Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А .

В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну и ту же вероятность.

Ниже воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми .

Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события A в каждом испытании одна и та же, а именно равна р . Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна q = 1 - p .

Поставим перед собой задачу вычислить вероятность того, что при n испытаниях событие А осуществится ровно k раз и, следовательно, не осуществится n - k раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности.

Например, если речь идет о появлении события А три раза в четырех испытаниях, то возможны следующие сложные события: ААА, ААА, ААА, ААА . Запись ААА означает, что в первом, втором и третьем испытаниях событие А наступило, а в четвертом испытании оно не появилось, т.е. наступило противоположное событие А; соответственный смысл имеют и другие записи.

Искомую вероятность обозначим Р п (k) . Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.

Поставленную задачу можно решить с помощью так называемой формулы Бернулли.

Вывод формулы Бернулли . Вероятность одного сложного события, состоящего в том, что в п испытаниях событие А наступит k раз и не наступит п - k раз, по теореме умножения вероятностей независимых событий равна p k q n - k . Таких сложных событий может быть столько, сколько можно составить сочетаний из п элементов по k элементов, т.е. С n k .

Так как эти сложные события несовместны , то по теореме сложения вероятностей несовместных событий искомая вероятность равна сумме вероятностей всех возможных сложных событий . Поскольку же вероятности всех этих сложных событий одинаковы, то искомая вероятность (появления k раз события А в п испытаниях) равна вероятности одного сложного события, умноженной на их число:

Полученную формулу называют формулой Бернулли .

Пример 1 . Вероятность того, что расход электроэнергии в течение одних суток не превысит установленной нормы, равна р = 0,75 . Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.


Решение . Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равна р = 0,75 . Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1 - р = 1 - 0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

Пусть производится независимых испытаний, в каждом из которых вероятность появления событияА равна р . Другими словами, пусть имеет место схема Бернулли. Можно ли предвидеть какова будет примерно относительная частота появлений события? Положительный ответ на этот вопрос даёт теорема, доказанная Я.Бернулли 1 , которая получила название «закона больших чисел» и положила начало теории вероятностей как науки 2 .

ТЕОРЕМА Бернулли : Если в каждом из независимых испытаний, проводимых в одинаковых условиях, вероятностьр появления события А постоянна, то относительная частота появления события А сходится по вероятности к вероятности р – появления данного события в отдельном опыте, то есть

.

Доказательство . Итак, имеет место схема Бернулли,
. Обозначим через
дискретную случайную величину – число появлений событияА в -ом испытании. Ясно, что каждая из случайных величин может принимать лишь два значения:1 (событие А наступило) с вероятностью р и 0 (событие А не наступило) с вероятностью
, то есть

(
)

Р

р

Нетрудно найти

Можно ли применить к рассматриваемым величинам теорему Чебышева? Можно, если случайные величины попарно независимы и дисперсии их равномерно ограничены. Оба условия выполняются. Действительно, попарная независимость величин
следует из того, что испытания независимы. Далее 3
при
и, следовательно, дисперсии всех величин ограничены, например числом
. Кроме того, заметим, что каждая из случайных величин
при появлении событияА в соответствующем испытании принимает значение, равное единице. Следовательно, сумма
равна числу
- появлений событияА в испытаниях, а значит

,

то есть дробь
равна относительной частотепоявлений события А в испытаниях.

Тогда, применяя теорему Чебышева к рассматриваемым величинам, получим:

что и требовалось доказать.

Замечание 1 : Теорема Бернулли является простейшим частным случаем теоремы Чебышева.

Замечание 2 : На практике часто неизвестные вероятности приходится приближённо определять из опыта, то для проверки согласия теоремы Бернулли с опытом было проведено большое число опытов. Так, например, французский естествоиспытатель XVIII века Бюффон бросил монету 4040 раз. Герб выпал при этом 2048 раз. Частота появления герба в опыте Бюффона приближённо равна 0,507. Английский статистик К.Пирсон бросал монету 12 000 раз и при этом наблюдал 6019 выпадений герба. Частота выпадения герба в этом опыте Пирсона равна 0,5016. В другой раз он бросил монету 24 000 раз, и герб при этом выпал 12 012 раз; частота выпадения герба при этом оказалась равной 0,5005. Как видим, во всех приведённых опытах частота лишь немного уклонилась от вероятности 0,5 – появления герба в результате одного бросания монеты.

Замечание 3 : Было бы неправильным на основании теоремы Бернулли сделать вывод, что с ростом числа испытаний относительная частота неуклонно стремится к вероятности р ; другими словами, из теоремы Бернулли не вытекает равенство
. В теоремеречь идёт лишь о вероятности того, что при достаточно большом числе испытаний относительная частота будет как угодно мало отличаться от постоянной вероятности появления события в каждом испытании. Таким образом, сходимость относительной частоты к вероятности р отличается от сходимости в смысле обычного анализа. Для того чтобы подчеркнуть это различие, вводят понятие «сходимости по вероятности» . Точнее, различие между указанными видами сходимости состоит в следующем: если стремится при
кр как пределу в смысле обычного анализа , то, начиная с некоторого
и для всех последующих значений, неуклонно выполняется неравенство
;если же стремится по вероятности к р при
, то для отдельных значенийнеравенство может и не выполняться.

    Теоремы Пуассона и Маркова

Замечено, если условия опыта меняются , то свойство устойчивости относительной частоты появления события А сохраняется. Это обстоятельство доказано Пуассоном.

ТЕОРЕМА Пуассона : При неограниченном увеличении числа независимых испытаний, проводимых в переменных условиях, относительная частота появления события А сходится по вероятности к среднему арифметическому вероятностей появления данного события в каждом из опытов, то есть

.

Замечание 4 : Нетрудно убедиться, что теорема Пуассона является частным случаем теоремы Чебышева.

ТЕОРЕМА Маркова : Если последовательность случайных величин
(как угодно зависимых) такова, что при

,

то,
выполняется условие:
.

Замечание 5 : Очевидно, если случайные величин
попарно независимы, то условие Маркова принимает вид: при

.

Отсюда видно, что теорема Чебышева является частным случаем теоремы Маркова.

    Центральная предельная теорема (Теорема Ляпунова)

Рассмотренные теоремы закона больших чисел касаются вопросов приближения некоторых случайных величин к определённым предельным значениям независимо от их закона распределения. В теории вероятностей, как уже отмечалось, существует другая группа теорем, касающихся предельных законов распределения суммы случайных величин. Общее название этой группы теорем – центральная предельная терема . Различные её формы различаются условиями, накладываемыми на сумму составляющих случайных величин. Впервые одна из форм центральной предельной теоремы была доказана выдающимся русским математиком А.М.Ляпуновым в 1900 году с использованием специально разработанного им метода характеристических функций.

ТЕОРЕМА Ляпунова : Закон распределения суммы независимых случайных величин
приближается к нормальному закону распределения при неограниченном увеличении(то есть, при
), если выполняются следующие условия:


,

Следует отметить, что центральная предельная теорема справедлива не только для непрерывных, но и для дискретных случайных величин. Практическое значение теоремы Ляпунова огромно. Опыт показывает, что закон распределения суммы независимых случайных величин, сравнимых по своему рассеиванию, достаточно быстро приближается к нормальному. Уже при числе слагаемых порядка десяти закон распределения суммы можно заменить на нормальный (в частности, примером такой суммы может быть среднее арифметическое наблюдаемых значений случайных величин, то есть
).

Частным случаем центральной предельной теоремы является теорема Лапласа. В ней, как вы помните, рассматривается случай, когда случайные величины
дискретны, одинаково распределены и принимают только два возможных значения: 0 и 1.

Далее, вероятность того, что заключено в интервале
можно вычислить по формуле

.

Используя функцию Лапласа, последнюю формулу можно записать в удобном для расчётов виде:

где
.

ПРИМЕР . Пусть производится измерение некоторой физической величины. Любое измерение даёт лишь приближённое значение измеряемой величины, так как на результат измерения оказывают влияние очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную «частную ошибку». Однако, поскольку число этих факторов очень велико, совокупное их действие порождает уже заметную «суммарную ошибку».

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному. Опыт подтверждает справедливость такого заключения.

2 Доказательство, предложенное Я.Бернулли, было сложным; более простое доказательство было дано П.Чебышевым в 1846 году.

3 Известно, что произведение двух сомножителей, сумма которых есть величина постоянная, имеет наибольшее значение при равенстве сомножителей.

На этом уроке будем находить вероятность наступления события в независимых испытаниях при повторении испытаний. Испытания называются независимыми, если вероятность того или иного исхода каждого испытания не зависит от того, какие исходы имели другие испытания . Независимые испытания могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления некоторого события во всех испытаниях одна и та же, во втором случае она меняется от испытания к испытанию.

Примеры независимых повторных испытаний :

  • выйдет из строя один из узлов прибора или два, три узла, причём выход из строя каждого узла не зависит от другого узла, а вероятность выхода из строя одного узла постоянна во всех испытаниях;
  • произведённая в некоторых постоянных технологических условиях деталь, или три, четыре, пять деталей, окажутся нестандартными, причём одна деталь может оказаться нестандартной независимо от любой другой детали и вероятность того, что деталь окажется нестандатной, постоянна во всех испытаниях;
  • из нескольких выстрелов по мишени один, три или четыре выстрела попадают в цель независимо от исходов других выстрелов и вероятность попадания в цель постоянна во всех испытаниях;
  • при опускании монеты автомат сработает правильно один, два или другое число раз независимо от того, какой результат имели другие опускания монеты, и вероятность того, что автомат сработает правильно, постоянна во всех испытаниях.

Эти события можно описать одной схемой. Каждое событие наступает в каждом испытании с одной и той же вероятностью, которая не изменяется, если становятся известными результаты предыдущих испытаний. Такие испытания называются независимыми, а схема называется схемой Бернулли . Предполагается, что такие испытания могут быть повторены как угодно большое количество раз.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что в n независимых испытаниях событие A наступит m раз, находится по формуле Бернулли :

(где q = 1 – p - вероятность того, что событие не наступит)

Поставим задачу – найти вероятность того, что событие такого типа в n независимых испытаниях наступит m раз.

Формула Бернулли: примеры решения задач

Пример 1. Найти вероятность того, что среди взятых случайно пяти деталей две стандартные, если вероятность того, что каждая деталь окажется стандартной, равна 0,9.

Решение. Вероятность события А , состоящего в том, что взятая случайно деталь стандартна, есть p =0,9 , а вероятность того, что она нестандартна, есть q =1–p =0,1 . Обозначенное в условии задачи событие (обозначим его через В ) наступит, если, например, первые две детали окажутся стандартными, а следующие три – нестандартными. Но событие В также наступит, если первая и третья детали окажутся стандартными, а остальные – нестандартными, или если вторая и пятая детали будут стандартными, а остальные – нестандартными. Имеются и другие возможности наступления события В . Любая из них характеризуется тем, что из пяти взятых деталей две, занимающие любые места из пяти, окажутся стандартными. Следовательно, общее число различных возможностей наступления события В равно числу возможностей размещения на пяти местах двух стандартных деталей, т.е. равно числу сочетаний из пяти элементов по два, а .

Вероятность каждой возможности по теореме умножения вероятностей равна произведению пяти множителей, из которых два, соответствующие появлению стандартных деталей, равны 0,9, а остальные три, соответствующие появлению нестандартных деталей, равны 0,1, т.е. эта вероятность составляет . Так как указанные десять возможностей являются несовместимыми событиями, по теореме сложения вероятность события В , которую обозначим

Пример 2. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки на станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо один станок из четырёх обслуживаемых им.

Решение. Используя формулу Бернулли при n =4 , m =1 , p =0,6 и q =1–p =0,4 , получим

Пример 3. Для нормальной работы автобазы на линии должно быть не менее восьми автомашин, а их имеется десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.

Решение. Автобаза будет работать нормально (событие F ), если на линию выйдут или восемь (событие А ), или девять (событие В ), или все десять автомашин событие (событие C ). По теореме сложения вероятностей,

Каждое слагаемое находим по формуле Бернулли . Здесь n =10 , m =8; 9; 10 , а p =1-0,1=0,9 , так как p должно означать вероятность выхода автомашины на линию; тогда q =0,1 . В результате получим

Пример 4. Пусть вероятность того, что покупателю необходима мужская обувь 41-го размера, равна 0,25. Найти вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться событие А , причем нас интересует не результат каждого отдельного опыта, а общее число появлений события А в результате серии опытов. Например, если производится группа выстрелов по одной и той же цели, нас интересует не результат каждого выстрела, а общее число попаданий. Такие задачи решаются достаточно просто, если опыты являются независимыми .

Определение . Независимыми относительно события А испытаниями называются такие, в которых вероятность события А в каждом испытании не зависит от исходов других испытаний.

Пример. Несколько последовательных выниманий карты из колоды представляют собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае это – зависимые опыты.

Пример . Несколько выстрелов представляют собой независимые опыты только в случае, если прицеливание производится заново перед каждым выстрелом; в случае, когда прицеливание производится один раз перед всей стрельбой или непрерывно осуществляется в процессе стрельбы (стрельба очередью, бомбометание серией), выстрелы представляют собой зависимые опыты.

Независимые испытания могут производиться в одинаковых или различных условиях. В первом случае вероятность события А во всех опытах одна и та же, во втором случае вероятность события А меняется от опыта к опыту. Первый случай связан со многими задачами теории надежности, теории стрельбы и приводит к так называемой схеме Бернулли , которая состоит в следующем:

1) проводится последовательность n независимых испытаний, в каждом из которых событие А может появиться, либо не появиться;

2) вероятность появления события А в каждом испытании постоянна и равна , как и вероятность его не появления .

Формула Бернулли, с помощью которой находится вероятность появления события А k раз в n независимых испытаниях, в каждом из которых событие А появляется с вероятностью p :

. (1)

Замечание 1 . С возрастанием n и k применение формулы Бернулли связано с вычислительными трудностями, поэтому формула (1) применяется, в основном, если k не превосходит 5 и n не велико.

Замечание 2. В связи с тем, что вероятности по форме представляют собой члены разложения бинома , распределение вероятностей вида (1) называется биномиальным распределением.

Пример . Вероятность попадания в цель при одном выстреле равна 0,8. Найти вероятность пяти попаданий при шести выстрелах.


Решение. Так как , то , кроме того и . Пользуясь формулой Бернулли, получим:

Пример . Производится четыре независимых выстрела по одной и той же цели с различных расстояний. Вероятности попадания при этих выстрелах равны соответственно:

Найти вероятности ни одного, одного, двух, трех и четырех попаданий:

Решение. Составляем производящую функцию:

Пример . Производится пять независимых выстрелов по цели, вероятность попадания в которую равна 0,2. Для разрушения цели достаточно трех попаданий. Найти вероятность того, что цель будет разрушена.

Решение. Вероятность разрушения цели вычисляем по формуле:

Пример . Производится десять независимых выстрелов по цели, вероятность попадания в которую при одном выстреле равна 0,1. Для поражения цели достаточно одного попадания. Найти вероятность поражения цели.

Решение. Вероятность хотя бы одного попадания вычисляем по формуле:

3. Локальная теорема Муавра-Лапласа

В приложениях часто приходится вычислять вероятности различных событий, связанных с числом появлений события в n испытаниях схемы Бернулли при больших значениях n . В этом случае вычисления по формуле (1) становятся затруднительными. Трудности возрастают, когда приходится ещё суммировать эти вероятности. Затруднения при вычислениях возникают также при малых значениях p или q .

Лаплас получил важную приближенную формулу для вероятности появления события А точно m раз, если - достаточно большое число, то есть при .

Локальная теорема Муавра – Лапласа . Если вероятность p появления события А в каждом испытании постоянна и отлична от нуля и единицы , , величина ограничена равномерно по m и n, то вероятность появления события А ровно m раз в n независимых испытаниях приближенно равна

Формула Бернулли - формула в теории вероятностей , позволяющая находить вероятность появления события A {\displaystyle A} при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений - сложения и умножения вероятностей - при достаточно большом количестве испытаний. Названа в честь выдающегося швейцарского математика Якоба Бернулли , который вывел эту формулу.

Энциклопедичный YouTube

    1 / 3

    ✪ Теория вероятностей. 22. Формула Бернулли. Решение задач

    ✪ Формула Бернулли

    ✪ 20 Повторение испытаний Формула Бернулли

    Субтитры

Формулировка

Теорема. Если вероятность p {\displaystyle p} наступления события A {\displaystyle A} в каждом испытании постоянна, то вероятность P k , n {\displaystyle P_{k,n}} того, что событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, равна: P k , n = C n k ⋅ p k ⋅ q n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}} , где q = 1 − p {\displaystyle q=1-p} .

Доказательство

Пусть проводится n {\displaystyle n} независимых испытаний, причём известно, что в результате каждого испытания событие A {\displaystyle A} наступает с вероятностью P (A) = p {\displaystyle P\left(A\right)=p} и, следовательно, не наступает с вероятностью P (A ¯) = 1 − p = q {\displaystyle P\left({\bar {A}}\right)=1-p=q} . Пусть, так же, в ходе испытаний вероятности p {\displaystyle p} и q {\displaystyle q} остаются неизменными. Какова вероятность того, что в результате n {\displaystyle n} независимых испытаний, событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз?

Оказывается можно точно подсчитать число "удачных" комбинаций исходов испытаний, для которых событие A {\displaystyle A} наступает k {\displaystyle k} раз в n {\displaystyle n} независимых испытаниях, - в точности это количество сочетаний из  n {\displaystyle n}  по  k {\displaystyle k} :

C n (k) = n ! k ! (n − k) ! {\displaystyle C_{n}(k)={\frac {n!}{k!\left(n-k\right)!}}} .

В то же время, так как все испытания независимы и их исходы несовместимы (событие A {\displaystyle A} либо наступает, либо нет), то вероятность получения "удачной" комбинации в точности равна: .

Окончательно, для того чтобы найти вероятность того, что в n {\displaystyle n} независимых испытаниях событие A {\displaystyle A} наступит ровно k {\displaystyle k} раз, нужно сложить вероятности получения всех "удачных" комбинаций. Вероятности получения всех "удачных" комбинаций одинаковы и равны p k ⋅ q n − k {\displaystyle p^{k}\cdot q^{n-k}} , количество "удачных" комбинаций равно C n (k) {\displaystyle C_{n}(k)} , поэтому окончательно получаем:

P k , n = C n k ⋅ p k ⋅ q n − k = C n k ⋅ p k ⋅ (1 − p) n − k {\displaystyle P_{k,n}=C_{n}^{k}\cdot p^{k}\cdot q^{n-k}=C_{n}^{k}\cdot p^{k}\cdot (1-p)^{n-k}} .

Последнее выражение есть не что иное, как Формула Бернулли. Полезно также заметить, что в силу полноты группы событий, будет справедливо:

∑ k = 0 n (P k , n) = 1 {\displaystyle \sum _{k=0}^{n}(P_{k,n})=1} .