В зависимости от числа групп ОН фенолы делятся на: одноатомные и

двухатомные фенолы:

трехзамещенные фенолы: (пирогаллол), симметричный и несимметричный

Номенклатура и изомерия.

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название «фенол». Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с группой ОН и продолжают в такой последовательности, чтобы имеющиеся заместители получили наименьшие номера.

Строение фенола, взаимное влияние бензольного кольца и гидроксильной группы.

В молекуле фенола бензольное кольцо и группа ОН взаимно влияют друг на друга. Неподеленная пара электронов атома кислорода группы ОН находится в р, π-сопряжение с бензольным кольцом. Поэтому в феноле группа ОН, помимо отрицательного индуктивного эффекта проявляет положительный мезомерный эффект. Величина +М- эффекта больше, чем I - эффекта. Поэтому группа ОН является электронодонором (Э.Д) по отношению к бензольному кольцу и повышает полярность связи О – Н и, следовательно происходит увеличение подвижности атома водорода и тем самым усиливаются кислотные свойства.

Кроме того, +М- эффект группы ОН повышает электронную плотность в орто пара- положениях бензольного кольца и в положениях 2, 4, 6 возникает частичный отрицательный заряд что облегчает реакции электрофильного замещения.

Кислотный центр

I < +М, ЭД

Физические свойства.

Фенол – это бесцветное кристаллическоевещество с резким запахом, плохо растворим в воде при обычной температуре, а при температуре выше 66 0 смешивается с водой в любых соотношениях. На воздухе окисляется и становится розовым. Фенол – токсичное вещество, вызывает ожоги кожи, его 10% водный раствор называется карболовой кислотой и применяется как антисептик.

Химические свойства.

Химические свойства фенолов обусловлены наличием группы ОН и бензольного кольца.

Реакции с участием гидроксильной группы.

    Диссоциация в водных растворах:

фенолят - ион

    Взаимодействие с активными металлами (сходство с простыми спиртами):

    Взаимодействие со щелочами (отличие от спиртов):

Образующиеся феноляты легко разлагаются при действии кислот. Поэтому при действии Н 2 СО 3 (СО 2 + Н 2 О) и др. кислот феноляты легко разлагаются и обратная реакция не возможна.

С 6 Н 5 ОNа + СО 2 + Н 2 О  С 6 Н 5 ОН + NаНСО 3

    Взаимодействие с галогеналканами с образованием простых эфиров:

метилфениловый эфир

    Взаимодействие с ангидридами кислот с образованием сложных эфиров:

фенилацетат

    Взаимодействие с солями (хлоридом железа III). Данная реакция является качественной реакцией на фенольный гидроксид

Каждый фенол дает свое характерное окрашивание в качественной реакции с FеС1 3:

Фенол  Фиолетовое, Гидрохинон  Грязно-зеленое,

Пирокатехин  Зеленое, Пирогаллол  Красное.

Резорцин  Фиолетовое

3С 6 Н 5 ОН + FеС1 3  (С 6 Н 5 О) 3 Fе + 3НС1

Фиолетовое окрашивание

    Р-ция восстановления с цинковой пылью при нагревании:

С 6 Н 5 ОН + 3Н 2 С 6 Н 12 + ZnО

      .Р-ции по бензольному кольцу ( S Е )

Как было сказано выше, –ОН группа – ориентант I рода, облегчает реакции по бензольному кольцу, направляя атаку электрофильного реагента преимущественно в орто- и пара- положения:

    Галогенирование фенола:

2,4,6-трибромфенол

Происходит обесцвечивание бромной воды и образование белого осадка. Эта реакция используется как качественная реакция на фенол.

    Нитрование фенола. Под действием 20% раствора азотной кислоты на холожу фенол превращается в смесь орто- и пара- нитрофенол:

2-нитрофенол – 40% 4-нитрофенол – 10%

Для получения 2,4,6-тринитрофенола (пикриновой кислоты) фенол предварительно растворяют в концентрированной серной кислоте, а зате6м подвергают нитрованию концентрированной азотной кислотой:

пикриновая кислота

    Сульфирование фенола:

    Р-ция конденсации . При взаимодействии с формальдегидом фенол образует полимеры различного строения (линейного, разветвленного, сетчатого) – фенолформальдегидные смолы.

Фрагмент

фенолоформальдегидной

5.Р-ция гидрирования (восстановление):

    Окисление. Фенолы легко окисляются под действием кислорода воздуха:

хинон

Многие биологические вещества содержат «хиноидную» систему: витамин К 2 (фактор свертываемости крови), окислительно-восстановительные ферменты тканевого дыхания – убихиноны.

Молекулярная формула: C 6 H 5 – OH.

Строение молекулы: в молекуле фенола гидроксильная группа атомов связана с бензольным кольцом (ядром).

Ароматический радикал фенил (C 6 H 5 –) или бензольное ядро, в отличие от радикалов предельных углеводородов обладает свойством оттягивать к себе электроны кислородного атома гидроксильной группы, поэтому в молекуле фенола химическая связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным, чем в молекулах спиртов, и фенол проявляет свойства слабой кислоты (его называют карболовой кислотой).

С другой стороны, гидроксильная группа влияет на бензольное кольцо (ядро) так, что в нем происходит перераспределение электронной плотности и атомы водорода в положениях 2,4,6 становятся более подвижными, чем в молекуле бензола. Поэтому в реакциях замещения для фенола характерно замещение трех атомов водорода в положениях 2,4,6 (в бензоле замещается только один атом водорода). Таким образом, в молекуле фенола наблюдается взаимное влияние гидроксильной группы и бензольного кольца друг на друга.

Физические свойства: фенол – бесцветное кристаллическое вещество с характерным запахом, на воздухе бывает розового цвета, т.к. окисляется. Температура плавления – 42 ºC.

Фенол – ядовитое вещество! При попадании на кожу вызывает ожоги!

Химические свойства: хим. свойства обусловлены гидроксильной группой и бензольным кольцом (ядром).

· Реакции, идущие по гидроксильной группе:

Атом водорода в гидроксильной группе фенола более подвижен, чем в спиртах, поэтому фенол проявляет св-ва слабой кислоты (второе название – карболовая кислота) и взаимодействует не только с активными металлами, как спирты,но также со щелочами (спирты со щелочами не реагируют!).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 . C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

фенол гидроксид натрия фенолят натрия

· Реакции, идущие по бензольному кольцу (ядру):

Фенол энергично (без нагревания и катализаторов) взаимодействует с бромом и азотной кислотой, при этом в бензольном кольце замещаются три атома водорода в положениях 2,4,6.



фенол бром 2,4,6 – трибромфенол бромоводород

фенол азотная кислота 2,4,6-тринитрофенол

Применение: Фенол используется для производства лекарственных веществ, красителей, веществ для дезинфекции (антисептиков), пластмасс (фенопластов), взрывчатых веществ

Получение: из каменноугольной смолы и из бензола.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – органические вещества, содержащие функциональную альдегидную группу

Связанную с углеводородным радикалом или атомом водорода.

Общая формула альдегидов: или R – CОН

Строение молекул. В молекуле альдегида между атомами углерода и водорода существуют σ-связи, а между атомами углерода и кислорода – одна σ-связь и одна π-связь. Электронная плотность смещена от атома углерода к более электроотрицательному атому – атому кислорода. Т.о. атом углерода альдегидной группы приобретает частичный положительный (δ+), а атом кислорода – частичный отрицательный заряд (δ–).

Номенклатура . Названия альдегидам даются: 1) от исторических названий соответствующих органических кислот, в которые они превращаются при окислении – муравьиный альдегид, уксусный альдегид и т.д. 2) по международной номенклатуре – от названий соответствующих углеводородов + суффикс -аль . Например,

H – C или Н – СНО муравьиный альдегид, или метаналь

СH 3 – C или СН 3 – СНО уксусный альдегид, или этаналь

Физические свойства. Метаналь – бесцветный газ с резким запахом, этаналь и следующие адьдегиды – жидкости, высшие альдегиды – твердые вещества.

Химические свойства.

Реакции окисления. Качественные реакции на альдегиды:

1) реакция «серебряного зеркала» – окисление альдегидов аммиачным раствором оксида серебра при нагревании:

CH 3 – C НО + Ag 2 O → CH 3 – CООН + 2Ag ↓

Уксусный альдегид уксусная кислота

окислитель оксид серебра восстановливается до серебра, которое оседает на стенках пробирки, а альдегид окисляется в соответствующую кислоту

2) Окисление альдегидов гидроксидом меди (II) при нагревании.

H – C НО + 2 Cu(OH) 2 → H – CООН + 2CuOH + H 2 O

голубой желтый

муравьиный альдегид муравьиная кислота

2CuOH → Cu 2 O + H 2 O

желтый красный

окислителем является медь со степенью окисления +2, которая восстанавливается до меди со степенью окисления +1.

Реакции присоединения.

3) Альдегиды при нагревании и в присутствии катализатора присоединяют водород за счет разрыва двойной связи в альдегидной группе. При этом альдегид восстанавливается – превращается в соответствующий спирт. Например, метаналь превращается в метанол:

H– C НО + H 2 → CH 3 – OH

метаналь метиловый спирт (метанол)

Получение.

Альдегиды можно получить:

1. Окислением первичных спиртов, например,

2CH 3 OH + O 2 → 2H – C НО + 2H 2 O

метиловый спирт муравьиный альдегид (метаналь).

2. метаналь можно также получить непосредственным окислением метана:

CH 4 + O 2 → H – CНО + H 2 O

3. Уксусный альдегид можно получить гидратацией этилена в присутствии катализатора (солей ртути) – реакция М.Г. Кучерова:

H – C ≡ C – H + H 2 O → CH 3 – CНО

Применение. Наибольшее применение имеют метаналь и этаналь.

· Метаналь используется для получения фенолформальдегидной смолы, из которой делают пластмассы - фенопласты.

· При растворении этой смолы в ацетоне или спирте получают различные лаки.

· Метаналь используется для производства некоторых лекарственных веществ и красителей.

· Широко используется 40%-ный водный раствор метаналя – формалин. Он применяется при дублении кож (свертывает белок – кожа твердеет и не поддается гниению), для сохранения биологических препаратов, для дезинфекции и протравления семян.

· Этаналь в основном используется для производства уксусной кислоты.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

Химические свойства

1. Взаимодействие с щелочными металллами.

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

фенолят натрия

2. Взаимодействие со щелочью (фенол – слабая кислота)

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

3. Галогенирование .

4. Нитрование

5.Качественная реакция на фенол

3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

Применение

Для дезинфекции, получение лекарств, красителей, взрывчатых веществ, пластмасс.

Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.

Наибольшее промышленное значение имеют метанол и этанол.

Промышленный синтез метанола.

Метанол применяется в производстве ряда органических веществ (формальдегида, лекарств), используется как растворитель лаков и красок, служит добавкой к топливам. В настоящее время метанол получают экономически выгодным способом из синтез-газа:

1.Синтез-газ получают взаимодействием метана (природного газа) с водяным паром в присутствии катализатора:

СН 4 +Н 2 О → СО+3Н 2

синтез-газ

2.Из синтез-газа получают метанол:

СО + 2Н 2 СН 3 ОН +Q

1моль 2моль 1 моль

Эта реакция обратимая, экзотермическая, чтобы сместить равновесие в сторону образования метанола, нужно воспользоваться принципом Ле-Шателье:

1.Реакция сопровождается уменьшением объёма, поэтому повышение давления будет способствовать образованию метанола.

2.Реакция экзотермическая, следовательно, особенно сильно нагревать вещества нельзя.

Из-за обратимости процесса исходные вещества реагируют не полностью. Поэтому образовавшийся спирт необходимо отделять, а непрореагировавшие газы снова направлять в реактор, то есть осуществлять циркуляцию газов .

Получение спиртов из предельных и непредельных углеводородов.

1. Этанол в промышленности получают гидратацией этилена:

СН 2 =СН 2 + Н 2 О → СН 3 -СН 2 -ОН

2. Из предельных углеводородов спирты получают через галогенопроизводные. Первая реакция – галогенирование алкана:

С 2 Н 6 + Br 2 → C 2 H 5 Br + HBr

бромэтан

Вторая реакция- взаимодействие бромэтана с водным раствором щёлочи:

C 2 H 5 Br + НОНC 2 H 5 ОН + НBr

Щёлочь нужна, чтобы нейтрализовать НBr.

Промышленного значения такой способ не имеет, им пользуются в лабораториях. Но он важен в теоретическом отношении, так как показывает взаимосвязь между предельными углеводородами, их галогенопроизводными и спиртами.

Данный урок проводится по учебнику под редакцией Г. Е. Рудзитиса «Органическая химия» в 10 классе в разделе: «Спирты и фенолы». Урок проводится с использованием традиционных методов обучения, демонстрационных опытов, а также современных мультимедийных форм обучения. Это позволяет более наглядно и доходчивее излагать материал; провести быструю оценку усвоения учащимися изученного на уроке (тест). Использование современных аудио/видео способов обучения расширяют возможности более прочного и осознанного усвоения учебного материала учащимися.

Образовательные задачи:

  1. изучить состав, строение, свойства фенола и его соединений
  2. на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства
  3. познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы
  4. рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Развивающие задачи:

  1. совершенствовать умение учащихся прогнозировать свойства вещества на основе его строения
  2. продолжать развивать умение наблюдать, анализировать, делать выводы при выполнении химического эксперимента

Воспитательные задачи:

  1. продолжить формирование химической картины мира через химическую картину природы (познаваемость, управление химическими процессами)
  2. расширить представление учащихся о влиянии фенолсодержащих промышленных отходов и строительных материалов на окружающую среду и здоровье человека
  3. рассмотреть биологическую роль фенола и его соединений на организм человека (положительную и отрицательную)

Тип урока: урок - изучения новых знаний.

Методы обучения: словесный, наглядный, практический (химический эксперимент – ученический и демонстрационный)

Средства обучения: Компьютер, проектор, школьный химический эксперимент (демонстрационный и ученический), опорные конспекты, видеоролики.

Оборудование и реактивы: Демонстрационный эксперимент: растворы С 6 Н 5 ОН, NaOH, FeCl 3 , бромная вода, Na, пробирки, резиновые пробки.

План урока

1. Организационный момент

2. Актуализация знаний

3. Изучение новых знаний

  • Определение фенолов Соединения, в которых ароматический радикал фенил С6Н5- непосредственно связан с гидроксильной группой, отличаются по свойствам от ароматических спиртов, настолько, что их выделяют в отдельный класс органических соединений, называемый фенолами .
  • классификация и изомерия фенолов В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) и многоатомные . Среди многоатомных фенолов наиболее распространены двухатомные:

Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы).

  • Физические свойства фенола (Приложение№2)

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде:

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

  • Строение молекулы фенола
  • Химические свойства фенола (проводится демонстрационный эксперимент)
  • а) Рассмотрим реакции фенола по ОН- группе:

Кислотные свойства у фенола выражены сильнее, чем у спирта С 2 Н 5 ОН. Фенол – слабая кислота (карболовая).

  • б) Реакции фенола по бензольному кольцу:

Какой вывод о взаимном влиянии атомов в молекуле фенола можно сделать?
Фенильная группа C6H5 – и гидроксил –ОН взаимно влияют друг на друга.

  • в) Качественная реакция на фенолы (видеоролик)

С 6 Н 5 ОН + FeCl 3 -> фиолетовое окрашивание

  • Получение фенола (приложение№1)
  • Физиологическое действие фенола и его применение

Фенол - ядовит!!! При попадании на кожу вызывает ожоги, при этом он всасывается через кожу и вызывает отравление. Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин, а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – фенолоальдегидных смол, полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Биологическая роль соединений фенола:

4. Закрепление изученного материала

Приложение №2 (видеоролик)

Приложение №3 (Flash анимация)