Пусть компоненты векторного поля непрерывны и имеют непрерывные частные производные в пространственно односвязной замкнутой областиV и на ее кусочно гладкой границе .

Тогда справедлива формула Остроградского – Гаусса

Заметим, что левая часть формулы представляет собой поток векторного поля
через поверхность .

Доказательство. 1) Формула Остроградского – Гаусса, в силу произвольностиP, Q, Rсостоит из трех частей, в каждую из которых входит одна из компонент векторного поляP, Q, R. В самом деле, можно взятьP = 0, Q = 0 и доказывать отдельно часть формулы в которую входит толькоR. Остальные части формулы (приP= 0, R= 0, Q= 0, R = 0) доказываются аналогично. Будем доказывать часть формулы

2) Для доказательства выбранной части формулы представим пространственную область Vв виде объединения конечного числа цилиндрических тел, не имеющих общих внутренних точек, с образующими, параллельными осиOZ. Доказательство можно проводить для цилиндрического тела. В самом деле, тройной интеграл в правой части равен сумме тройных интегралов по цилиндрическим телам (свойство аддитивности). Поверхностный интеграл в левой части также равен сумме поверхностных интегралов по полным поверхностям цилиндрических тел, причем при суммировании интегралы по общим границам соседних цилиндрических тел будут сокращаться из-за противоположного направления внешних нормалей на общих границах.

Итак, будем доказывать соотношение
для цилиндрического телаV, проектирующегося в областьDна плоскостиOXY. Пусть «верхняя» граница цилиндрического тела – поверхность описывается уравнением
, «нижняя» граница – поверхность описывается уравнением
. Боковую поверхность цилиндрического тела, параллельную осиOZ, обозначим.

Сразу заметим, что поток векторного поля через боковую поверхность равен нулю. Действительно, , так как нормаль на боковой поверхности ортогональна осиOZи
.

Заметим также, что на «верхней» поверхности
, а на «нижней поверхности
. Поэтому при переходе от поверхностного интеграла пок двойному интегралу по областиDи обратно надо менять знак, а при переходе от поверхностного интеграла пок двойному интегралу по областиDи обратно менять знак не надо.

=
=

+
=

Таким образом, соотношение
доказано.

Замечание. Формулу Остроградского – Гаусса можно записать в «полевом» виде

- поток векторного поля через замкнутую поверхность равен объемному интегралу от дивергенции поля по области, ограниченной поверхностью .

Дивергенция векторного поля (расходимость) есть
.

Дивергенция – это характеристика векторного поля, инвариантная относительно системы координат. Покажем это.

Инвариантное определение дивергенции.

Рассмотрим произвольную точку M в пространственной области V. Выберем ее окрестностьV M – шар радиусаrс центром в точкеM. Обозначим
- ее границу – сферу радиусаr. По теореме о среднем для тройного интеграла

(по формуле Остроградского – Гаусса).

Стягиваем окрестность к точке M, получаем дивергенцию векторного поля в точкеM.

. Это и естьинвариантное определение дивергенции .

Поэтому дивергенция векторного поля в точке M имеет смысл объемной плотности потока векторного поля через окрестность этой точки и характеризует мощность источника (если
>0) или стока (если
<0) векторного поля в точке M .

Если
>0, то точкаM– источник векторного поля, если
<0, то точка M– сток векторного поля. Если в некоторой области дивергенция равна нулю, то в этой области нет ни источников, ни стоков, поток векторного поля через границу такой области равен нулю – «сколько поля втекает в область, столько и вытекает из нее».

Пример. Определить расположение источников и стоков векторного поля. Выяснить, является ли точкаM(1,2,3)источником или стоком.

Все точки, для которых 2xy+xz >0 – источники, все точки, для которых 2xy+xz <0– стоки. На поверхности 2xy+xz = 0 нет ни источников, ни стоков. Точка M– источник, так как.

М.В. Остроградский - российский математик и физик времен Российской империи, академик. Внес огромный вклад в развитие математического анализа, теории вероятностей, механики (раздела физики), теории чисел. В 1826 году вывел формулу, называемую сейчас формулой Остроградского - Гаусса.

История открытия

Впервые формула Остроградского - Гаусса была упомянута Жозефом Лагранжем в 1762 году.

Далее основной способ приведения тройного интеграла к поверхностному был доказан Карлом Гауссом, который использовал в качестве основы для доказательства решение проблем в электродинамике. Произошло это в первой половине XIX века.

Смысл формулы Остроградского

Формула Остроградского-Гаусса соотносит тройной интеграл по пространственному объему с интегралом по поверхности на его грани. Она является аналогом формулы Грина, которая соотносит двойной интеграл по плоскости с криволинейным по ее границам.

Вывод формулы

Формула Остроградского - Гаусса: вывод. Допустим, что в области W определена подынтегральная функция R (x, y, z), которая является определенной и непрерывной. Аналогичной является и ее производная во всей области W, включая ее границу. В таком виде известна сейчас теорема Остроградского - Гаусса (формула приведена ниже).

Причем S - поверхность, которая ограничивает тело, а интеграл справа распространен на ее внешнюю сторону.

И абсолютно верно,

Если аналогично брать во внимание и интегралы по поверхности, то

при этом справа находится сумма двух интегралов - первый из них соотносится с верхней частью поверхности (S 2), а второй - с нижней частью поверхности (S 1). Если приписать к данному равенству справа интеграл, указанный ниже, то его справедливость не будет нарушена:

Он соотносится с внешней частью поверхности S 3 по причине равенства нулю.

Если объединить все три вышеуказанных интеграла в один, будет получен частный случай формулы Остроградского.

Несложно осознать, что данная формула верна для более широкого класса тел и справедлива так же для фигур, ограниченных абсолютно любыми нелинейными поверхностями.

Аналогично справедливы и следующие формулы:

если функции Q и P непрерывны в области вместе со своими производными dP/dx и dQ/dy.

Если сложить оба равенства, будет получено выражение формулы Остроградского. Она отображает интеграл по поверхности, соотнесенный с внешней частью поверхности, через тройной интеграл, который берется по самому телу, границей которого является вышеуказанная поверхность.

Следует понимать, что формулы Грина, Стокса и Остроградского выражают интеграл, связанный с некоторым геометрическим телом, через интеграл, который берется на его границе. Формула Грина используется только в случае двумерности пространства, формула Стокса - к искривленному двумерному пространству.

Формулу Ньютона-Лейбница можно также рассматривать как некоторый аналог этих формул, но для одномерного пространства.

Применение данной формулы

Пусть в какой-либо незамкнутой области пространства заданы непрерывные функции A, B и C. Взяв любую замкнутую поверхность, находящуюся в данной области и ограничивающую некоторое тело, можно рассмотреть следующий интеграл по поверхности:

Необходимо найти такие значения A, B и C, чтобы при любых x, y и z данный интеграл оказывался равен нулю.

Для этого необходимо использовать формулу Остроградского-Гаусса. Одним из подразумеваемых условий является определенность и непрерывность функций A, B и C и их производных.

Так же требуется специально ввести наиболее данное для данного случая ограничение: и тело, и ограничивающая его поверхность должны содержаться одновременно в конкретной и указанной области, называемую односвязной. Основная его особенность заключается в отсутствии пустого пространства (в том числе и точечного). Таким образом, границей тела будет являться одна и при том единственная поверхность.

После применения формулы возможно получение следующего условия, которое является достаточным:

Чтобы доказать, что условие является так же и необходимым, достаточно воспользоваться дифференцированием тройного интеграла.

В заключении необходимо сказать об областях использования.

Как же применяется на практике формула Остроградского-Гаусса? Примеры использования можно обнаружить в самых разных сферах: для вывода некоторых формул в физике (например, уравнение диффузии), преобразования интегралов, вычисления интегралов Гаусса, доказательства некоторых формул и многого иного.

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

И поэтому если вы зашли с поисковика, то, пожалуйста, начните с первой части, где мы подробно разобрали и решили важную задачу. А именно нашли поток векторного поля через замкнутую поверхность в направлении её внешней нормали:

В ходе длинного-длинного решения нами был получен ответ , что в рамках условной гидродинамической модели означает следующее: сколько жидкости в единицу времени поступило в пирамиду – столько из неё и вытекло.

Однако так бывает далеко не всегда, и на практике поток часто получается положительным или отрицательным. Задумаемся над содержательным смыслом этих результатов и для бОльшей наглядности рассмотрим не пирамиду, а кусок реки, ограниченный внешне-ориентированной поверхностью и поле скоростей этой реки в области .

Предположим, что поток через замкнутую поверхность оказался положителен: . Что это означает? Это означает, что за единицу времени из области жидкости вытекло БОЛЬШЕ, чем туда поступило. Следовательно, в области где-то есть источник(и) поля. Это может быть, например, приток реки, который увеличивает её скорость, или просто кто-то вылил ведро воды.

Отрицательное значение потока через замкнутую поверхность говорит нам о том, что за единицу времени область «поглотила» жидкость (зашло больше, чем вышло). И причина тому – сток(и) поля в данной области. Например, подземная пещера или насос, выкачивающий воду.

И, наконец, при нулевом потоке возможны две ситуации: либо в области нет источников и стоков , либо они компенсируют друг друга.

К слову, взаимная компенсация чаще всего имеет место и в первых двух случаях. Так, например, если , то это ещё не значит, что стоков нет. Возможно, источники оказались мощнее, и по итогу за единицу времени через поверхность выплеснулось 5 единиц жидкости.

И поэтому появляется интерес выяснить, есть ли у векторного поля источники / стоки, и если есть – то где. И в этом нам поможет акваланг хитрая наука под названием математический анализ.

Рассмотрим некоторую точку области и её бесконечно малую замкнутую окрестность (например, сферу или куб) . Поток векторного поля через поверхность этой окрестности во внешнем направлении называется дивергенцией поля в данной точке , и обозначается через . И вот тут-то уж никуда не деться от разоблачения:

– если , то у векторного поля есть источник в данной точке (её бесконечно малой окрестности) ;

– если , то сток ;

– и если , то в точке нет источников и стоков.

Далее. Как найти эту самую дивергенцию? Если в каждой точке области определено векторное поле и его компоненты дифференцируемы в этих точках, то скалярная функция дивергенции имеет следующий вид:

или, как записывают короче:

Таким образом, в области векторному полю ставится в соответствие скалярное поле его дивергенции.

И здесь сразу можно выделить особый случай. Поле, дивергенция которого равна нулю ВО ВСЕХточках области, называется бездивергентным или соленоидальным . Это означает, что у него нет источников и стоков. В качестве примера часто приводят трубу-«бублик» с циркулирующей водой, которая никуда не исчезает, и новой воды там не появляется. Но ещё более показательный пример – это магнитное поле с его замкнутыми силовыми линиями , у которых нет начала и конца.

Хорошо. Функция позволяет нам вычислить дивергенцию в отдельно взятых точках, и возникает вопрос: а можно ли подсчитать суммарную дивергенцию по всему телу?

…вы когда-нибудь думали, что будете так рады тройным интегралам? =)

Вернёмся к эпичному Примеру 1 , где у нас получился нулевой поток через пирамиду, и вычислим дивергенцию векторного поля . Очевидно, что само поле и производные его компонент определены не только в пирамиде , но и вообще во всём пространстве:

Составим скалярную функцию дивергенции, или как чаще говорят – найдём дивергенцию:

Полученная функция каждой точке пространства ставит в соответствие ноль, значит векторное поле всюду соленоидально . По формуле Гаусса-Остроградского, поток векторного поля через внешнюю сторону пирамиды равен:

Примечание : т.к. поле бездивергентно во всём пространстве, то поток равен нулю и через любую замкнутую поверхность

Огорчаться, однако, не стОит, поскольку если уж от вас потребовали вычислить поток первым способом, то никуда не деться =) А требуют, между прочим, частенько.

И здесь ещё нужно подчеркнуть следующее: если вы вычислили поток через замкнутую поверхность, и у вас получился ноль, то это ещё не значит , что в области нет источников и стоков. Они могут и существовать, но компенсировать друг друга. И первый способ решения не даёт нам ответ на этот вопрос.

Поэтому решаем второй пример вторым способом:)

Пример 2

Проверить, будет ли векторное поле соленоидальным, и найти его поток через замкнутую поверхность по формуле Гаусса-Остроградского

Результаты должны совпасть. Обращаю внимание, что проверка поля на соленоидальность является неотъемлемой частью задания, и на этот вопрос нужно дать аргументированный письменной ответ. Примерный образец решения в конце урока, и что приятно – задачу можно оформить в минималистичном стиле, без лишних обозначений и даже без записи самой формулы.

Ну а теперь я расскажу вам, а точнее напомню универсальный метод нахождения нормальных векторов поверхности :

Пример 3

Дано векторное поле и замкнутая поверхность . Вычислить поток векторного поля через данную поверхность в направлении внешней нормали:

а) непосредственно;
б) по формуле Гаусса-Остроградского.

Распространённая формулировка, позволяющая ещё раз осознать всю ценность формулы =)

Решение : чертёж здесь прост:

но вот решение – «труба» =)

а) Найдём поток векторного поля через полную поверхность цилиндра в направлении внешней нормали напрямую. В силу аддитивности поверхностного интеграла:

– боковая поверхность цилиндра ;
– его нижнее основание (единичный круг в плоскости );
– и верхнее основание (единичный круг в плоскости ).

1) Цилиндрическая поверхность параллельна оси и возникает вопрос, как найти её векторы нормали? Очень просто. Вектор нормали к поверхности в точке задаётся следующим образом:

В данном случае:

Таким образом, мы получаем целую функцию нормальных векторов для различных точек цилиндра:

Но нам нужны единичные векторы. Они разыскиваются стандартно:

Контроль:

Да, убедимся, что они «смотрят» вовне. Для этого можно взять несколько конкретных точек поверхности (проще всего в плоскости ) и посмотреть, какие векторы будут получаться. Так, например, для точки получаем:
– всё ОК. Собственно, этот вектор в качестве примера и изображён на чертеже. Самостоятельно проверьте какие-нибудь другие точки, и удостоверьтесь, что получаются векторы нужного направления.

и сведём решение к поверхностному интегралу 1-го рода:

В данном случае плоскость не годится для проецирования. Почему? Потому что цилиндрическая поверхность спроецируется в окружность нулевой площади и получится ноль. Но из боковой же поверхности торчат векторы поля, и через неё запросто может идти поток!

Поэтому в нашем распоряжении остаются две координатные плоскости, я выберу для проецирования более наглядную фронтальную плоскость . И тут возникает другая трудность – цилиндрическую поверхность , а значит, и полученный интеграл 1-го рода придётся разделить на 2 части:
, где:

– ближний к нам кусок цилиндра, а – дальний его кусок.

Проведём вычисления для первого интеграла:

Используем соответствующую формулу:
, где:

По формуле:

Проекция на плоскость очевидна:

Выберем следующий порядок обхода области:

При вычислении второго интеграла получится точно такой же результат:

Таким образом:

Это я привел длинное общее решение (на всякий случай), но на самом деле тут есть короткий и изящный путь – в сумму интегралов можно сразу подставить и :


и, согласно, геометрическому смыслу этих интегралов , данная сумма равна площади боковой поверхности цилиндра:

Знание – сила =)

2) Вычислим поток векторного поля через ориентированный единичный круг .

С нормалью и скалярным произведением всё просто:

а с поверхностным интегралом – ещё проще:
, поскольку

3) Третий интеграл начинается похоже:

Используем формулу , в данном случае:

Проекция (поверхности на плоскость ) представляет собой круг площади , и согласно геометрическому смыслу интеграла :

И, наконец, поток через всю поверхность:

Ответ :

Что, кстати, означает этот результат? Положительный поток через внешнюю поверхность означает, что внутри цилиндра есть источники поля. Иначе, откуда бы там взяться единицам жидкости, которые вытекли наружу? (за единицу времени)

б) Решим задачу по формуле Гаусса- Остроградского:

И, прежде всего, тут нужно убедиться, что компоненты и их производные определены во всех точках тела. В противном случае формулу применять нельзя! Должен предупредить, что это не пустая формальность – на практике встречаются поля с корнями и логарифмами, и вот там могут быть проблемы.

Составим функцию дивергенции:
, которую очень полезно проанализировать:

При увеличении «зет» от 0 до 2 дивергенция строго положительна и нарастает. Это означает то, что, во-первых, внутри цилиндра находятся исключительно источники поля. И, во-вторых, эти источники усиливаются, т.е. текущая снизу вверх жидкость начинает разгоняться. Поэтому сразу можно сказать, что поток через внешнюю поверхность будет положительным. В чём мы сейчас ещё раз убедимся аналитически:

Поскольку проекция тела на плоскость представляет собой круг единичного радиуса (чертить уж не буду), то удобно перейти к цилиндрической системе координат :

Таким образом, с помощью «ро», «тета» и «фи» можно однозначно определить любую точку пространства.

Где используется сферическая система координат? Ну, конечно же, в астрономии. Но своё скромное применения она нашла и при