Метод перебора - это самый простой способ решения любой задачи. Проще, наверное только метод подбора Если сразу подобрать (по наитию) ответ не получается, а неизвестных в задаче больше, чем накладываемых условий, то метод полного перебора - самое то. Конечно, для начала нужно убедиться, что все остальные варианты решения не подходят, и наложены все явные и неявные условия для ограничения перебираемых комбинаций, иначе время перебора всех возможных вариантов устремится к бесконечности.

Рассмотрим пару примеров применения метода перебора в решении различных задач.

Перебор последовательности

Допустим, нам встретилась последовательность цифр 141526418, и мы знаем, что в ней зашифровано латинскими буквами некое слово. Какой самый простой способ зашифровать слово? Конечно же, использовать шифр замены ! Число цифр нечётное, значит хотя бы одна буква закодирована всего одной цифрой. Но как отделить буквы первой десятки от последующих, кодируемых двумя цифрами? 14 - это AD или N? Вот тут-то нам и пригодится метод перебора. Переберём все комбинации из одной-двух цифр из диапазона .

В последовательности 141526418 можно выделить следующие удовлетворяющие нашим условиям комбинации: 1,2,4,5,6,8,14,15,18,26. Эти числа соответствуют буквам A,B,D,E,F,H,N,O,R,Z. Комбинации 41, 52 и 64 нам не подходят, так как в латинице всего 26 букв.

Перебирать будем так: сначала возьмём самую развёрнутую последовательность, где все буквы из первого десятка, а затем будем по очереди увеличивать используемые числа, то есть заменять последовательности 1-4 на 14, 1-5 на 15, 1-8 на 18, 2-6 на 26, перебирая все возможные комбинации.

    1-4-1-5-2-6-4-1-8 = ADAEBFDAH

    1-4-1-5-2-6-4-18 = ADAEBFDR

    1-4-1-5-26-4-1-8 = ADAEZDAH

    1-4-1-5-26-4-18 = ADAEZDR

    1-4-15-2-6-4-1-8 = ADOBFDAH

    1-4-15-2-6-4-18 = ADOBFDR

    1-4-15-26-4-1-8 = ADOZDAH

    1-4-15-26-4-18 = ADOZDR

    14-1-5-2-6-4-1-8 = NAEBFDAH

    14-1-5-2-6-4-18 = NAEBFDR

    14-1-5-26-4-1-8 = NAEZDAH

    14-1-5-26-4-18 = NAEZDR

    14-15-2-6-4-1-8 = NOBFDAH

    14-15-2-6-4-18 = NOBFDR

    14-15-26-4-1-8 = NOZDAH

    14-15-26-4-18 = NOZDR

Итого получили 16 вариантов. Единственное читаемое слово NOZDR (кому читаемое, а кому и нет ), получилось в самом конце. Оно и будет ответом. Вот если бы в самом начале была подсказка, что из последовательности 141526418 должно получиться 5 букв, то тогда задача решится однозначно. И перебор будет не нужен, потому что разбить на 5 букв последовательность 141526418 можно только одним единственным способом. Но такой подсказки не было, и метод перебора пригодился.

Перебор решений при недостатке условий

Иногда в математике встречаются такие задачи, которые кажется решить «в лоб» невозможно. Подобные задачки часто дают решать на олимпиадах и конкурсах, а значит они подойдут и нам для квестов. Например, вот такая задачка.

Учитель на уроке математики задал ученикам такую задачу: «У матери три дочери. Произведение возрастов дочерей = 40, сумма возрастов равна числу учеников в классе. Каков возраст каждой из дочерей?» Ну, ученики по-быстрому посчитали, сколько их всего в классе, и стали решать задачу. Решали-решали… Не решается. Попросили у учителя подсказку. Учитель подумал и говорит: «А, точно! У младшенькой голубенькие глазки!» . Ученики обрадовались, и решили задачу. А теперь вопрос вам: сколько же лет каждой из дочерей?

Если решать задачу в лоб (AxBxC=40, A+B+C=D, голубенькие глазки), то сразу наталкиваешься на кучу неизвестных и недостаток условий. 4 неизвестных, два уравнения и ещё голубенькие глазки!!! Как известно, сколько неизвестных, столько должно быть и независимых условий. У нас в задаче два нормальных условия и одно непонятное. Как же её решать?

А методом перебора! Во-первых, такие задачи по умолчанию решаются целочисленно. Найдём все комбинации из трёх целых чисел, произведение которых даёт 40. Заодно посчитаем сумму этих чисел. Оказывается, таких комбинаций не так уж и много - всего шесть.

    1x1x40=40, 1+1+40=42

    1x2x20=40, 1+2+20=23

    1x4x10=40, 1+4+10=15

    1x5x8=40, 1+5+8=14

    2x2x10=40, 2+2+10=14

    2x4x5=40, 2+4+5=11

Если бы учеников в классе было 42, 23, 15 или 11, то они бы сразу решили задачу. Но у них возникло затруднение - их было 14, и они никак не могли выбрать, какой же из вариантов 1-5-8 или 2-2-10 подходит. Но когда учитель сказал про голубые глазки, им это помогло определиться. Голубые глазки были у младшенькой, то есть была самая младшая дочь, а в варианте 2-2-10 младшеньких две. Значит, нам подходит только четвёртый вариант 1-5-8.

Казалось бы, практически нерешаемая задача, но метод перебора позволил её очень быстро решить. Поэтому не надо бояться решать задачи перебором. Довольно часто число возможных вариантов не так велико, как кажется вначале.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?