмосферном давлении приложенное напряжение недостаточно для пробоя газа и трубка остается темной. При уменьшении давления газа в некоторый момент в трубке возникает разряд, имеющий вид светящегося шнура. При дальнейшем уменьшении давления этот шнур расширяется и заполняет все сечение трубки.

Особое значение в тлеющем разряде имеют только две его части - катодное темное пространство и тлеющее свечение, в которых и происходят основные процессы, поддерживающие разряд.

Характерным для тлеющего разряда является особое распределение потенциала по длине трубки. Его можно определить, впаивая в трубку ряд дополнительных электродов - зондов, расположенных в различных местах трубки, и присоединяя между катодом и соответствующим зондом вольтметр с большим сопротивлением. Тогда получается кривая распределения потенциала, изображенная на рисунке 5. Она показывает, что почти все падения потенциала в разряде приходятся на область катодного темного пространства. Эта разность потенциалов между катодом и границей тлеющего свечения получила название катодного падения потенциала.

Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного темного пространства приблизительно равна средней длине свободного пробега электронов: она увеличивается с уменьшением давления газа. Следовательно, в катодном темном пространстве электроны движутся практически без соударения.

Катодное падение потенциалов необходимо для поддержания тлеющего разряда. Именно благодаря его наличию положительные ионы приобретают необходимую энергию для образования интенсивной вторичной электронной эмиссии с катода, без которой тлеющий разряд не мог бы существовать. Поэтому катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм.

Тлеющий разряд широко используют в качестве источника света в различных газоразрядных трубках. В лампах дневного света излучение тлеющего разряда поглощается слоем специальных веществ, нанесенных на внутреннюю поверхность трубки, которые под действием поглощенного излучения в свою очередь начинают светиться. Такие трубки оказываются более экономичными нежели обычные лампы накаливания.

Газоразрядные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв. Наполняя трубки различными газами, можно получить свечение разной окраски.

В лабораторной практике используют тлеющий разряд для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в парообразное состояние и оседает в виде металлического налета на стенках трубки.

Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длины около полуметра, содержащую два металлических электрода (рис. 162). Присоединим электроды к источнику постоянного тока с напряжением в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющего оба электрода. В этом состоянии газовый столб хорошо проводит электричество.

Рис. 162. Тлеющий разряд

При дальнейшей откачке светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубку. При давлении газа в несколько десятых миллиметра ртутного столба разряд имеет типичный вид, условно изображенный на рис. 162. Различают следующие две главные части разряда: а) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; б) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода, и носящий название положительного столба. При подходящем давлении положительный столб может распадаться на отдельные слои, разделенные темными промежутками, так называемые страты.

Описанная форма разряда называется тлеющим разрядом. Почти весь свет, испускаемый при разряде, исходит из положительного столба. При этом цвет свечения зависит от рода газа.

В настоящее время трубки с тлеющим разрядом находят практическое применение как источники света – газоразрядные лампы. Для целей освещения с успехом применяются газоразрядные лампы, в которых разряд происходит в парах ртути, причем вредное для глаз ультрафиолетовое излучение поглощается слоем фосфоресцирующего вещества, покрывающего изнутри стенки лампы. Фосфоресцирующее вещество начинает светиться видимым светом, который добавляется к собственному свечению паров ртути, давая в результате свет, близкий по характеру к дневному свету (газоразрядные лампы дневного света). Такие лампы не только дают приятное «естественное» освещение, но и значительно (в три-четыре раза) экономичнее лампочек накаливания.

Газоразрядные лампы применяются также для декоративных целей. В этих случаях им придают очертания букв, различных фигур и т. д. и наполняют газом с красивым цветом свечения (например, неоном, дающим яркое оранжево-красное свечение, или аргоном с синевато-зеленым свечением).

На рис. 3-26, а показан внешний вид тлеющего разряда, характеризующийся чередованием темных и светящихся слоев газа, носящих названия:

  1. первая катодная темная область;
  2. первое катодное свечение;
  3. вторая катодная темная область;
  4. второе катодное свечение (катодное тлеющее свечение);
  5. фарадеева темная область;
  6. столб разряда;
  7. анодная темная область;
  8. анодное свечение.

Рис. 3-26. Тлеющий разряд:
а - внешний вид;
б -распределение интенсивности свечения;
в - распределение потенциала;
г - напряженность поля;
д - распределение объемных зарядов.

Катодное падение потенциала при нормальном тлеющем разряде (свечением покрыта только часть поверхности катода) зависит от материала катода и рода газа и не зависит от давления газа и тока (табл. 3-16).

Таблица 3-16

Нормальное катодное падение потенциалов, В

Материал катода

100± 2

Ширина области нормального катодного падения потенциала зависит от материала катода и рода газа. Зависимость от давления газа определяется соотношением .

Для нормального тлеющего разряда характерна пропорциональность между площадью катода, покрытой свечением, и током, т. е. постоянная (нормальная) плотность тока на катоде (табл. 3-17).

Таблица 3-17

Нормальные плотности тока на катоде , при

Материал катода

При изменении давления газа р0 нормальная плотность тока изменяется по закону

где - нормальная плотность тока на катоде при ; - постоянная, зависящая от геометрии электродов и рода газа. При плоских электродах обычно (для Ne=1,5).

Когда при увеличении анодного тока вся поверхность катода покрывается свечением, катодное падение потенциала начинает возрастать с увеличением плотности тока. Такое катодное падение называется аномальным катодным падением потенциала, а сам разряд называется аномальным тлеющим разрядом.

При аномальном тлеющем разряде увеличение плотности тока сопровождается уменьшением ширины участка катодного падения потенциала.

На рис. 3-27 приведены рассчитанные теоретически универсальные кривые зависимости аномального катодного падения потенциала и ширины участка катодного падения потенциала от плотности тока . Их совпадение с экспериментальными данными удовлетворительно для инженерных расчетов.

Рис. 3.27

Прикатодные области разряда 1-4 (рис. 3-26), в которых сосредоточено катодное падение потенциала, являются жизненно необходимыми для существования тлеющего разряда. Участки 5 (фарадеева темная область) и 6 (столб разряда) являются пассивными участками разряда с хорошей электропроводностью, связывающими анод с катодными областями разряда.

В столбе разряда газ находится в сильно ионизированном состоянии, причем концентрации электронов и ионов примерно равны, т. е. объемный заряд компенсирован. Газ, находящийся в таком состоянии, называется плазмой.

При сближении анода с катодом сокращается, а затем исчезает столб разряда.

Дальнейшее сближение электродов на некоторое критическое расстояние приводит к исчезновению анодных участков разряда. При этом падение напряжения на разряде уменьшается на величину анодного падения потенциала, примерно равную ионизационному потенциалу газа.

Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке длиной около 0,5 м, с впаянными у концов плоскими металлическими электродами (рис. 85.1). На электроды подается напряжение порядка 1000 В. При атмосферном давлении тока в трубке практически нет. Если понижать давление, то примерно при 50 мм рт. ст. возникает разряд в виде светящегося извилистого тонкого шнура, соединяющего анод с катодом. По мере понижения давления шнур утолщается и приблизительно при 5 мм рт. ст. заполняет все сечение трубки - устанавливается тлеющий разряд. Его основные части показаны на рис. 85.1. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой.

Между катодом и светящейся пленкой находится астоново темное пространство. По другую сторону светящейся пленки помещается слабо светящийся слой, по контрасту кажущийся темным и называемый катодным (или круксовым) темным пространством. Этот слой переходит в светящуюся область, которую называют тлеющим свечением. Все перечисленные слои образуют катодную часть тлеющего разряда.

С тлеющим свечением граничит темный промежуток - фарадеево темное пространство. Граница между ними размыта. Вся остальная часть трубки заполнена светящимся газом; ее называют положительным столбом. При понижении давления катодная часть разряда и фарадеево темное пространство расширяются, а положительный столб укорачивается. При давлении порядка 1 мм рт. ст. положительный столб распадается на ряд чередующихся темных и светлых изогнутых слоев - страт.

Измерения, осуществленные с помощью зондов (тоненьких проволочек, впаянных в разных точках вдоль трубки), а также другими методами, показали, что потенциал изменяется вдоль трубки неравномерно (см. график на рис. 85.1).

Почти все падение потенциала приходится на первые три участка разряда по катодное темное пространство включительно. Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала. В области тлеющего свечения потенциал не изменяется - здесь напряженность поля равна нулю. Наконец, в фарадеевом темном пространстве и положительном столбе потенциал медленно растет. Такое распределение потенциала вызвано образованием в области катодного темного пространства положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

Основные процессы, необходимые для поддержания тлеющего разряда, происходят в его катодной части. Остальные части разряда не существенны, они могут даже отсутствовать (при малом расстоянии между электродами или при низком давлении). Основных процессов два - вторичная электронная эмиссия из катода, вызванная бомбардировкой его положительными ионами, и ударная ионизация электронами молекул газа.

Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны ускоряются электрическим полем. Приобретя достаточную энергию, они начинают возбуждать молекулы газа, в результате чего возникает катодная светящаяся пленка. Электроны, пролетевшие без столкновений в область катодного темного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают (см. графики на рис. 83.1). Таким образом, интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы вначале имеют очень малую скорость. Поэтому в катодном темном пространстве создается положительный пространственный заряд, что приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

Электроны, возникшие в катодном темном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов и суммарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. Благодаря высокой концентрации электронов и ионов в области тлеющего свечения идет интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом тлеющее свечение есть в основном свечение рекомбинации.

Из области тлеющего свечения в фарадеево темное простран ство электроны и ионы проникают за счет диффузии (на границе между этими областями поле отсутствует, но зато имеется большой градиент концентрации электронов и ионов).